Answer:
85%
Step-by-step explanation:
Let’s identify all the outcomes less than 10, that would be 2-9
The number of times the die was rolled is obtainable by adding all the frequencies ;
That would be ;
3 + 6 + 8 + 11 + 14 + 16 + 15 + 12 + 9 + 5 + 1 = 100
Now let’s add the frequencies of results which are less than 10;
That would be the frequencies of the numbers 2-9;
Thus, we have;
3 + 6 + 8 + 11 + 14 + 16 + 15 + 12 = 85
The required probability of rolling a number less than 10 = 85/100 = 0.85 which to the nearest percent is 85%
Please answer it now in two minutes
Answer:
3.9
Step-by-step explanation:
Pythagorean theorem:
a^2 + b^2 = c^2
a^2 + 1^2 = 4^2
a^2 + 1 = 16
a^2 = 15
a = sqrt(15)
a = 3.9
Answer a = 3.9 yards
Answer:
[tex]\boxed{3.9}[/tex]
Step-by-step explanation:
The triangle is a right triangle.
Apply Pythagorean theorem.
[tex]a^2 + b^2 = c^2[/tex]
[tex]a^2 + 1^2 = 4^2[/tex]
[tex]a^2 + 1 = 16[/tex]
[tex]a^2 = 15[/tex]
[tex]a=\sqrt{15}[/tex]
[tex]a \approx 3.872983[/tex]
The slope of the line below is 4 . Which of the following is the point slope form of that line ? ( top answer gets )
Answer:
C
Step-by-step explanation:
The equation of a line in point- slope form is
y - b = m(x - a)
where m is the slope and (a, b) a point on the line
Here m = 4 and (a, b) = (- 3, - 4) , thus
y - (- 4) = 4(x - (- 3)) , that is
y + 4 = 4(x + 3) → C
Find the inverse of the function f(x) = 2x² - 3x NO ABSURD ANSWERS IF YOU DON't WANT YOURSELVES TO GET REPORTED!
Answer:
[tex]\boxed{f^{-1}(x)= \frac{\sqrt{8x+9}+3}{4}}[/tex]
Step-by-step explanation:
[tex]f(x)=2x^2-3x[/tex]
[tex]f(x)=y[/tex]
[tex]y=2x^2-3x[/tex]
Switch variables.
[tex]x=2y^2-3y[/tex]
Solve for y.
Multiply both sides by 8.
[tex]8x=16y^2-24y[/tex]
Add 9 on both sides.
[tex]8x+9=16y^2-24y+9[/tex]
Take the square root on both sides.
[tex]\sqrt{8x+9} =\sqrt{16y^2-24y+9}[/tex]
Add 3 on both sides.
[tex]\sqrt{8x+9}+3 =\sqrt{16y^2-24y+9}+3[/tex]
Divide both sides by 4.
[tex]\frac{\sqrt{8x+9}+3}{4}= \frac{\sqrt{16y^2-24y+9}+3}{4}[/tex]
Simplify.
[tex]\frac{\sqrt{8x+9}+3}{4}= \frac{4y-3+3}{4}[/tex]
[tex]\frac{\sqrt{8x+9}+3}{4}= \frac{4y}{4}[/tex]
[tex]\frac{\sqrt{8x+9}+3}{4}=y[/tex]
Inverse y = [tex]f^{-1}(x)[/tex]
[tex]f^{-1}(x)= \frac{\sqrt{8x+9}+3}{4}[/tex]
Answer:
[tex] f^{-1}(x) = \dfrac{3}{4} \pm \dfrac{1}{4}\sqrt{8x + 9} [/tex]
Step-by-step explanation:
[tex] f^{-1}(x) = 2x^2 - 3x [/tex]
Change function notation to y.
[tex] y = 2x^2 - 3x [/tex]
Switch x and y.
[tex] x = 2y^2 - 3y [/tex]
Solve for y.
[tex] 2y^2 - 3y = x [/tex]
Complete the square on the left side. We must divide both sides by 2 to have y^2 as the leading term on the left side.
[tex] y^2 - \dfrac{3}{2}y = \dfrac{x}{2} [/tex]
1/2 of 3/2 is 3/4. Square 3/4 to get 9/16.
Add 9/16 to both sides to complete the square.
[tex] y^2 - \dfrac{3}{2}y + \dfrac{9}{16} = \dfrac{x}{2} + \dfrac{9}{16} [/tex]
Find common denominator on right side.
[tex] (y - \dfrac{3}{4})^2 = \dfrac{8x}{16} + \dfrac{9}{16} [/tex]
If X^2 = k, then [tex] X = \pm \sqrt{k} [/tex]
[tex] y - \dfrac{3}{4} = \pm \sqrt{\dfrac{1}{16}(8x + 9)} [/tex]
Simplify.
[tex] y = \dfrac{3}{4} \pm \dfrac{1}{4}\sqrt{8x + 9} [/tex]
Back to function notation.
[tex] f^{-1}(x) = \dfrac{3}{4} \pm \dfrac{1}{4}\sqrt{8x + 9} [/tex]
Let f(x) = 3x + 5 and g(x) = x2. Find g(x) − f(x).
Answer:
2x-(3x+5) = -x-5
Step-by-step explanation:
2x + 0
-
3x + 5
-———————-
-x - 5
given that sin x equals to a over b then what is tan x
Answer:
Hey there!
Sine is equal to opposite/hypotenuse
Tangent is equal to opposite/adjacent
opposite=a
hypotenuse=b
adjacent=c
Thus, tangent x= a/c.
Hope this helps :)
Answer:
tan x = a/sqrt(b^2 - a^2)
Step-by-step explanation:
sin x = a/b = opp/hyp
tan x = opp/adj
adj^2 + opp^2 = hyp^2
adj^2 + a^2 = b^2
adj = sqrt(b^2 - a^2)
tan x = a/sqrt(b^2 - a^2)
Please help me with this answer!! I am really stuck...No nonsense answers please.
Answer:
19
Step-by-step explanation:
Inscribed Angle = 1/2 Intercepted Arc
< DBG = 1/2 ( DG)
< DBG = 1/2 ( 360 - BD - BG)
= 1/2 ( 360 - 172 - 150)
= 1/2 (38)
= 19
On a ski lift, the distance between chairs is inversely proportional to the number of chairs. At a
ski resort, one lift has 80 chairs spaced 16 meters apart. What is the constant of variation.
A.1280 B.5 C.1/5 D.1/1280
Constant of variation = number of chairs/ spacing.
80/16 = 5
The answer is B.5
If I mix 5 gallons of p% boric acid with 5 gallons of water, what is the concentration of the mixture?
Answer: The concentration of the mixture is 0.5 p % .
Step-by-step explanation:
Given: 5 gallons of p% boric acid is mixed with 5 gallons of water.
Amount of boric acid = p% of 5 gallons
[tex]=\dfrac{p}{100}\times5\text{ gallons}= 0.05p\text{ gallons}[/tex]
Total solution : 5 +5 = 10 gallons
then, the concentration of the mixture = [tex]\dfrac{\text{Amount of boric acid in solution}}{\text{Total solution}}\times100[/tex]
[tex]=\dfrac{0.05p}{10}\times100\\\\=0.5p[/tex]
Hence, the concentration of the mixture is 0.5 p % .
Answer:
0.5p% is the answer
The coordinates of A, B, and C in the diagram are A (p, 4), B (6, 1 ), and C (9, q). Which equation correctly relates p and q? ↔ ↔ ↔ ↔ Hint: Since AB is perpendicular to BC, the slope of AB × the slope o BC = -1. A. -q − p = 7 B. q − p = 7 C. p − q = 7 D. p + q = 7
Answer:
D. p + q = 7
Step-by-step explanation:
The slope of AB is ...
mAB = (y2 -y1)/(x2 -x1) = (1 -4)/(6 -p) = -3/(6 -p)
The slope of BC is ...
mBC = (q -1)/(9 -6) = (q -1)/3
We want the product of these slopes to be -1:
mAB·mBC = -1 = (-3/(6 -p))·((q -1)/3)
-(q-1)/(6 -p) = -1 . . . . cancel factors of 3
q -1 = 6 -p . . . . . multiply by -(6 -p)
q + p = 7 . . . . . matches choice D
Answer:
C p+q=7
Step-by-step explanation:
I did it on plato and it was right
Use the interactive number line to find the sum.
-5.5 + 3.7 =
Answer: -1.8
Step-by-step explanation:
Start at -5.5 and move the point on the number line up 3.7 spaces.
Hope it helps <3
Answer:
Your correct answer is -1.8
Step-by-step explanation:
−5.5 + 3.7
= −5.5+3.7
= −1.8
If log3=0.4771 and log2=0.3010,Find the value of log12
Answer:
log 12 = 1.0761
Step-by-step explanation:
log 12
=log(3*2*2)
= log 3 +log 2+ log 2
=0.4771+0.3010+0.3010
=1.0761
Answer:
Log 12 = 1.0791
Step-by-step explanation:
=> log (12)
Prime Factorizing 12
=> log (2×2×3)
Using log rule : [tex]log (a*b) = log a+logb[/tex]
=> Log 2 + log 2 + log 3
Given that log 2 = 0.3010 , log 3 = 0.4771
=> 0.3010 + 0.3010 + 0.4771
=> 1.0791
Determine the value of x.
Answer:
B. 6sqrt(2).
Step-by-step explanation:
Since the two legs of the right triangle are congruent, this is a 45-45-90 triangle. That means that the hypotenuse will measure xsqrt(2) units, and each leg will measure x units.
In this case, x = 6.
So, the hypotenuse is B. 6sqrt(2).
Hope this helps!
simplify (5 √2 - 1) ^2
Find the value of x.
Answer:
8.8Option A is the correct option.
Step-by-step explanation:
As PW is the median.
PW = [tex] \frac{1}{2} [/tex] ( YZ + TM )
Plug the values
x = [tex] = \frac{1}{2} (5.5 + 12.1)[/tex]
Calculate the sum
x = [tex] = \frac{1}{2} \times 17.6[/tex]
Calculate the product
x = [tex] = 8.8[/tex]
Hope this helps...
Best regards!
FInd the Slope and y-intercept
3y-x=18
Answer:
The slope is 1/3 and the y intercept is 6
Step-by-step explanation:
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
3y -x =18
Add x to each side
3y = x+18
Divide each side by 3
3y/3 = x/3 +18/3
y = 1/3x +6
The slope is 1/3 and the y intercept is 6
We need to solve for y (y = mx + b):
3y - x = 18
~Add x to both sides
3y = 18 + x
~Divide 3 to everything
y = 6 + x/3 or y = 6 + 1/3/x
So... 1/3 is the slope and 6 is the y-intercept.
Best of Luck!
Please give me the correct answer her please
Answer:
9.3 inStep-by-step explanation:
m∠UTV = 112° ⇒ m∠WTV = 180° - 112° = 68°
sin(68°) ≈ 0.9272
sin(∠WTV) = WV/TV
WV/10 ≈ 0.9272
WV ≈ 9.272
WV ≈ 9.3
A cell phone company offers a plan that costs $35 per month plus an additional cost of $0.08 per text message.
Write an equation to represent this problem.
Answer:
C = 35 + 0.08t
Step-by-step explanation:
The equation is:
35 + 0.08t = C
C = Cost by month
t = cost for each additional message
Evaluate 7m + 2n - 8p/n for m = –4, n = 2, and p = 1.5.
Answer:
-30
Step-by-step explanation:
7m + 2n - 8p/n
Let m = –4, n = 2, and p = 1.5
7(-4) + 2 ( 2) -8*(1.5)/2
-28 + 4 - 4*1.5
-28+ 4 - 6
-30
Answer:
-30
Step-by-step explanation:
Hey there!
Well given,
m = -4
n = 2
p = 1.5
We need to plug those number into,
7m + 2n - 8p/n
7(-4) + 2(2) - 8(1.5)/(2)
-28 + 4 - 12/2
-28 + 4 - 6
-24 - 6
-30
Hope this helps :)
The Acme Candy Company claims that 60% of the jawbreakers it produces weigh more than 0.4 ounces. Suppose that 800 jawbreakers are selected at random from the production lines. Would it be significant for this sample of 800 to contain 494 jawbreakers that weigh more than 0.4 ounces? Consider as significant any result that differs from the mean by at least 2 standard deviations. That is, significant values are either less than or equal to muminus2sigma or greater than or equal to muplus2sigma.
Answer:
Yes, it would be statistically significant
Step-by-step explanation:
The information given are;
The percentage of jawbreakers it produces that weigh more than 0.4 ounces = 60%
Number of jawbreakers in the sample, n = 800
The mean proportion of jawbreakers that weigh more than 0.4 = 60% = 0.6 = [tex]\mu _ {\hat p}[/tex] =p
The formula for the standard deviation of a proportion is [tex]\sigma _{\hat p} =\sqrt{\dfrac{p(1-p)}{n} }[/tex]
Solving for the standard deviation gives;
[tex]\sigma _{\hat p} =\sqrt{\dfrac{0.6 \cdot (1-0.6)}{800} } = 0.0173[/tex]
Given that the mean proportion is 0.6, the expected value of jawbreakers that weigh more than 0.4 in the sample of 800 = 800*0.6 = 480
For statistical significance the difference from the mean = 2×[tex]\sigma _{\hat p}[/tex] = 2*0.0173 = 0.0346 the equivalent number of Jaw breakers = 800*0.0346 = 27.7
The z-score of 494 jawbreakers is given as follows;
[tex]Z=\dfrac{x-\mu _{\hat p} }{\sigma _{\hat p} }[/tex]
[tex]Z=\dfrac{494-480 }{0.0173 } = 230.94[/tex]
Therefore, the z-score more than 2 ×[tex]\sigma _{\hat p}[/tex] which is significant.
Answer:
Step-by-step explanation:
min 452, max 507, so 494 is not unusual.
The researcher is interested to know if policy A (new) is more effective than policy B (old). Frame the hypothesis and describe what each error would represent in terms of reality and conclusion.
Answer:
Null hypothesis: Policy B remains more effective than policy A.
Alternate hypothesis: Policy A is more effective than policy B.
Step-by-step explanation:
Remember, a hypothesis is a usually tentative (temporary until tested) assumption about two variables– independent and the dependent variable.
We have two types of hypothesis errors:
1. A type I error occurs when the null hypothesis (H0) is wrongly rejected.
That is, rejecting the assumption that policy B remains more effective than policy A when it is actually true.
2. A type II error occurs when the null hypothesis H0, is not rejected when it is actually false. That is, accepting the assumption that policy B remains more effective than policy A when it is actually false.
Find the value of x. Round the length to the nearest tenth.
Answer:
x=6 and x=5.1
Step-by-step explanation:
a car is driving at a speed of 40mi/h.what is the speed of the car in feet per minute
Answer:
[tex]\boxed{3520\ ft/min}[/tex]
Step-by-step explanation:
1 miles per hour = 88 feet per minute
Multiplying both sides by 40
40 miles per hour = 88*40 ft/min
40 mi./hr = 3520 ft/min
Answer:
3520 feet/min
Step-by-step explanation:
the speed of the car in feet per minute:
first convert miles to feet ( 1 mile =5280 feet) and hours to minutes(1hr=60min.)
(40*5280)/1*60=3520 feet/min
What is the slope of line m?
Answer:
2.
Step-by-step explanation:
The slope is calculated by doing rise over run.
The rise is: 6 - 0 = 6.
The run is: 0 - (-3) = 0 + 3 = 3.
6 / 3 = 2 / 1 = 2.
Hope this helps!
Please help I don't understand
Answer:
£531.52
Step-by-step explanation:
We are given the profit in week 1 and information about week 2. We are asked for the difference between week 2 profit and week 1 profit.
__
In week 2, pizza is sold 4 ways. The diagram shows the numbers of pizzas sold each way. The table shows the profit made for each way the pizza was sold. We need to add up the profits from each of the sales to find the profit for week 2.
10-inch/normal price: profit = 407×£3.72 = £1514.0410-inch/offer price: profit = 358×(-£0.49) = -£175.4212-inch/normal price: profit = 169×£5.26 = £888.9412-inch/offer price: profit = 142×(-£0.04) = -£5.68Then the total profit in week 2 is ...
£1514.04 -175.42 +888.94 -5.68 = £2221.88
So, profit in week 2 exceeds profit in week 1 by ...
£2221.88 -1690.36 = £531.52 . . . more profit in week 2
Susan purchased 9/10 of a pound of shrimp for a dinner party. Her plan is to serve 1/6 of a pound of shrimp to herself and each guest. Including herself, how many people can Susan serve at her dinner party? (Remember that you can't have a fraction of a person.)
Answer:
Susan and 4 quests
5 people
Step-by-step explanation:
Take 9/10 and divide by 1/6
9/10 ÷1/6
Copy dot flip
9/10 * 6/1
54/10
50/10 + 4/10
5 4/10
We can only serve whole numbers
5 people
Susan and 4 quests
Determine if the function is a polynomial function. If the function is a polynomial function, state the degree and leading coefficient. If the function is not a polynomial, state why. f(x)=x^4(2-x^3)+1
Answer:
The correct option is
This is a polynomial function of degree 7 with a leading coefficient of -1
Step-by-step explanation:
Functions that consist of a variable such as x raised to positive integer powers which are equal to or larger than zero added together to make the function are known as polynomial functions
Therefore, the function in the question which is f(X) = x⁴ × (2 - x³) + 1
Which can be expanded as follows
f(x) = 2·x⁴ - x⁷ + 1, which is the same as given as follow equation;
f(x) = -x⁷ + 2·x⁴ + 1
Which is polynomial function with a leading coefficient of -1 as it consists of only whole number positive powers of x including the powers of x 4 and 7
Therefore, the correct option is that f(x) is a polynomial function of degree 7 with a leading coefficient of -1.
What is the value of y? Answer asap
Answer:
y=3
Step-by-step explanation:
10=2y+4
10-4=2y
6=2y
3=y
Find the angle measures given the figure is a rhombus.
Answer:
1 = 90°, 2 = 66°
Step-by-step explanation:
Since the diagonals of a rhombus are perpendicular, ∠1 = 90°. Using the Exterior Angles Theorem (exterior angle = sum of remote interior angles, we see that ∠2 = 90 - 24 = 66°.
no clue how to do this, someone pls help
Answer:
6π
Step-by-step explanation:
First we need to find the circumference of the circle. We know that the radius is 4 and the formula is πd or 2πr
Leaving it in terms of pi, the circumference is 8π
Now we need to find the length of the arc.
Since the missing part of the circle is labeled with a right angle, we know that it's exactly 1/4 of the whole circle. That means the arc we need to find is 3/4 of the circumference.
3/4 of 8π is 6π
Exit polling is a popular technique used to determine the outcome of an election prior to results being tallied. Suppose a referendum to increase funding for education is on the ballot in a large town (voting population over 100,000). An exit poll of 200 voters finds that 94 voted for the referendum. How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
Answer:
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.
Step-by-step explanation:
From the information given :
An exit poll of 200 voters finds that 94 voted for the referendum.
How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
This implies that ;
the Sample size n = 200
the probability p = 0.52
Let X be the random variable
So; the Binomial expression can be represented as:
X [tex]\sim[/tex] Binomial ( n = 200, p = 0.52)
Mean [tex]\mu[/tex] = np
Mean [tex]\mu[/tex] = 200 × 0.52
Mean [tex]\mu[/tex] = 104
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{np(1-p)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(1-0.52)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(0.48)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{49.92}[/tex]
The standard deviation [tex]\sigma[/tex] = 7.065
However;
P(X ≤ 94) because the discrete distribution by the continuous normal distribution values lies in the region of 93.5 and 94.5 .
The less than or equal to sign therefore relates to the continuous normal distribution of X < 94.5
Now;
x = 94.5
Therefore;
[tex]z = \dfrac{x- \mu}{\sigma}[/tex]
[tex]z = \dfrac{94.5 - 104}{7.065}[/tex]
[tex]z = \dfrac{-9.5}{7.065}[/tex]
z = −1.345
P(X< 94.5) = P(Z < - 1.345)
From the z- table
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.