Estimate the radiation pressure due to a bulb that emits 25 W of EM radiation at a distance of 6.5 cm from the center of the bulb. Assume that light is completely absorbed.

Answers

Answer 1

..........................................................

Estimate The Radiation Pressure Due To A Bulb That Emits 25 W Of EM Radiation At A Distance Of 6.5 Cm
Answer 2

The radiation pressure due to a bulb that emits 25 W of EM radiation at a distance of 6.5 cm from the center of the bulb and the light is completely absorbed is 1.5707x10⁻⁶ N/m².

What is the Radiation pressure?

Radiation pressure was defined as the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field.

Radiation pressure always includes the Momentum of light or electromagnetic radiation of any wavelength that can be absorbed, reflected, or otherwise emitted by matter on any scale.

E.g: Black-body radiation

Given the values are,

Wattage of bulb = W = 25 W

distance = d = 6.5 cm = 0.065 m

To know the Radiation Pressure,

It can be given by

P = I/c

Where, c = 299792458 m/s is the speed of light,

I is the intensity of radiation and given by

I = W/4πd²

Where W is the Wattage of bulb and d is the distance

I = 25/4π*0.065²

I = 470.872 w/m²

so, the radiation pressure becomes

P = 470.872/299792458

P = 1.5707x10⁻⁶ N/m²

Therefore, the radiation pressure due to a 25 W bulb at a distance of 6.5 cm is 1.5707x10⁻⁶ N/m²

To know more about the radiation pressure,

https://brainly.com/question/23972862

#SPJ5


Related Questions

In your words, describe how momentum is related to energy.

Answers

Answer:

you need momentum in order to release energy. For example, if you need to push something heavy and you get a running head start, then it will be easier.

Explanation:

Si se deja caer una piedra desde un helicóptero en reposo, entonces al cabo de 20 s cual será la rapidez y la distancia recorrida por la piedra

Answers

Answer:

La piedra alcanza una rapidez de 196.14 metros por segundo y una distancia recorrida de 1961.4 metros en 20 segundos.

Explanation:

Si se excluye los efectos del arrastre por la viscosidad del aire, la piedra experimenta un movimiento de caída libre, es decir, que la piedra es acelerada por la gravedad terrestre. La distancia recorrida y la rapidez final de la piedra pueden obtenerse con la ayuda de las siguientes ecuaciones cinemáticas:

[tex]v = v_{o} + g\cdot t[/tex]

[tex]y - y_{o} = v_{o}\cdot t + \frac{1}{2}\cdot g \cdot t^{2}[/tex]

Donde:

[tex]v[/tex], [tex]v_{o}[/tex] - Rapideces final e inicial de la piedra, medidas en metros por segundo.

[tex]t[/tex] - Tiempo, medido en segundos.

[tex]g[/tex] - Aceleración gravitacional, medida en metros por segundo al cuadrado.

[tex]y[/tex]. [tex]y_{o}[/tex] - Posiciones final e inicial de la piedra, medidos en metros.

Si [tex]v_{o} = 0\,\frac{m}{s}[/tex], [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{o} = 0\,m[/tex], entonces:

[tex]v = 0\,\frac{m}{s} +\left(-9.807\,\frac{m}{s^{2}} \right) \cdot (20\,s)[/tex]

[tex]v = -196.14\,\frac{m}{s}[/tex]

[tex]y-y_{o} = \left(0\,\frac{m}{s} \right)\cdot (20\,s) + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (20\,s)^{2}[/tex]

[tex]y-y_{o} = -1961.4\,m[/tex]

La piedra alcanza una rapidez de 196.14 metros por segundo y una distancia recorrida de 1961.4 metros en 20 segundos.

Suppose you are looking into the end of a long cylindrical tube in which there is a uniform magnetic field pointing away from you. If the magnitude of the field is decreasing with time the direction of the induced magnetic field is

Answers

Answer:

If the magnitude of the field is decreasing with time the direction of the induced magnetic field is CLOCKWISE

Explanation

This is because If the magnetic field decreases with time, the electric field will be produced in order to oppose the change in line with lenz law. Thus The right hand rule can be applied to find that the direction of electric field is in the clockwise direction.

In your own words, discuss how energy conservation applies to a pendulum. Where is the potential energy the most? Where is the potential energy the least? Where is kinetic energy the most? Where is kinetic energy the least?

Answers

Answer:

Explanation:

Energy conservation applies to the swinging of pendulum . When the bob is at one extreme , it is at some height from its lowest point . So it has some gravitational potential energy . At that time since it remains at rest its kinetic energy is zero or the least . As it goes down while swinging , its potential energy decreases and kinetic energy increases following conservation of mechanical energy . At the At the lowest point , its potential energy is least  and kinetic energy is maximum .

In this way , there is conservation of mechanical energy .

You are using a hydrogen discharge tube and high quality red and blue light filters as the light source for a Michelson interferometer. The hydrogen discharge tube provides light of several different wavelengths (colors) in the visible range. The red light in the hydrogen spectrum has a wavelength of 656.3 nm and the blue light has a wavelength of 434.0 nm. When using the discharge tube and the red filter as the light source, you view a bright red spot in the viewing area of the interferometer. You now move the movable mirror away from the beam splitter and observe 158 bright spots. You replace the red filter with the blue filter and observe a bright blue spot in the interferometer. You now move the movable mirror towards the beam splitter and observe 114 bright spots. Determine the final displacement (include sign) of the moveable mirror. (Assume the positive direction is away from the beam splitter.)

Answers

Answer:

final displacement = +24484.5 nm

Explanation:

The path difference when 158 bright spots were observed with red light (λ1 = 656.3 nm) is given as;

Δr = 2d2 - 2d1 = 150λ1

So, 2d2 - 2d1 = 150λ1

Dividing both sides by 2 to get;

d2 - d1 = 75λ1 - - - - eq1

Where;

d1 = distance between the fixed mirror and the beam splitter

d2 = position of moveable mirror from splitter when 158 bright spots are observed

Now, the path difference between the two waves when 114 bright spots were observed is;

Δr = 2d'2 - 2d1 = 114λ1

2d'2 - 2d1 = 114λ1

Divide both sides by 2 to get;

d'2 - d1 = 57λ1

Where;

d'2 is the new position of the movable mirror from the splitter

Now, the displacement of the moveable mirror is (d2 - d'2). To get this, we will subtract eq2 from eq1.

(d2 - d1) - (d'2 - d1) = 75λ1 - 57λ2

d2 - d1 - d'2 + d1 = 75λ1 - 57λ2

d2 - d'2 = 75λ1 - 57λ2

We are given;

(λ1 = 656.3 nm) and λ2 = 434.0 nm.

Thus;

d2 - d'2 = 75(656.3) - 57(434)

d2 - d'2 = +24484.5 nm

You throw a stone vertically upward with a speed of 26.0 m/s. (a) How fast is it moving when it reaches a height of 15.0 m? (b) How much time is required to reach this height when it's falling down? a. 19.5 m/s , b. 4.51 s a. 17.9 m/s , b. 0.620 s a. 19.5 m/s , b. 0.800 s a. 17.9 m/s , b. 4.28 s a. 380 m/s , b. 8 s

Answers

Answer:

ok well

Explanation:

teghe

Answer:

v = 19.5 m/s

t = 4.51 s

Explanation:

a)

given:

height is 15m from the ground

initial velocity Vi = 26 m/s

acceleration a or g = 9.81 m/s²

formula: Vf² = Vi² + 2aΔy

26² = Vi² + 2 (9.81) 15

Vi = 19.5 m/s

now you can calculate the time by using the equations below:

Δy = 1/2 (Vi + Vf) t

Vf = Vi + a t

Δy = Vi t + 1/2 a t

time must be 4.51 s

An electric field can be created by a single charge or a distribution of charges. The electric field a distance from a point charge has magnitude E = k|q'|/r^2.
The electric field points away from positive charges and toward negative charges. A distribution of charges creates an electric field that can be found by taking the vector sum of the fields created by individual point harges. Note that if a charge is placed in an electric field created by q', q will not significantly affect the electric field if it is small compared to q'. Imagine an isolated positive point charge with a charge Q (many times larger than the charge on a single electron).
1. There is a single electron at a distance from the point charge. On which of the following quantities does the force on the electron depend?
a. the distance between the positive charge and the electron
b. the charge on the electron
c. the mass of the electron
d. the charge of the positive charge
e. the mass of the positive charge
f. the radius of the positive charge
g. the radius of the electron
2. For the same situation as in Part A, on which of the following quantities does the electric field at the electron's position depend?
a. the distance between the positive charge and the electron
b. the charge on the electron
c. the mass of the electron
d. the charge of the positive charge
e. the mass of the positive charge
f. the radius of the positive charge
g. the radius of the electron

Answers

Answer:

a) true.

b) True

c) False. In the equation above the mass does not appear

d) True

e) False. Mass does not appear in the equation

f) False. The load even when distributed in the space can be considered concentrated in the center

Explanation:

1. The electric force is given by the relation

           F = k Q e / r2

where k is the Coulomb constant, Q the charge used, e the charge of the electron and r the distance between the two.

 The strength depends on:

a) true.

b) True

c) False. In the equation above the mass does not appear

d) True

e) False. Mass does not appear in the equation

f) False. The load even when distributed in the space can be considered concentrated in the center

two.

a) True

b) Treu

c) Fail

f) false

For a single electron located at a distance from a positive charge, we have:

1. The force on the electron depends on the distance between it and the positive charge (option a) and the charge of both particles (option b and d).      

2. The electric field at the electron's position depends on the distance between the positive charge and it (option a) and the charge of the positive particle (option d).    

Part 1

The force on a single electron at a distance from the point charge is given by Coulomb's law:

[tex] F = \frac{Kq_{1}q_{2}}{r^{2}} [/tex]    (1)

Where:

K: is the Coulomb's constant q₁: is the charge of the positive chargeq₂: is the charge of the electrond: is the distance between the positive charge and the electron

As we can see in equation (1), the force on the electron by the positive charge depends on both charges q₁ and q₂, and the distance, so the correct options are:

a. The distance between the positive charge and the electron

b. The charge on the electron

d. The charge of the positive charge

The other options (c, e, f, and g) are incorrect because the electric force does not depend on the particles' masses or their radii.

Part 2

The electric field (E) at a distance "r" from a point charge is given by:

[tex] E = \frac{Kq_{1}}{r^{2}} [/tex]   (2)

From equation (2), we can see that the electric field is directly proportional to the charge and inversely proportional to the distance of interest (r).  

The electric field at the electron's position is given by the one produced by the positive charge, so the correct options are:

a. The distance between the positive charge and the electron

d. The charge of the positive charge

The other options (b, c, e, f, and g) are incorrect because the electric field is independent of the mass of the charges involved and their radii.

Therefore, the correct options for part 1 are a, b, and d and for part 2 are a and d.

Learn more about the electric field here:

brainly.com/question/13308086

I hope it helps you!

Kevin is a black high school senior. While walking home from a sporting event at school, he sees a police car and decides to take another street to avoid it. He worries that the police will stop and question him even though he has not done anything wrong. Which theory explains this thought process? Dramaturgy Social construction of reality Social exchange theory Ethnomethodology

Answers

Answer:

Ethnomethodology theory

Explanation:

Take note of the fact that we are told Kevin worries that the police will stop and question him even though he has not done anything wrong.

This statement shows us that Kevin already understood his society from past experiences, and thus he tries to avoid social interactions with particular member of his society (the police) who may be show discrimination towards him.

A generator rotates at 95 Hz in a magnetic field of 0.025 T. It has 550 turns and produces an rms voltage of 170 V and an rms current of 60.0 A.

Required:
a. What is the peak current produced?
b. What is the area of each turn of the coil?

Answers

Answer:

Peak current= 84.86 A

Area of each turn = 0.029 m^2

Explanation:

The peak value of current can be obtained from Irms= 0.707Io. Where Io is the peak current.

Hence;

Irms= 60.0A

Io= Irms/0.707

Io = 60.0/0.707

Io= 84.86 A

Vrms= 0.707Vo

Vo= Vrms/0.707= 170/0.707 = 240.45 V

From;

V0 = NABω

Where;

Vo= peak voltage

N= number of turns

B= magnetic field

A= area of each coil

ω= angular velocity

But ω= 2πf = 2×π×95= 596.9 rads-1

Substituting values;

A= Vo/NBω

A= 240.45/550×0.025×596.9

A= 0.029 m^2

Asteroid A has 3.5 times the mass and 2.0 times the velocity of Asteroid B. If
Asteroid B has a kinetic energy of 2,300,000 J then what is the kinetic energy of
Asteroid A?

Answers

Answer:

   K_A = 32.2 10⁶ J

Explanation:

In this exercise we must relate the quantities given to find the kinetic energy

   

Asteroid A data

              m_A = 3.5 m_B

               v_A = 2.0 v

they also give the value of the kinetic energy of asteroid A

              K_B = 2.3 10⁶ J

the expression for scientific energy is

               K = ½ m v²

let's replace

              K_A = ½ m_a V_a2

               K_A = ½ 3.5 m_B (2.0 v_B)^2

                K_A = 3.5 2² (½ m_B v_B²)

                K_A = 14 K_B

                   

               K_A = 32.2 10⁶ J

A small solid conductor with radius a is supported by insulating, nonmagnetic disks on the axis of a thin-walled tube with inner radius b. The inner andouter conductors carry equal currents i in oppositedirections.

Required:
a. Use Ampere's Law to find the magnetic field at any pointin the volume between the conductors.
b. Write the expression for the flux dΦB through anarrow strip of length l parallel to the axis , of width dr, at a distancer from the axis of the cableand lying in a plane containing the axis.
c. Integrate your expression from part B over the volumebetween the two conductors to find the total flux produced by acurrent i in the central conductor.
d. Use equation U=(1/2)LI2 to calculate the energy stored in the magnetic field for alength l of the cable.

Answers

Answer:

Pls see attached file

Explanation:

1. Water flows through a hole in the bottom of a large, open tank with a speed of 8 m/s. Determine the depth of water in the tank. Viscous effects are negligible.

Answers

Answer:

3.26m

Explanation:

See attached file

g A tube open at both ends, resonated at it's fundamental frequency, to a sound wave traveling at 330m/s. If the length of the tube is 4cm, find the frequency of the sound wave.

Answers

Answer:

frequency =4125Hz

Explanation:

L = 4cm = 0.04m

f =v/2L

f = 330/2 x 0.04

f = 4125Hz

At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is increasing at a rate of 3.0 J/s, how fast is the current changing

Answers

Answer:

The current is changing at the rate of 0.20 A/s

Explanation:

Given;

inductance of the inductor, L = 5.0-H

current in the inductor, I = 3.0 A

Energy stored in the inductor at the given instant, E = 3.0 J/s

The energy stored in inductor is given as;

E = ¹/₂LI²

E = ¹/₂(5)(3)²

E = 22.5 J/s

This energy is increased by 3.0 J/s

E = 22.5 J/s + 3.0 J/s = 25.5 J/s

Determine the new current at this given energy;

25.5 = ¹/₂LI²

25.5 = ¹/₂(5)(I²)

25.5 = 2.5I²

I² = 25.5 / 2.5

I² = 10.2

I = √10.2

I = 3.194 A/s

The rate at which the current is changing is the difference between the final current and the initial current in the inductor.

= 3.194 A/s - 3.0 A/s

= 0.194 A/s

≅0.20 A/s

Therefore, the current is changing at the rate of 0.20 A/s.

The rate at which the current is changing is;

di/dt = 0.2 A/s

We are given;

Inductance; L = 5 H

Current; I = 3 A

Rate of Increase of energy; dE/dt = 3 J/s

Now, the formula for energy stored in inductor is given as;

E = ¹/₂LI²

Since we are looking for rate at which current is changing, then we differentiate both sides of the energy equation to get;

dE/dt = LI (di/dt)

Plugging in the relevant values gives;

3 = (5 × 3)(di/dt)

di/dt = 3/(5 × 3)

di/dt = 0.2 A/s

Read more at; https://brainly.com/question/13112120

A 7.0-kg shell at rest explodes into two fragments, one with a mass of 2.0 kg and the other with a mass of 5.0 kg. If the heavier fragment gains 100 J of kinetic energy from the explosion, how much kinetic energy does the lighter one gain?

Answers

Answer:

39.94m/s.

Explanation:

Kinetic energy is expressed as KE = 1/2 mv² where;

m is the mass of the body

v is the velocity of the body.

For the heavier shell;

m = 5kg

KE gained = 100J

Substituting this values into the formula above to get the velocity v;

100 = 1/2 * 5 * v²

5v² = 200

v² = 200/5

v² = 40

v = √40

v = 6.32 m/s

Note that after the explosion, both body fragments will possess the same velocity.

For the lighter shell;

mass = 2.0kg and v = 6.32m/s

KE of the lighter shell = 1/2 * 2 * 6.32²

KE of the lighter shell = 6.32²

KE of the lighter shell= 39.94m/s

Hence, the lighter one gains a kinetic energy of 39.94m/s.

The gain in the kinetic energy of the smaller fragment is 249.64 J.

The given parameters;

Mass of the shell, m = 7.0 kgMass of one fragment, m₁ = 2.0 kgMass of the second fragment, m₂ = 5.0 kgKinetic energy of heavier fragment, K.E₁ = 100 J

The velocity of the heavier fragment is calculated as follows;

[tex]K.E = \frac{1}{2} mv^2\\\\mv^2 = 2K.E\\\\v^2 = \frac{2K.E}{m} \\\\v= \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2 \times 100}{5} }\\\\v = 6.32 \ m/s[/tex]

Apply the principle of conservation of linear momentum to determine the velocity of the smaller fragment as;

[tex]m_1 u_1 + m_2 u_2 = v(m_1 + m_2)\\\\-6.32(5) \ + 2u_2 = 0(7)\\\\-31.6 + 2u_2 = 0\\\\2u_2 = 31.6\\\\u_2 = \frac{31.6}{2} \\\\u_2 = 15.8 \ m/s[/tex]

The gain in the kinetic energy of the smaller fragment is calculated as follows;

[tex]K.E_2 = \frac{1}{2} mu_2^2\\\\K.E_2 = \frac{1}{2} \times 2 \times (15.8)^2\\\\K.E_2 = 249.64 \ J[/tex]

Thus, the gain in the kinetic energy of the smaller fragment is 249.64 J.

Learn more about conservation of linear momentum here: https://brainly.com/question/7538238

Two unknown resistors are connected together. When they are connected in series their equivalent resistance is 15 Ω. When they are connected in parallel, their equivalent resistance is 3.3 Ω. What are the resistances of these resistors?

Answers

Explanation:

Let x and y are two unknown resistors. When they are connected in series their equivalent resistance is 15 Ω. When they are connected in parallel, their equivalent resistance is 3.3 Ω.

For series combination,

[tex]x+y=15[/tex] ......(1)

For parallel combination,

[tex]\dfrac{1}{x}+\dfrac{1}{y}=3.3[/tex] ....(2)

We need to find the resistances of these resistors. Solving equation (1) and (2) we get :

x = 0.29 and y = 14.7

Hence, the resistances of these resistors are 0.29 ohms and 14.7 ohms.

A scientist is testing the seismometer in his lab and has created an apparatus that mimics the motion of the earthquake felt in part (a) by attaching the test mass to a spring. If the test mass weighs 13 N, what should be the spring constant of the spring the scientist use to simulate the relative motion of the test mass and the ground from part (a)?

Answers

Complete Question

The complete question is shown on the first uploaded image  

Answer:

a

 [tex]a_{max} = 0.00246 \ m/s^2[/tex]

b

   [tex]k =722.2 \ N/m[/tex]

Explanation:

From the question we are told that

     The  amplitude is [tex]A = 1.8 \ cm = 0.018 \ m[/tex]

     The period is [tex]T = 17 \ s[/tex]

    The test weight is  [tex]W = 13 \ N[/tex]

Generally the radial acceleration is mathematically represented as

        [tex]a = w^2 r[/tex]

at maximum angular acceleration

       [tex]r = A[/tex]

So  

       [tex]a_{max} = w^2 A[/tex]

Now [tex]w[/tex] is the angular velocity which is mathematically represented as

      [tex]w = \frac{2 * \pi }{T}[/tex]

Therefore

       [tex]a_{max} = [\frac{2 * \pi}{T} ]^2 * A[/tex]

substituting values

       [tex]a_{max} = [\frac{2 * 3.142}{17} ]^2 * 0.018[/tex]

       [tex]a_{max} = 0.00246 \ m/s^2[/tex]

Generally this test weight is mathematically represented as

     [tex]W = k * A[/tex]

Where k is the spring constant

Therefore

        [tex]k = \frac{W}{A}[/tex]

substituting values        

      [tex]k = \frac{13}{0.018}[/tex]

     [tex]k =722.2 \ N/m[/tex]

A positively charged particle has a velocity in the negative z direction at a certain point P. The magnetic force on the particle at this point is in the negative y direction. Which one of the following statements about the magnetic field at point P can be determined from this data?
a. Bx is positive
b. Bz­ is positive
c. By is negative
d. By is positive
e. Bx is negative

Answers

Answer:

a. Bx is positive

Explanation:

See attached file

A person can survive a feet-first impact at a speed of about 12 m/s (27 mi/h) on concrete, 15 m/s (34 mi/h) on soil, and 34 m/s (76 mi/h) on water. What is the reason for the different values for different surfaces

Answers

Answer:

Different surfaces have different impact force during collision which depends on the time it takes the person to come to rest after collision.

Explanation:

Given;

speed on concrete = 12 m/s (27 mi/h)

speed on soil = 15 m/s (34 mi/h)

speed on water = 34 m/s (76 mi/h)

The impact force on this person during collision is rate of change of momentum;

[tex]F = \frac{\delta P}{\delta t}[/tex]

During collision, the force exerted on this person depends on how long the collision lasts; that is, how long it takes for this person to come to rest after collision with each of the surfaces.

The longer the time of collision, the smaller the force exerted by each.

It takes shorter time for the person to come to rest on concrete surface than on soil surface, also it takes shorter time for the person to come to rest on soil surface than on water surface.

As a result of the reason above, the force exerted on the person during collision by the concrete surface is greater than that of soil surface which is  greater than that of water surface.

An ideal air-filled parallel-plate capacitor has round plates and carries a fixed amount of equal butopposite charge on its plates. All the geometric parameters of the capacitor (plate diameter andplate separation) are now DOUBLED. If the original energy stored in the capacitor was U0, howmuch energy does it now store?

Answers

Answer:

U_f = (U_o)/2)

Explanation:

The capacitance of a given capacitor is given by the formula;

C = ε_o•A/d

While energy stored in plates capacitor is given as; U_o = Q²/2C

Now,we are told that that all the dimensions of the capacitor plate is doubled. Thus, we now have;

C' = ε_o•4A/2d

Hence, C' = 2C

so capacitance is now doubled

Thus, the final energy stored between the plates of capacitor is given as;

U_f = Q²/2C'

From earlier, we saw that C' = 2C.

Thus;

U_f = Q²/2(2C)

U_f = Q²/4C

Rearranging, we have;

U_f = (1/2)(Q²/2C)

From earlier, U_o = Q²/2C

Hence,

U_f = (1/2)(U_o)

Or

U_f = (U_o/2)

which of the following is a physical change?

A. a newspaper burns when placed in a fire.
B.an iron chair rusts when left outside
C.a sample of water boils and releases gas.
D.a plant changes carbon dioxide and water into sugar

Answers

It’s C. This is because all of the other options you can’t turn back but if you boil water, the gas can turn back by condensation. If a newspaper burns it’s gone. If the chair rust you can only scrape off the rust. If the plant changes the CO2 you aren’t getting it back. At least not easily

For the cellar of a new house, a hole is dug in the ground, with vertical sides going down 2.10 m. A concrete foundation wall is built all the way across the 8.90 m width of the excavation. This foundation wall is 0.189 m away from the front of the cellar hole. During a rainstorm, drainage from the street fills up the space in front of the concrete wall, but not the cellar behind the wall. The water does not soak into the clay soil. Find the force that the water causes on the foundation wall. For comparison, the weight of the water is given by 2.10 m ✕ 8.90 m ✕ 0.189 m ✕ 1000 kg/m3 ✕ 9.80 m/s2 = 34.6 kN.

Answers

Answer:

The  force on the foundation wall is   [tex]F_f = 191394 \ N[/tex]

Explanation:

From the question we are told that

     The  depth of the hole's vertical side is  [tex]d = 2.10 \ m[/tex]

      The  width of the hole is  [tex]b = 8.90 \ m[/tex]

      The distance of the concrete wall from the front of the cellar is  [tex]c = 0.189 \ m[/tex]

Generally the area which the water from the drainage covers is mathematically represented as

        [tex]A = d * b[/tex]

substituting values

        [tex]A = 2.10 * 8.90[/tex]

       [tex]A = 18.69 \ m^2[/tex]

Now the gauge pressure exerted on the foundation wall is mathematically evaluated as

          [tex]P_g = \rho * d_{avg} * g[/tex]  

Here  is the average height foundation wall where the pressure of the water is felt and it is evaluated as

         [tex]d_{avg} = \frac{h_1 + h_2 }{2}[/tex]

where [tex]h_1[/tex] at the height at bottom of the hole which is equal to  [tex]h_1 = 0[/tex]

and  [tex]h_2[/tex] is the height at the top of the hole [tex]h_2 = d = 2.10[/tex]

        [tex]d_{avg} = \frac{0 + 2.10 }{2}[/tex]

       [tex]d_{avg} = 1.05[/tex]

Where  [tex]\rho[/tex] is the density of water with constant value [tex]\rho = 1000 \ kg/m^3[/tex]

substituting values

          [tex]P_g = 1000 * 1.05 * 9.8[/tex]

         [tex]P_g = 10290 \ Pa[/tex]

Then the force exerted by the water on the foundation wall mathematically represented as

      [tex]F_f = P_g * A[/tex]

substituting values

      [tex]F_f = 10290 * 18.69[/tex]

       [tex]F_f = 191394 \ N[/tex]

The intensity of sunlight at the Earth's distance from the Sun is 1370 W/m2. (a) Assume the Earth absorbs all the sunlight incident upon it. Find the total force the Sun exerts on the Earth due to radiation pressure. N (b) Explain how this force compares with the Sun's gravitational attraction.

Answers

Answer:

F= 3.56e22N

Explanation:

Using the force of radiation acting on the earth which is

force = radiation pressure x area = (intensity/c)xpi R^2

force = 1370W/m^2 x pi x( 6.37x10^6m)^2/3x10^8m/s

force = 5.82x10^8 N

But the sun's gravitational attraction means the magnitude of the solar gravitational force on earth: If that's the case, the answer is approx 10^22 N:

F=GMm/r^2

G=6.67x10^(-11)=6.67e-11

M=mass sun = 2x10^30kg=2e30

m=mass earth = 6x10^24kg

r=earth sun distance = 1.5x10^11m

F=(6.6e-11)(2e30)(6e24)/(1.5e11)^2 =

F= 3.56e22N

Write a numerical expression for the emissive intensity (in W/m^2.sr) coming out of a tiny hole in an enclosure of surface temperature 1000K and emissivity 0.6:

Answers

Answer:

6.0 × [tex]10^{11}[/tex] W/[tex]m^{2}[/tex]

Explanation:

From Wien's displacement formula;

Q = e A[tex]T^{4}[/tex]

Where: Q is the quantity of heat transferred, e is the emissivity of the surface, A is the area, and T is the temperature.

The emissive intensity = [tex]\frac{Q}{A}[/tex] = e[tex]T^{4}[/tex]

Given from the question that: e = 0.6 and T = 1000K, thus;

emissive intensity = 0.6 × [tex](1000)^{4}[/tex]

                             = 0.6 × 1.0 × [tex]10^{12}[/tex]

                             = 6.0 × [tex]10^{11}[/tex] [tex]\frac{W}{m^{2} }[/tex]

Therefore, the emissive intensity coming out of the surface is 6.0 × [tex]10^{11}[/tex] W/[tex]m^{2}[/tex].

An automotive air conditioner produces a 1-kW cooling effect while consuming 0.75 kW of power. What is the rate at which heat is rejected from this air conditioner

Answers

Answer:

The rejected by the air conditioning system is 1.75 kilowatts.

Explanation:

A air conditioning system is a refrigeration cycle, whose receives heat from cold reservoir with the help of power input before releasing it to hot reservoir. The First Law of Thermodynamics describes the model:

[tex]\dot Q_{L} + \dot W - \dot Q_{H} = 0[/tex]

Where:

[tex]\dot Q_{L}[/tex] - Heat rate from cold reservoir, measured in kilowatts.

[tex]\dot Q_{H}[/tex] - Heat rate liberated to the hot reservoir, measured in kilowatts.

[tex]\dot W[/tex] - Power input, measured in kilowatts.

The heat rejected is now cleared:

[tex]\dot Q_{H} = \dot Q_{L} + \dot W[/tex]

If [tex]\dot Q_{L} = 1\,kW[/tex] and [tex]\dot W = 0.75\,kW[/tex], then:

[tex]\dot Q_{H} = 1\,kW + 0.75\,kW[/tex]

[tex]\dot Q_{H} = 1.75\,kW[/tex]

The rejected by the air conditioning system is 1.75 kilowatts.

You are in the frozen food section of the grocery store and you notice that your hand gets cold when you place it on the glass windows of the display cases. Your friend says this is because coolness is transferred from the display case to your hand. What do you think?

Answers

Answer:

I think my friend got it all wrong, as coolness can not be transferred but heat was actually transferred between my hand and the glass windows

Explanation:

In thermodynamics, coolness can not be transferred, only heat can be transferred

Here is how the mechanism of why i felt cold works, my body gave out heat, hence there was heat transfer from a region of high to a low heat region, equilibrium was reached and I started feeling the coolness in my hands.

Rays that pass through a lens very close to the principle axis are more sharply focused than those that are very far from the axis. This spherical aberration helps us understand why:_______

Answers

Answer: it is easier to read in bright light than dim light.

Explanation:

The ray of light is the direction that is used by light in travelling through a medium. Rays that pass through a lens very close to the principle axis are more sharply focused than those that are very far from the axis.

Because of the fact that the rays are close to the principle axis, the spherical aberration helps us to understand the reason why it is easier for people to read in bright light than readin iin dim light.

A 0.2 kg rubber ball is dropped from the window of a building. It strikes the sidewalk below at 30 m/s and rebounds at 20 m/s. The magnitude of the change in momentum of the ball as a result of the collision with the sidewalk is _______.

Answers

Answer:

10 kgm/s

Explanation:

Change in momentum: This can be defined as the product of mass and change in velocity. The S.I unit of change in momentum is Kgm/s.

From the question,

ΔM = m(v-u)...................... Equation 1

Where ΔM = change in momentum, u = initial velocity, v = final velocity.

Note: Let upward direction be negative, and downward direction be positive.

Given: m = 0.2 kg, v = -20 m/s, u = 30 m/s

Substitute into equation 1

ΔM = 0.2(-20-30)

ΔM = 0.2(-50)

ΔM = -10 kgm/s.

The negative sign shows that the change in momentum is Upward

The magnitude of the change in momentum of the ball as a result of the collision with the sidewalk is -10 kg-m/s.

Given data:

The mass of rubber ball is, m = 0.2 kg.

The initial speed of ball is, u = 30 m/s.

The final rebounding speed of ball is, v = - 20 m/s ( Negative sign shows that during the rebounding, the ball changes its direction)

The momentum of any object is defined as the product of mass and change in velocity. The S.I unit of momentum is Kg-m/s. And the expression for the change in momentum is given as,

[tex]p= m ( v-u)[/tex]

Solving as,

[tex]p= 0.2 \times ( -20-30)\\\\p=-10 \;\rm kg.m/s[/tex]

Thus, we can conclude that the magnitude of the change in momentum of the ball as a result of the collision with the sidewalk is -10 kg-m/s.

Learn more about the change in momentum here:

https://brainly.com/question/904448

Recent technological developments like high-resolution satellite imagery and diagnostic positron emission tomography (PET scans) have refined and extended the camera’s capacity to provide information. Which passage assertion does this information support most strongly?

Answers

Answer:

D) Photography can be used to both control and benefit society.

Explanation:

High-resolution satellite imagery and diagnostic positron emission tomography (PET scans) have been used to both control and benefits the society in the sense that it has helped to take records of information of crime, traffic offenders such drunk drivers and over speeding drivers, e.t.c. it helps control by given their information and automatically penalizing them or ensuring the agency penalized them and also benefit the society by preventing people from committing crime thereby, protecting them from offenders.

Consider the following three objects, each of the same mass and radius:
(1) a solid sphere
(2) a solid disk
(3) a hoop
All three are released from rest at the top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. Use work-kinetic energy theorem to determine which object will reach the bottom of the incline first.
a) 1, 2, 3
b) 2, 3, 1
c) 3, 1, 2
d) 3, 2, 1
e) All three reach the bottom at the same time.

Answers

Answer:

Explanation:a 1

Other Questions
A beach ball filled with air is pushed about 1 m below the surface of a swimming pool and released from rest. Which of the following statements are valid, assuming the size of the ball remains the same? a) The buoyant force on the ball decreases as the ball approaches the surface of the pool. b) As the ball rises in the pool, the buoyant force on it increases. c) The buoyant force on the ball equals its weight and remains constant as the ball rises. d) The buoyant force on the ball while it is submerged is approximately equal to the weight of the volume of water that could fill the ball. e) When the ball is released, the buoyant force exceeds the gravitational force, and the ball accelerates upward. What linear function defines the following Arithmetic Sequence? -8, -4, 0, 4, 8, ...A : an = -8 + 4(n - 1)B : an= 8 + 4(n - 1)C : an = -8 - 4(n - 1)D : an = 8 - 4(n - 1) A dollar bill weighs one gram. How many pounds do one million dollar bills weigh? (1000 gramsis equal to 1 kilogram and 1 kilogram is equal to about 2.205 pounds.) There are 50 mangoes 20 of which are unriped another basket contains 40 mangoes 15 unripe if we take 1 mangoes from each basket Find the probability of getting both are ripe Find the probability of getting both are unripe Find the probability of getting one ripe and one unripe Find the probability of at least one right Find the probability of at least one uripe How do you construct an essay in french on "myself" An article contained the following observations on degree of polymerization for paper specimens for which viscosity times concentration fell in a certain middle range:418 421 422 422 425 429 431 434 437439 446 447 449 452 457 461 465Calculate a two-sided 95% confidence interval for true average degree of polymerization. Can someone please help me? An alien spaceship is 650 m above the ground and moving at a constant velocity of 175 m/s upwards.How high above the ground is the ship after 5 seconds? (Non-Collaboration): Robert Sobukwe introduced the principle of "non-collaboration" for African people in a liberation struggle, and PanAfricanism and Black Consciousness used this in the struggle against Apartheid. First, explain what this principle means and why it is important in relation to overcoming certain forms of oppression. Second, why did "non-racialist" philosophies of Ubuntu and African Socialism disagree with this principle? Finally, do you agree with this principle? In other words, are there situations when exclusive practices for a particular group of people are morally good? If so, give a real example. Sales of a popular toy were about 20 million in 2000 and growing about 5% each year. At this growth rate, the function f(x) = 20(1.05)^x gives the annual number of toys sold in million in the xth year after 2000. Using this model, in about what year will the annual sales surpass 37 million? Find the perimeter of parallelogram AFCB.A. 14B. 12C. 28D. 24 The function A(b) relates the area of a trapezoid with a given height of 10 andone base length of 7 with the length of its other base.It takes as input the other base value, and returns as output the area of thetrapezoid.A(b) = 10.57?Which equation below represents the inverse function B(a), which takes thetrapezoid's area as input and returns as output the length of the other base?O A. B(a) = -7B. B(a) = 9, -5 Plz help me x+y=5 y=3+x Select all the correct answers. Which statements are correct interpretations of the logarithmic function f(x) = 7 log2 x, with respect to the context? The password is weakest if it uses a single symbol for all 7 characters. The strength of the password increases with a decrease in the number of symbols. The password is stronger with an increase in the number of symbols. The password is strongest if a single symbol is used for all 7 characters. There are 2 possible symbol options per character to produce a password of strength of 7 bits. There are 7 possible symbol options per character to produce a password of strength of 7 bits. what life was like for humans living during the Paleolithic Era. Use bullet points to takenotes. Miguel is a new salesperson for Imperial Realty. Dissatisfied with the lack of mentoring he has received, he decides to work for Millennium Real Estate instead, and has his license transferred. At the time of the switch, he had listed two properties. What happens to his listings A sodium atom that has lost an electron comes near a chlorine atom that has gained an electron. What happens?A. They form a peptide compound.B. They form a covalent bond.C. They form a hydrogen bond.D. They form an ionic bond. The people who responded to a survey reported that they had either brown, green, blue, or hazel eyes. The results of the survey are shown in the table. A 2-column table has 4 rows. The first column is labeled Eye Color with entries brown, green, blue, hazel. The second column is labeled Number of People with entries 20, 6, 17, 7. What is the probability that a person chosen at random from this group has brown or green eyes? StartFraction 3 Over 25 EndFraction StartFraction 7 Over 25 EndFraction StartFraction 13 Over 25 EndFraction StartFraction 17 Over 25 EndFraction Where is this conversation most likely taking place ? En la escuela en la restaurante en la casa en la parque What evidence supports the conclusion that "The Storyteller uses satire to impart the theme that adults should respect childrens intelligence? Select two options. Come and look out of the window, she added. The child moved reluctantly to the window. Why are those sheep being driven out of that field? he asked. Oh, look at those cows! exclaimed the aunt. Nearly every field along the line had contained cows or bullocks, but she spoke as though she were drawing attention to a rarity. The smaller girl made no actual comment on the story, but she had long ago recommenced a murmured repetition of her favourite line. The storyteller paused to let a full idea of the parks treasures sink into the childrens imaginations; then he resumed. The story began badly, said the smaller of the small girls, but it had a beautiful ending. It is the most beautiful story that I ever heard, said the bigger of the small girls, with immense decision. It is the only beautiful story I have ever heard, said Cyril. Which line from the text suggests that British propaganda aimed at angering the public had been successful? a. It was a pity that Miss Cavell had to be executed. b. The shooting of an Englishwoman . . . for treason has caused a sensation. c. It is undoubtedly a terrible thing that the woman has been executed. d. Consider what would happen if it left crimes . . . to go unpunished. answer: b. The shooting of an Englishwoman . . . for treason has caused a sensation.