Answer:
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.
Step-by-step explanation:
From the information given :
An exit poll of 200 voters finds that 94 voted for the referendum.
How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
This implies that ;
the Sample size n = 200
the probability p = 0.52
Let X be the random variable
So; the Binomial expression can be represented as:
X [tex]\sim[/tex] Binomial ( n = 200, p = 0.52)
Mean [tex]\mu[/tex] = np
Mean [tex]\mu[/tex] = 200 × 0.52
Mean [tex]\mu[/tex] = 104
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{np(1-p)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(1-0.52)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(0.48)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{49.92}[/tex]
The standard deviation [tex]\sigma[/tex] = 7.065
However;
P(X ≤ 94) because the discrete distribution by the continuous normal distribution values lies in the region of 93.5 and 94.5 .
The less than or equal to sign therefore relates to the continuous normal distribution of X < 94.5
Now;
x = 94.5
Therefore;
[tex]z = \dfrac{x- \mu}{\sigma}[/tex]
[tex]z = \dfrac{94.5 - 104}{7.065}[/tex]
[tex]z = \dfrac{-9.5}{7.065}[/tex]
z = −1.345
P(X< 94.5) = P(Z < - 1.345)
From the z- table
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.
On a coordinate plane, a graph shows Street on the x-axis and Avenue on the y-axis. A line is drawn from Tia to Lei. Tia is at (4, 8) and Lei is at (12, 20). Tia lives at the corner of 4th Street and 8th Avenue. Lei lives at the corner of 12th Street and 20th Avenue. The fruit market is Three-fourths the distance from Tia’s home to Lei's home.
Answer:
(10, 17)
Step-by-step explanation:
It might be easier to explain with a picture or drawing, but I am new to this, so I would try using words.
Assuming the fruit market is on that straight line from Tia's home to Lei's, So we look at both address (coordinates)
From Tia to Lei, x coordinate is from 4 to 12, that's increased by 8, divide by 4, one step is 2.
y coordinate is from 8 to 20, an increase of 12, divide by 4 again, one step is 3.
The fruit market is at 3/4 distance, so 3 steps, on both x and y coordinates.
x: 4+6 = 10
y: 8+9=17
The fruit market is at point (10,17)
What is graph?
A graph can be defined as a pictorial representation or a diagram that represents data or values.
The point (x,y) which divides the segment AB with endpoints at A(x₁,y₁) and B(x₂,y₂) in ratio m:n has cordinates
[tex]x= \dfrac{nx_1+nx_2}{m+n}[/tex]
[tex]y= \dfrac{ny_1+ny_2}{m+n}[/tex]
Tia is at P(4, 8) and Lei is at Q(12, 20).
The fruit market (F) is three-fourths the distance from Tia’s home to Lei's home, then PM : PQ = 3:4 or PM : MQ = 3:1
So,
[tex]x= \dfrac{1.4+3.12}{3+1} = \dfrac{4+36}{4} = \dfrac{40}{4} = 10 \\y= \dfrac{1.8+3.20}{3+1} = \dfrac{8+60}{4} = \dfrac{68}{4} = 17[/tex]
Hence, the fruit market is at point (10,17) which means it is placed at the corner of 10th Street and 17th Avenue.
Learn more about graph here:
brainly.com/question/16608196
#SPJ5
Solve the inequality for y.
y - 9x > 6
please help!!!!!!!
Answer:
y>9x+6
Step-by-step explanation:
y-9x+(9x)>6+(9x)
y>9x+6
-4______1 what symbol makes this sentence true
Answer:
<
Step-by-step explanation:
Solve the equation using the zero-product property. (2x − 8)(7x + 5) = 0 x = –2 or x = 7 x = –4 or x = x = 4 or x = x = 4 or x =
Answer:
x = 4 or x = - [tex]\frac{5}{7}[/tex]
Step-by-step explanation:
Given
(2x - 8)(7x + 5) = 0
Equate each factor to zero and solve for x
2x - 8 = 0 ⇒ 2x = 8 ⇒ x = 4
7x + 5 = 0 ⇒ 7x = - 5 ⇒ x = - [tex]\frac{5}{7}[/tex]
How would 7/2 be written as a complex number
Answer:
We could rewrite 7/2 as 7a + 2
Step-by-step explanation:
Complex numbers is when real numbers [i.e: 1, 1/2, 200, 5/7, etc..) and an imaginary numbers [numbers that give a negative result when squared] are combine together.
Find volume of cylinder if its
radius
height
5.5m and
height 9 m?
Answer:
855.298 m^3
Step-by-step explanation:
The volume of a cylinder equation is piR^2H.
So pi5.5^2×9
855.298 m^3
If a line is perpendicular to each of two intersecting lines at their point of intersection, then the line:
A. not enough information
B. is parallel to the plane determined by the two lines
C. coincides with the plane determined by the two lines
D. is perpendicular to the plane determined by the two lines
D. The line is perpendicular to the plane determined by the two lines.
Remember how you get to 3D space?
You take one axis called x and perpendicularly intersect it with y axis and you get a 2D plane. Now take a 2D plane and perpendicularly intersect it with an axis z and you get 3D euclidean space.
Hope this helps.
n Fill in the blank. The _______ for a procedure consists of all possible simple events or all outcomes that cannot be broken down any further. The (1) for a procedure consists of all possible simple events or all outcomes that cannot be broken down any further.
Answer: sample space
Step-by-step explanation: In determining the probability of a certain event occurring or obtaining a particular outcome from a set of different possible outcomes, such as in the toss of coin(s), rolling of fair die(s), the sample space comes in very handy as it provides a simple breakdown and segmentation of all possible events or outcomes such that in Calculating the probability of occurrence of a certain event, the event(s) is/are located in the sample space and the ratio taken over the total number of events.
Write an equation in slope-intercept form for the line with slope 1/4 and y-intercept -1. PLEASE HELP MEEE : (
Explanation:
We have the general slope intercept form y = mx+b. All we do is replace m with the given slope 1/4, and replace b with the y intercept -1.
So we have y = mx+b turn into y = (1/4)x+(-1) which simplifies to y = (1/4)x-1.
Someone please explain
Area of a triangle is 1/2 x base x height.
The graphed triangle has height of 2 and base of 2.
Area = /2 x 2 x 2 = 2 square units.
The triangle gets enlarged by a scale factor of 2, so the new height would be 2 x 2 = 4 and the new base would be 2 x 2 = 4
Area of enlarged triangle = 1/2 x 4 x 4 = 8 square units.
The answer is C) 8
A printer ink cartridge that can print 550 pages has already printed 127 pages. Which solution represents the correct equation and answer to the question, "How many more pages, P, can still be printed?"
P + 127 = 550 P = 423
Answer:
P = 423
P + 127 = 550
Step-by-step explanation:
What is the slope of the line in the graph? A.2 B.1/2 C.-2 D.-1/2
Step-by-step explanation:
bhdjdjsjshhdfhfbtvyvyvjdjshdjfy
A tank contains 8000 liters of a solution that is 40% acid. How much water should be added to make a solution that is 30% acid?
Answer:
2,666.67 L of water
Step-by-step explanation:
Solve for W:
1) 3200 = 2400 + 0.3w
2) 800 = 0.3w
Divide both sides by 0.3 to get the variable alone
3) (800)/0.3 = (0.3w)/0.3
4) w = 2,666.67 L
4/5 (x − 20) = 8 solve it
Answer:
30
Step-by-step explanation:
4/5 (x-20)=8
4/5x-4/5*20=8
4/5x-16=8
4/5x=24
x=(24*5)/4
x=30
hope it helps..
? Given: All US area codes are three-digit numbers that use the numerals 0 to 9. Step 1: How many area codes are possible if the first digit can't be 0? Use your keyboard and the keypad to enter your answer. Then click Done.
Answer:
1-9, 1929
Step-by-step explanation:
You do the arithmetic and then study the us government postal codes and then you do kid behavior with my names. So, you get 1929 basically, in a nutshell, forever incessantly. thank yopu
Which expression is equivalent to
-21/4over -2/3
Answer:
[tex]\frac{9}{4}/\frac{3}{2}[/tex]
Step-by-step explanation:
[tex]-2\frac{1}{4}[/tex] is equilavalent to [tex]-\frac{9}{4\\}[/tex].
[tex]-\frac{2}{3}[/tex] can stay put.
The equation is division so neither answers #2 and #3 are the correct ones because when dividing fractions the second fraction has to be flipped in order to continue multiplying instead.
In addition, when two negatives are put together the answer must always be positive.
Hence the answer is [tex]\frac{9}{4}/\frac{3}{2}[/tex].
The ratio of Ed's toy cars to Pete's toy cars was initially 5:2. After Ed gave 30 toy cars to Pete, they each had an equal number of cars. How many toy cars did they have altogether?
Answer:
140 toy cars
Step-by-step explanation:
The ratio of Ed's toy car to Pete's toy car is initially given as 5:2
Ed gave Pete a total number of 30 cars
Let x represent the greatest common factor that exists between both number
Number of Ed's car is represented as 5x
Number of Pete car is represented as 2x
Since they each have an equal number of cars which is 30 then we can solve for x as follows
5x-30=2x+30
Collect the like terms
5x-2x= 30+30
3x= 60
Divide both sides by the coefficient of x which is 3
3x/3=60/3
x=20
Ed's car is 5x, we substitute 20 for x
5(20)
= 100 cars
Pete car is 2x,we substitute 20 for x
2(20)
= 40 cars
Therefore, the total number of cars can be calculated as follows
= 100+40
= 140 toy cars
Hence they have 140 toy cars altogether
Answer:
140
Step-by-step explanation:
the length of a rectangular plot of land exceeds the width by 7 m if the area pf the plot is 198 m square what is the length
Answer:
28.142m
Step-by-step explanation:
area of rectangle=width x lenght
so; (rotating the formula with what is given)
area of rectangle/width=lenght
197/7=lenght
28.142m =lenght
Answer:
Length is 18 m and width is 11 m
Step-by-step explanation:
So based on the information given length is seven cm more than your width, and since we don’t know the values of these, we can plot this information into a formula that looks like this: (x+7)(x)=198, which is basically how you take the area of the plot of land.
If you multiply your values, you will get a quadratic equation that looks like this x²+7x-198. If you follow the quadratic formula to solve this equation, the positive result you will get for x is 11, this is your width. And since length exceeds by 7, you just add 7 to 11 to find the length, which ends up being 18.
to verify, you can simply multiply these two values
The number of vertices a triangle has
3
6
4
5
What the answer question
Answer:
[tex]\bold{A_{_{\Delta XYZ}}=927.5\ cm^2}[/tex]
Step-by-step explanation:
m∠Z = 180° - 118° - 28° = 34°
[tex]\sin(28^o)\approx0.4695\\\\\sin(118^o)=\sin(180^o-62^o)=\sin62^o\approx0.8829 \\\\\sin(34^o)\approx0.5592\\\\[/tex]
[tex]\dfrac{\overline{XY}}{\sin Z}=\dfrac{\overline{YZ}}{\sin X}\\\\\\\overline{XY}=\dfrac{\overline{YZ}}{\sin X}\cdot\sin Z\\\\\\\overline{XY}=\dfrac{42}{0.4695}\cdot0.5592\\\\\overline{XZ}=50.024281...\\\\\\A_{_{\Delta XYZ}}=\frac12\cdot\overline{XY}\cdot\overline{YZ}\cdot\sin(\angle Z)\\\\\\A_{_{\Delta XYZ}}\approx\frac12\cdot50.0243\cdot42\cdot0.8829=927.4955...\approx927.5[/tex]
PLEASE HELP MEEEE
I need help finding x a b and c
Answer:
x=15
angle b=7*15=105
angle a=180-105=75
angle c=2x=30
Step-by-step explanation:
b=7x
sum of straight angle :=180
isoceles traingle = 2 sides are equal, and two angles are equal
b+a=180
7x+a=180
sum of traingle =180
2a+c=180
2a+2x=180 first equation
7x+a=180 second equation
solve by elimination ( multiply second equation by 2)
2a+2x=180
2a+14x=360 ( subtract)
2a+2x-2a-14x=180-360
-12x=-180
x=-180/12=
x=15
angle b=7*15=105
angle a=180-105=75
angle c=2x=30
What is 1x1+5 hehe lol
I need help with this question! solve “k” -19=b-6
k = b + 13
Step-by-step explanation:k - 19 = b - 6
k = b + 19 - 6
k = b + 13
Answer:
[tex]\boxed{k=b+13}[/tex]
Step-by-step explanation:
[tex]k-19=b-6[/tex]
Add 19 on both sides.
[tex]k-19+19=b-6+19[/tex]
[tex]k=b+13[/tex]
1. The total area within any continuous probability distribution is equal to 1.00.
A. True
B. False
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed.
A. True
B. False
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed.
A. True
B. False
Answer:
1. True
2. False.
3. True.
Step-by-step explanation:
1. The total area within any continuous probability distribution is equal to 1.00: it is true because the maximum probability (value) is one (1), therefore, the total (maximum) area is also one (1).
Hence, for continuous probability distribution: probability = area.
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: False because it has an infinite number of possible values, which can not be counted or uncountable.
Hence, it cannot be computed.
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: True because it has a finite number of possible values, which are countable or can be counted.
Hence, it can be computed.
Determine how many litres of water will fit inside the following container. Round answer and all calculations to the nearest whole number.
Answer:
[tex]\approx[/tex] 11 litres of water will fit inside the container.
Step-by-step explanation:
As per the given figure, we have a container formed with combination of a right angled cone placed at the top of a right cylinder.
Given:
Height of cylinder, [tex]h_1[/tex] = 15 cm
Diameter of cylinder/ cone, D = 26 cm
Slant height of cone, l = 20 cm
Here, we need to find the volume of container.[tex]\\Volume_{Container} = Volume_{Cylinder}+Volume_{Cone}\\\Rightarrow Volume_{Container} = \pi r_1^2 h_1+\dfrac{1}{3}\pi r_2^2 h_2[/tex]
Here,
[tex]r_1=r_2 = \dfrac{Diameter}{2} = \dfrac{26}{2} =13\ cm[/tex]
To find the Height of Cylinder, we can use the following formula:
[tex]l^2 = r_2^2+h_2^2\\\Rightarrow h_2^2 = 20^2-13^2\\\Rightarrow h_2^2 = 400-169\\\Rightarrow h_2^2 = 231\\\Rightarrow h_2=15.2\ cm \approx 15\ cm[/tex]
Now, putting the values to find the volume of container:
[tex]Volume_{Container} = \pi \times 13^2 \times 15+\dfrac{1}{3}\pi \times 13^2 \times 15\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 15+\pi \times 13^2 \times 5\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 20\\\Rightarrow Volume_{Container} = 10613.2 \approx 10613\ cm^3[/tex]
Converting [tex]cm^{3 }[/tex] to litres:
[tex]10613 cm^3 = 10.613\ litres \approx 11\ litres[/tex]
[tex]\approx[/tex] 11 litres of water will fit inside the container.
10.Given the following, including the fact
that ∠ABC and ∠CBD are supplementary,
what is the value of m ∠ABC and m ∠ABC?
m ∠DBC=x−10
m ∠ABC=x+30.
Answer:
m ∠DBC=80−10=70
m ∠ABC=80+30=110
Step-by-step explanation:
m ∠DBC+m ∠ABC=180
( x−10)+(x+30.)=180
2x+20=180
2x=180-20
2x=160
x=80
>>m ∠DBC=80−10=70
>>m ∠ABC=80+30=110
Answer:
[tex]\boxed{<DBC = 70 degrees}\\\boxed{<ABC = 110 degrees}[/tex]
Step-by-step explanation:
∠ABC and ∠DBC are supplementary which means that the sum of these two angles is equal to 180.
∠ABC + ∠DBC = 180
Given that: ∠ABC = x+30 and ∠DBC = x - 10
So,
=> x+30+x-10 = 180
=> 2x+20 = 180
=> 2x = 180-20
=> 2x = 160
Dividing both sides by 2
=> x = 80
Now, Finding measures of the angles.
=> ∠DBC = x-10 = 80-10 = 70 degrees
=> ∠ABC = x+30 =80+30 = 110 degrees
What is the equation of a line, in general form, that passes through points (-1, 2) and (5, 2)? A. y - 2 = 0 B. y - x - 2 = 0 C. x - 2 = 0
Answer:
y=2 or y-2=0
Step-by-step explanation:
to find the equation first find the slope m points (-1,2) and (5,2)
m=y2-y1/x2-x1 =2-2/5-(-1)=0/6=0
y=mx+b the slope is zero then y=b=2
Solve –|2x+3|=1 for x it might have more than one answer
If the blue radius below is perpendicular to the green chord and the segment
AB is 8.5 units long, what is the length of the chord?
A
A. 8.5 units
8.5
B
O B. 17 units
O C. 34 units
O D. 4.25 units
Answer:
O B. 17 units
Step-by-step explanation:
The chord is AC and the radius of the circle is perpendicular to the chord at B. AB = 8.5 units. According to the perpendicular bisector theorem, if the radius of a circle is perpendicular to a chord then the radius bisects the chord. This means that chord AC is bisected by the radius of the circle at point B. The length of the circle is calculated using:
[tex]AB=\frac{AC}{2}\\ AC=2*AB\\cross multiplying:\\AC = 2*8.5\ units\\AC = 17 \ units[/tex]
The length of the chord is 17 units.
Answer:
The answer is 17 units :D
Step-by-step explanation:
Rectangle ABCD is graphed in the coordinate plane. The following are the vertices of the rectangle: A ( 2, -6) B ( 5, -6) C (5,-2) D (2.-2) What is the perimeter of rectangle ABCD? PLEASE ANSWER QUICK!!!
Answer:
The answer is 14
Step-by-step explanation:
Point A to Point B is 3
Point C to Point D is 3
Point B to Point c is 4
Point D to point A is 4.
Add all those together to get 14
Answer:
the answer is 14
hope you like this
keep rocking
stay at home stay safe