Answer:
[tex]\boxed{2144}[/tex]
Step-by-step explanation:
The sum can be found by adding the parts:
[tex]\sum\limits_{n=1}^{32}{(4n+1)}=4\sum\limits_{n=1}^{32}{n}+\sum\limits_{n=1}^{32}{1}=4\cdot\dfrac{32\cdot 33}{2}+32\\\\= 2112+32=\boxed{2144}[/tex]
__
The sum of numbers 1 to n is n(n+1)/2.
A city's population is currently 50,000. If the population doubles every 70 years, what will the population be 280 years from now?
Answer:
200,000
Step-by-step explanation:
The current population: 50,000
Doubling time:70
Population after 280 years=?
280/70=4
50,000*4=200,000
Hope this helps ;) ❤❤❤
Answer: 800,000
Step-by-step explanation: 50,000x2=100,000. That is after 70 years. 100,000x2=200,000. This is after 140 years. 200,000x2=400,000. This is after 210 years. 400,000x2=800,000. This is after 280 years.
Betty has $33 to buy plants for her greenhouse. Each plant costs $8. How
many plants can she buy? Do not include units in your answer.
Answer:
4 plants
Step-by-step explanation:
If betty has $33 dollars and each plant is $8, than 33/8 ≈ 4
(8 * 4 is 32)
She will have one dollar left but she can't buy another plant since that's not enough.
Answer:
4 plants
Step-by-step explanation:
Take the amount of money she has and divide by the cost per plant
33/8
The amount is 4 with 1 dollar left over
4 plants
Emma words in a coffee shop where she is paid at the same hourly rate each day. She was paid $71.25 for working 7.5 hours on Monday. If she worked 6 hours on Tuesday, how much was she paid on Tuesday
Answer:
$57
Since $71.25 was paid for working 7.5 hours.
That means he was being paid $9.5 per hour.
Which is 71.25÷7.5.
And on tuesday that's 9.5×6 which is $57
If ABC~DEF and the scale factor from ABC to DEF is 3/4, what is the length of DF?
Answer:
the length of DF = 3/4 AC
see below for explanation
Step-by-step explanation:
ABC is said to be approximately equal to DEF
The scale factor from ABC to DEF = 3/4
From the question, we can tell the original and new shape is a triangle because the lettering to indicate the vertices for both are 3.
We can deduce from the question, ΔABC was dilated to form ΔDEF
In dilation, the length of each of the corresponding side of the new figure is equal to the multiplication of each of the corresponding sides of the old figure and thee scale factor.
In the absence of cordinates for each vertices and length of each sides, ΔABC has 3 sides :
AB, BC and AC
ΔDEF has 3 sides : DE, EF and DF
If AB corresponds to DE
BC corresponds to EF
AC corresponds to DF
Then:
length DE = scale factor × AB = 3/4 AB
length EF = scale factor × BC = 3/4 BC
length DF = scale factor × AC = 3/4 AC
Therefore, the length of DF = 3/4 AC
HELLPPPPPPPPPPPPP Solve x2 - 16x + 60 = -12 by completing the steps. First, subtract 60 from each side of the equation. Next, add 64 to each side of the equation to complete the square. Now, write x² - 16x + 64 = -8 as ✔ (x - 8)² = -8
Answer:
x = 8 ± 2i[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Given
x² - 16x + 60 = - 12 ( subtract 60 from both sides )
x² - 16x = - 72
To complete the square
add ( half the coefficient of the x- term )² to both sides
x² + 2(- 8)x + 64 = - 72 + 64, thus
(x - 8)² = - 8 ( take the square root of both sides )
x - 8 = ± [tex]\sqrt{-8}[/tex] = ± 2i[tex]\sqrt{2}[/tex] ( add 8 to both sides )
x = 8 ± 2i[tex]\sqrt{2}[/tex]
The solution of the given expression is ±2√2i+8
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
Given that
x² - 16x + 60 = - 12
Then subtract 60 from both sides;
x² - 16x = - 72
To complete the square then add ( half the coefficient of the x- term )² to both sides
x² + 2(- 8)x + 64 = - 72 + 64,
(x - 8)² = - 8 ( take the square root of both sides )
x = ±2√2i+8
Learn more about equations here;
https://brainly.com/question/25180086
#SPJ2
A rectangular vegetable garden will have a width that is 4 feet less than the length and an area of 140 square feet if x represents the length then the length can be found by solving the equation:
If x represents the length, then the length can be found by solving the equation: x(x-4)=140
Answer: x(x-4) = 140 This equation can be solve to find the length.
Step-by-step explanation:
If the width of the rectangle will be 4 less than the length and the length is represented by x then we could have the equation w=x - 4 for the width and the length is just x. And to find the area of a rectangle we multiply the length by the with so multiply x-4 by x for it to equal 140 because 140 is the area.
x(x-4) = 140 solve for x
[tex]x^{2}[/tex] - 4x = 140 subtract 140 from both sides
x^2 - 4x - 140 = 0 find a number that the product is 140 and the sum is -4
-14 and 10 works out.
[tex]x^{2}[/tex] - 14x + 10x - 140 = 0 factor by grouping
x(x -14) 10(x-14) = 0 factor out x-14
(x-14) ( x+10) = 0 set them both equal zero.
x-14= 0 or x+10 = 0
x = 14 or x= -10
Since -10 can't represent a distance, the answer is 14.
Check.
In this case the length is 14 and if the width is 4 less than the length then we will subtract 4 from 14.
14- 4 = 10 so the width is 10.
14 * 10 = 140
The number of users on a website has grown exponentially since its launch. After 1 month, there were 120 users. After 4 months, there were 960 users. Find the exponential function that models the number of users x months after the website was launched. Write your answer in the form f(x)=a(b)x.
Answer:
f(x) = 60(2)ˣ
Step-by-step explanation:
f(x) = a(b)ˣ
After one month:
120 = a(b)¹
After four months:
960 = a(b)⁴
Divide the second equation by the first:
8 = b³
b = 2
Plug into either equation and find a.
120 = a(2)¹
a = 60
Therefore, f(x) = 60(2)ˣ.
Con proceso por favor
Answer:se
Step-by-step explanation:
Datguy323 is going to complain again. What's the variables for: [tex]x^2+y^2=29\\x+y=7[/tex]
y<4
Answer: :o I FINALLY MADE IT
(5, 2)
x = 5
y = 2
Step-by-step explanation:
First, I graphed both equations. They meet at the points (5,2) and (2,5). Because y < 5, the solution is (5, 2)
Hope it helps <3
Answer:
[tex]x=5\\y=2[/tex]
Step-by-step explanation:
[tex]x^2 +y^2 =29[/tex]
[tex]x+y=7[/tex]
Solve for x in the second equation.
[tex]x+y=7[/tex]
[tex]x+y-y=7-y[/tex]
[tex]x=7-y[/tex]
Plug in the value for x in the first equation and solve for y.
[tex](7-y)^2 +y^2 =29[/tex]
[tex]y^2-14y+49+y^2 =29[/tex]
[tex]2y^2-14y+20=0[/tex]
[tex]2(y-2)(y-5)=0[/tex]
[tex]2(y-2)=0\\y-2=0\\y=2[/tex]
[tex]y-5=0\\y=5[/tex]
[tex]y<4[/tex]
[tex]y=2[/tex]
[tex]y\neq 5[/tex]
Plug y as 2 in the second equation and solve for x.
[tex]x+y=7[/tex]
[tex]x=7-y[/tex]
[tex]x=7-2[/tex]
[tex]x=5[/tex]
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Consider the functions given below. VIEW FILE ATTACHED
Answer: see below
Step-by-step explanation:
[tex]P(x)=\dfrac{2}{3x-1}\qquad \qquad Q(x)=\dfrac{6}{-3x+2}\\[/tex]
P(x) ÷ Q(x)
[tex]\dfrac{2}{3x-1}\div \dfrac{6}{-3x+2}\\\\\\=\dfrac{2}{3x-1}\times \dfrac{-3x+2}{6}\\\\\\=\large\boxed{\dfrac{-3x+2}{3(3x-1)}}[/tex]
P(x) + Q(x)
[tex]\dfrac{2}{3x-1}+ \dfrac{6}{-3x+2}\\\\\\=\dfrac{2}{3x-1}\bigg(\dfrac{-3x+2}{-3x+2}\bigg)+ \dfrac{6}{-3x+2}\bigg(\dfrac{3x-1}{3x-1}\bigg)\\\\\\=\dfrac{2(-3x+2)+6(3x-1)}{(3x-1)(-3x+2)}\\\\\\=\dfrac{-6x+4+18x-6}{(3x-1)(-3x+2)}\\\\\\=\dfrac{12x-2}{(3x-1)(-3x+2)}\\\\\\=\large\boxed{\dfrac{2(6x-1)}{(3x-1)(-3x+2)}}[/tex]
P(x) - Q(x)
[tex]\dfrac{2}{3x-1}- \dfrac{6}{-3x+2}\\\\\\=\dfrac{2}{3x-1}\bigg(\dfrac{-3x+2}{-3x+2}\bigg)- \dfrac{6}{-3x+2}\bigg(\dfrac{3x-1}{3x-1}\bigg)\\\\\\=\dfrac{2(-3x+2)-6(3x-1)}{(3x-1)(-3x+2)}\\\\\\=\dfrac{-6x+4-18x+6}{(3x-1)(-3x+2)}\\\\\\=\dfrac{-24x+10}{(3x-1)(-3x+2)}\\\\\\=\large\boxed{\dfrac{-2(12x-5)}{(3x-1)(-3x+2)}}[/tex]
P(x) · Q(x)
[tex]\dfrac{2}{3x-1}\times \dfrac{6}{-3x+2}\\\\\\=\large\boxed{\dfrac{12}{(3x-1)(-3x+2)}}[/tex]
On a coordinate plane, a line is drawn from point J to point K. Point J is at (negative 3, 1) and point K is at (negative 8, 11). What is the y-coordinate of the point that divides the directed line segment from J to K into a ratio of 2:3? y = (StartFraction m Over m + n EndFraction) (y 2 minus y 1) + y 1 –6 –5 5 7
Answer: (-5, 5)
Step-by-step explanation:
J = (-3, 1) K = (-8, 11) ratio 2 : 3 --> 2 + 3 = 5 segments
x-distance from J to K: -8 - (-3) = -5 units
y-distance from J to K: 11 - 1 = 10 units
Divide those distance into 5 segments:
x = -5/5 = -1 unit per segment
y = 10/5 = 2 units per segment
The partition is 2 segments from J:
x = -3 +2(-1) = -5
y = 1 + 2(2) = 5
The partition is located at (-5, 5)
Answer:
5
Step-by-step explanation:
In the equation, the value of a is:
Answer:
Please check if the answer is a = 4 or not
The ratio of the legs of a trapezoid is 1:2, and the sum of the angles adjacent to the bigger base is 120°. Find the angle measures of the given trapezoid.
Answer:
The angle measures of the trapezoid consists of two angles of 60º adjacent to the bigger base and two angles of 120º adjacent to the smaller base.
Step-by-step explanation:
A trapezoid is a quadrilateral that is symmetrical and whose bases are of different length and in every quadrilateral the sum of internal angles is equal to 360º. The bigger base has the pair of adjacent angles of least measure, whereas the smaller base has the pair of adjancent angles of greatest measure.
Since the sum of the angles adjacent to bigger base is 120º, the value of each adjacent angle ([tex]\alpha[/tex]) is obtained under the consideration of symmetry:
[tex]2\cdot \alpha = 120^{\circ}[/tex]
[tex]\alpha = 60^{\circ}[/tex]
The sum of the angles adjacent to smaller base is: ([tex]\alpha = 60^{\circ}[/tex])
[tex]2\cdot \alpha + 2\cdot \beta = 360^{\circ}[/tex]
[tex]2\cdot \beta = 360^{\circ} - 2\cdot \alpha[/tex]
[tex]\beta = 180^{\circ}-\alpha[/tex]
[tex]\beta = 180^{\circ} - 60^{\circ}[/tex]
[tex]\beta = 120^{\circ}[/tex]
The angle measures of the trapezoid consists of two angles of 60º adjacent to the bigger base and two angles of 120º adjacent to the smaller base.
Find the area of the shaded region if the dimensions of the unshaded region are 14ft x 18ft . Use 3.14 for π as necessary. Answer Asap Please! That would be greatly appreciated! PLEASE HELP ME ON THIS ASAP FIRST ANSWER GETS BRAINLIEST
Answer:
867.44 ft²
Step-by-step explanation:
The area of the shaded region is A = 196π + 252.
We have the dimensions of the unshaded region are 14ft x 18ft.
We have to find the area of shaded region.
What is the area of a Rectangle and a Circle?The area of a rectangle is -
A(R) = Length x Breadth = L x B
and the area of Circle is -
A(C) = [tex]\pi r^{2}[/tex]
According to the question -
Dimensions of the unshaded region -
L = 18ft
B = 14ft
Area of the shaded region (A) = Total Area - Area of Rectangle
Total Area = Area of 2 semicircles of radius (7 + 7) 14ft + Area of rectangle of length 18ft and breadth 28ft.
Total Area = ( [tex]2\times \frac{1}{2}\times \pi \times14 \times 14[/tex] ) + ( 18 x 28)
Total Area = 196π + 504
Area of the shaded region (A) = 196π + 504 - 252 = 196π + 252
Hence, the area of the shaded region is A = 196π + 252.
To solve more questions on Area of Figures, visit the link below -
https://brainly.com/question/9720037
#SPJ2
The smaller of two numbers is one-half the larger, and their sum is 27. Find the numbers. Answer: The numbers are ___ ___ ___
Answer:
the smaller is 9 while the digger is 18
Given: AD = BC and AD || BC
Prove: ABCD is a parallelogram.
Angles Segments Triangles Statements Reasons
ZBCA
DAC
A
Statements
Reasons
00
D
с
Assemble the proof by dragging tiles to
the Statements and Reasons columns.
Answer:
See below
Step-by-step explanation:
Proof:
Statements | Reasons
AD ≅ BC | Given
AD ║ BC | Given
AC ≅ AC | Reflexive Property
∠DAC ≅ ∠ACB | If 2 || lines are cut by a trans., the | alternate interior ∠s are congruent.
ΔADC ≅ ΔBCA | S.A.S Postulate
BA ≅ DC | Corresponding sides of congruent Δs
So, quad. ABCD is a ║gm | If a quad. has its opposite sides
| congruent, the quad. is a parallelogram.
It is prove that given quadrilateral is a parallelogram.
Given that,AD ≅ BC and AD ║ BC
By reflexive property,AC ≅ AC
If two parallel lines are cut by a transversal. Then, alternate interior angles are congruent.So that, ∠DAC ≅ ∠ACB
By Side - angle - Side congruency rule,ΔADC ≅ ΔBCA
Since, the Corresponding sides of congruent triangles are congruent.So that, BA ≅ DC
Hence, opposite sides of given quadrilateral are equal. Therefore, given quadrilateral are parallelogram.
Learn more:
https://brainly.com/question/16702162
Ava is buying paint from Amazon. Ava needs 3⁄4 cup of blue paint for every 1 cup of white paint. Ava has 28 ounces of white paint. How much blue paint does he need?
Answer:
Blue paint=21 ounces
Step-by-step explanation:
3/4 cup=6 ounces
1 cup=8 ounces
3/4 cup of blue paint=6 ounces of blue paint
1 cup of white paint= 8 ounces of white paint
Ava has 28 ounces of white paint
Find the required blue paint
Let the required blue paint=x
Blue paint ratio white paint
6:8=x:28
6/8=x/28
Cross product
6(28)=x(8)
168=8x
x=168/8
x=21 ounces
mark wants to invest $10,000 for his daughter’s wedding. Some will go into a short term CD that pays 12% and the rest in a money market savings account that pays 5% interest. How much should he invest at Each rate if he wants to earn $1095.00 in interest in one year.
Use the minimum and maximum data entries and the number of classes to find the class width, the lower class limits, and the upper class limits. min = 14, max = 121, 8 classes
Answer:
The class width is [tex]C_w \approx 13[/tex]
Step-by-step explanation:
From the question we are told that
The upper class limits is [tex]max = 121[/tex]
The lower class limits is [tex]min = 14[/tex]
The number of classes is [tex]n = 8 \ classes[/tex]
The class width is mathematically represented as
[tex]C_w = \frac{max - min}{n }[/tex]
substituting values
[tex]C_w = \frac{121 - 14}{8 }[/tex]
[tex]C_w = 13.38[/tex]
[tex]C_w \approx 13[/tex]
Since
Simplify the expression.(4+2i)-(1-i)
ANSWER :
6i - (1-i)
Step - by - step explanation:
( 4 + 2i ) - ( 1 - i )
( 4 + 2 × i) - ( 1 - i )
( 6× i ) - ( 1 - i )
= 6i- (1-i)
Hope this helps and pls mark as brainliest :)
What are the next three terms in the sequence -27, -19, -11, -3, 5, ...?
Answer:
13, 21
Step-by-step explanation:
Add 8 to the next number from the left to the right.
Answer:
The next three numbers in the sequence are: 13, 21, 29.
Step-by-step explanation:
Common Pattern: +8
-27 +8 = -19
-19 + 8 = -11
-3 + 8 = 5
5 + 8 = 13
13 + 8 = 21
21 + 8 = 29
Determine whether the following statement is true or false. If it is false, rewrite it as a true statement. A double-blind experiment is used to increase the placebo effect. Choose the correct answer below. A. The statement is false. Double blinding has no effect on the placebo effect. B. The statement is false. Double blinding is used to increase the randomization. C. The statement is true. D. The statement is false. Double blinding is used to decrease the placebo effect.
Answer:
D. The statement is false. Double blinding is used to decrease the placebo effect.
Step-by-step explanation:
In a double blind study, neither researchers nor the participants know which group is receiving the placebo. If the researchers do not know which group took the medication, they cannot influence the behavior of this group, knowingly or nor, by suggesting how they should behave.
Therefore, a double-blind experiment is used to decrease the placebo effect.
Cynthia invested $12,000 in a savings account. If the interest rate is 6%, how much will be in the account in 10 years by compounding continuously? Round to the nearest cent.
Answer:
In 10 years she'll have approximately $21865.4 in her account.
Step-by-step explanation:
When an amount is compounded continuously its value over time is given by the following expression:
[tex]v(t) = v(0)*e^{rt}[/tex]
Applying data from the problem gives us:
[tex]v(10) = 12000*e^{(0.06*10)}\\v(10) = 12000*e^{0.6}\\v(10) = 21865.4[/tex]
In 10 years she'll have approximately $21865.4 in her account.
Answer:
21,865.43
previous answer left out the last digit
Step-by-step explanation:
A rectangle is to be inscribed in a right triangle having sides of length 6 in, 8 in, and 10 in. Find the dimensions of the rectangle with greatest area assuming the rectangle is positioned as in Figure 1. Figure1
Answer: width = 2.4 in, length = 5
Step-by-step explanation:
The max area of a right triangle is half the area of the original triangle.
Area of the triangle = (6 x 8)/2 = 24
--> area of rectangle = 24 ÷ 2 = 12
Next, let's find the dimensions.
The length is adjacent to the hypotenuse. Since we know the area is half, we should also know that the length will be half of the hypotenuse.
length = 10 ÷ 2 = 5
Use the area formula to find the width:
A = length x width
12 = 5 w
12/5 = w
2.4 = w
The dimensions of the rectangle with greatest area is length is 3 inch and the width is 4 inch.
Let the length and width of the rectangle be x and y.
Then Area of the rectangle = xy
Now, from the triangle we can conclude that
[tex]\frac{6-x}{y} =\frac{6}{8} \\y=8(\frac{6-x}{6} ).[/tex]
Put the value of y in Area we get
[tex]A(x)=x\frac{8}{6} (6-x)\\A(x)=\frac{8}{6}(6x-x^{2} )\\[/tex]
Differentiating it w.r.t x we get
[tex]A'(x)=\frac{8}{6}(6-2x )\\A''(x)=\frac{8}{6}(0-2 )\\A''(x)=\frac{-8}{3}[/tex]
Put A'(x)=0 for maximum /minimum value
[tex]A'(x)=0\\\frac{8}{6}(6-2x)=0\\x=3[/tex]
Now, [tex]A''(3)=-\frac{8}{3} <0[/tex]
Therefore the area of the rectangle is maximum for x=3 inch
Now,
[tex]y=\frac{8}{6} (6-3)\\y=4[/tex]
Thus the dimensions of the rectangle with greatest area is 3 inch by 4 inch.
Learn more:httpshttps://brainly.com/question/10678642
Which of the following points is a solution of the inequality y <-Ixl
You did not give any options but i will try to answer.
y < -lxl basically means that the value of y is less than the absolute value of x time - 1.
So if x = 2, then y is any number less than -2.
And if x is -3. then y is any number less than -3.
Happy to help!
A theater is presenting a program on drinking and driving for students and their parents or other responsible adults. The proceeds will be donated to a local alcohol information center. Admission is $6.00 for adults and $3.00 for students. However, this situation has two constraints: The theater can hold no more than 240 people and for every two adults, there must be at least one student. How many adults and students should attend to raise the maximum amount of money?
Answer:
160 adults and 80 students
Step-by-step explanation:
With the information from the exercise we have the following system of equations:
Let x = number of students; y = number of adults
I want to maximize the following:
z = 3 * x + 6 * y
But with the following constraints
x + y = 240
y / 2 <= x
As the value is higher for adults, it is best to sell as much as possible for adults.
So let's solve the system of equations like this:
y / 2 + y = 240
3/2 * y = 240
y = 240 * 2/3
y = 160
Which means that the maximum profit is obtained when there are 160 adults and 80 students, so it is true that added to 240 and or every two adults, there must be at least one student.
People start waiting in line for the release of the newest cell phone at 5\text{ a.m.}5 a.m.5, start text, space, a, point, m, point, end text The equation above gives the number of people, PPP, in line between the hours, hhh, of 6\text{ a.m.}6 a.m.6, start text, space, a, point, m, point, end text and 11\text{ a.m.}11 a.m.11, start text, space, a, point, m, point, end text, when the doors open. Assume that 6\text{ a.m.}6 a.m.6, start text, space, a, point, m, point, end text is when time h = 1h=1h, equals, 1. What does the 232323 mean in the equation above?
Answer:
There are 23 people in line at 6:00 A.M
Step-by-step explanation:
When you plug in h=1, we get 23 people
h corresponds with the time 6:00 am, as a result there are 23 people in line
The equation represents how many people will come as the hour increases.
23 represents the initial amount of people in line.
(got this from Khan academy too:))
The half-life of a radioactive isotope is the time it takes for a quantity of the Isotope to be reduced to half its initial mass. Starting with 210 grams of a
radioactive isotope, how much will be left after 6 half-lives?
Round your answer to the nearest gram
Answer:
after 6 half lives: 210(1/2)^6= 3.28125
Step-by-step explanation:
isotope to be reduced to half its initial mass at first:
210(1/2)=105 half it is original weight
after second life: 210(1/2)^2=105(1/2)=52.5
after third : 210(1/2)^3=52.5/2=26.25
after fourth : 26.25/2=12.125
after fifth : 13.125/2
after 6 half lives: 210(1/2)^6= 3.28125
3+x=8 What would like match this answer
Answer:
x = 5
Step-by-step explanation:
x = 8 - 3
Thus, x = 5
Find the value of annuity if the periodic deposit is $250 at 5% compounded quarterly for 10 years
Answer:
The value of annuity is [tex]P_v = \$ 7929.9[/tex]
Step-by-step explanation:
From the question we are told that
The periodic payment is [tex]P = \$ 250[/tex]
The interest rate is [tex]r = 5\% = 0.05[/tex]
Frequency at which it occurs in a year is n = 4 (quarterly )
The number of years is [tex]t = 10 \ years[/tex]
The value of the annuity is mathematically represented as
[tex]P_v = P * [1 - (1 + \frac{r}{n} )^{-t * n} ] * [\frac{(1 + \frac{r}{n} )}{ \frac{r}{n} } ][/tex] (reference EDUCBA website)
substituting values
[tex]P_v = 250 * [1 - (1 + \frac{0.05}{4} )^{-10 * 4} ] * [\frac{(1 + \frac{0.05}{4} )}{ \frac{0.08}{4} } ][/tex]
[tex]P_v = 250 * [1 - (1.0125 )^{-40} ] * [\frac{(1.0125 )}{0.0125} ][/tex]
[tex]P_v = 250 * [0.3916 ] * [\frac{(1.0125)}{0.0125} ][/tex]
[tex]P_v = \$ 7929.9[/tex]