Factor completely 2x3y + 18xy - 10x2y - 90y. I need this done today in a few minutes.

Answers

Answer 1

Answer:

2y (x^2+9) ( x-5)

Step-by-step explanation:

2x^3y + 18xy - 10x^2y - 90y

Factor out the common factor of 2y

2y(x^3+9x-5x^2-45)

Then factor by grouping

2y(x^3+9x     -5x^2-45)

Taking x from the first group and -5 from the second

2y( x (x^2+9)  -5(x^2+9))

Now factor out (x^2+9)

2y (x^2+9) ( x-5)


Related Questions

x=-4
Tell whether it’s graph is a horizontal or a vertical line

Answers

Answer:

Vertical Line

Step-by-step explanation:

A vertical line is x = [a number]

A horizontal line is y = [a number]

Answer:

vertical line

Step-by-step explanation:

A vertical line is of the form

x =

All the x values are the same and the y value changes

x = -4 is a vertical line

Can somebody help me i have to drag the functions on top onto the bottom ones to match their inverse functions.

Answers

Answer:

1. x/5

2. cubed root of 2x

3.x-10

4.(2x/3)-17

Step-by-step explanation:

Answer:

Step-by-step explanation:

1. Lets find the inverse function for function f(x)=2*x/3-17

To do that first express x through f(x):

2*x/3= f(x)+17

2*x=(f(x)+17)*3

x=(f(x)+17)*3/2   done !!!                        (1)

Next : to get the inverse function from (1) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=(x+17)*3/2 or f'(x)=3*(x+17)/2

This is function is No4 in our list. So f(x)=2*x/3-17 should be moved to the box No4  ( on the bottom) of the list.

2.  Lets find the inverse function for function f(x)=x-10

To do that first express x through f(x):

x= f(x)+10

x=f(x)+10   done !!!                        (2)

Next : to get the inverse function from (2) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x+10

This is function is No3 in our list. So f(x)=x-10 should be moved to the box No3  ( from the top) of the list.

3.Lets find the inverse function for function f(x)=sqrt 3 (2x)

To do that first express x through f(x):

2*x= f(x)^3

x=f(x)^3/2   done !!!                        (3)

Next : to get the inverse function from (3) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x^3/2

This is function No2 in our list. So f(x)=sqrt 3 (2x) should be moved to the box No2  ( from the top) of the list.

4.Lets find the inverse function for function f(x)=x/5

To do that first express x through f(x):

x=f(x)*5   done !!!                        (4)

Next : to get the inverse function from (4) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x*5 or f'(x)=5*x

This is function No1 in our list. So f(x)=x/5 should be moved to the box No1  ( on the top) of the list.

You can model that you expect a 1.25% raise each year that you work for a certain company. If you currently make $40,000, how many years should go by until you are making $120,000? (Round to the closest year.)

Answers

Answer:

94 years

Step-by-step explanation:

We can approach the solution using the compound interest equation

[tex]A= P(1+r)^t[/tex]

Given data

P= $40,000

A=  $120,000

r=  1.25%= 1.25/100= 0.0125

substituting and solving for t we have

[tex]120000= 40000(1+0.0125)^t \\\120000= 40000(1.0125)^t[/tex]

dividing both sides by 40,000 we have

[tex](1.0125)^t=\frac{120000}{40000} \\\\(1.0125)^t=3\\\ t Log(1.0125)= log(3)\\\ t*0.005= 0.47[/tex]

dividing both sides by 0.005 we have

[tex]t= 0.47/0.005\\t= 94[/tex]

what's the equivalent expression ​

Answers

Answer:

2^52

Step-by-step explanation:

(8^-5/2^-2)^-4 = (2^-15/2^-2)^-4= (2^-13)^-4= 2^((-13*(-4))= 2^52

g A cylindrical tank with radius 7 m is being filled with water at a rate of 6 mଷ/min. How fast is the height of the water increasing? (Recall: V = πrଶh)

Answers

Answer:

  6/(49π) ≈ 0.03898 m/min

Step-by-step explanation:

  V = πr²h . . . . formula for the volume of a cylinder

  dV/dt = πr²·dh/dt . . . . differentiate to find rate of change

Solving for dh/dt and filling in the numbers, we have ...

  dh/dt = (dV/dt)/(πr²) = (6 m³/min)/(π(7 m)²) = 6/(49π) m/min

  dh/dt ≈ 0.03898 m/min

What is the simplified form of this expression?
(-3x^2+ 2x - 4) + (4x^2 + 5x+9)

OPTIONS
7x^2 + 7x + 5
x^2 + 7x + 13
x^2 + 11x + 1
x^² + 7x+5

Answers

Answer:

Option 4

Step-by-step explanation:

=> [tex]-3x^2+2x-4 + 4x^2+5x+9[/tex]

Combining like terms

=> [tex]-3x^2+4x^2+2x+5x-4+9[/tex]

=> [tex]x^2+7x+5[/tex]

Q4. A simple random sample of size n=180 is obtained from a population whose size=20,000 and whose population proportion with a specified characteristic is p=0.45. Determine whether the sampling distribution has an approximate normal distribution. Show your work that supports your conclusions.

Answers

Answer:

np = 81  , nQ = 99

Step-by-step explanation:

Given:

X - B ( n = 180 , P = 0.45 )

Find:

Sampling distribution has an approximate normal distribution

Computation:

nP & nQ ≥ 5

np = n × p

np = 180 × 0.45

np = 81

nQ = n × (1-p)

nQ = 180 × ( 1 - 0.45 )

nQ = 99

[tex]Therefore, sampling\ distribution\ has\ an\ approximately\ normal\ distribution.[/tex]

If the area of a circular cookie is 28.26 square inches, what is the APPROXIMATE circumference of the cookie? Use 3.14 for π.


75.2 in.
56.4 in.
37.6 in.
18.8 in.

Answers

Answer:

Step-by-step explanation:

c= 2(pi)r

Area = (pi)r^2

28.26 = (pi) r^2

r =[tex]\sqrt{9}[/tex] = 3

circumference = 2 (3.14) (3)

                        = 18.8 in

Answer:  approx 18.8 in

Step-by-step explanation:

The area of the circle is

S=π*R²   (1)   and the circumference of the circle is C= 2*π*R      (2)

So using (1)  R²=S/π=28.26/3.14=9

=> R= sqrt(9)

R=3 in

So using (2) calculate C=2*3.14*3=18.84 in or approx 18.8 in

Use the data below, showing a summary of highway gas mileage for several observations, to decide if the average highway gas mileage is the same for midsize cars, SUV’s, and pickup trucks. Test the appropriate hypotheses at the α = 0.01 level.
n Mean Std. Dev.
Midsize 31 25.8 2.56
SUV’s 31 22.68 3.67
Pickups 14 21.29 2.76

Answers

Answer:

Step-by-step explanation:

Hello!

You need to test at 1% if the average highway gas mileage is the same for three types of vehicles (midsize cars, SUV's and pickup trucks) to compare the average values of the three groups altogether, you have to apply an ANOVA.

                n  |  Mean |  Std. Dev.

Midsize  | 31 |  25.8   |  2.56

SUV’s     | 31 |  22.68 |  3.67

Pickups  | 14 |  21.29  |  2.76

Be the study variables :

X₁: highway gas mileage of a midsize car

X₂: highway gas mileage of an SUV

X₃: highway gas mileage of a pickup truck.

Assuming these variables have a normal distribution and are independent.

The hypotheses are:

H₀: μ₁ = μ₂ = μ₃

H₁: At least one of the population means is different.

α: 0.01

The statistic for this test is:

[tex]F= \frac{MS_{Treatment}}{MS_{Error}}[/tex]~[tex]F_{k-1;n-k}[/tex]

Attached you'll find an ANOVA table with all its components. As you see, to manually calculate the statistic you have to determine the Sum of Squares and the degrees of freedom for the treatments and the errors, next you calculate the means square for both and finally the test statistic.

For the treatments:

The degrees of freedom between treatments are k-1 (k represents the amount of treatments): [tex]Df_{Tr}= k - 1= 3 - 1 = 2[/tex]

The sum of squares is:

SSTr: ∑ni(Ÿi - Ÿ..)²

Ÿi= sample mean of sample i ∀ i= 1,2,3

Ÿ..= grand mean, is the mean that results of all the groups together.

So the Sum of squares pf treatments SStr is the sum of the square of difference between the sample mean of each group and the grand mean.

To calculate the grand mean you can sum the means of each group and dive it by the number of groups:

Ÿ..= (Ÿ₁ + Ÿ₂ + Ÿ₃)/ 3 = (25.8+22.68+21.29)/3 = 23.256≅ 23.26

[tex]SS_{Tr}[/tex]= (Ÿ₁ - Ÿ..)² + (Ÿ₂ - Ÿ..)² + (Ÿ₃ - Ÿ..)²= (25.8-23.26)² + (22.68-23.26)² + (21.29-23.26)²= 10.6689

[tex]MS_{Tr}= \frac{SS_{Tr}}{Df_{Tr}}= \frac{10.6689}{2}= 5.33[/tex]

For the errors:

The degrees of freedom for the errors are: [tex]Df_{Errors}= N-k= (31+31+14)-3= 76-3= 73[/tex]

The Mean square are equal to the estimation of the variance of errors, you can calculate them using the following formula:

[tex]MS_{Errors}= S^2_e= \frac{(n_1-1)S^2_1+(n_2-1)S^2_2+(n_3-1)S^2_3}{n_1+n_2+n_3-k}= \frac{(30*2.56^2)+(30*3.67^2)+(13*2.76^2)}{31+31+14-3} = \frac{695.3118}{73}= 9.52[/tex]

Now you can calculate the test statistic

[tex]F_{H_0}= \frac{MS_{Tr}}{MS_{Error}} = \frac{5.33}{9.52}= 0.559= 0.56[/tex]

The rejection region for this test is always one-tailed to the right, meaning that you'll reject the null hypothesis to big values of the statistic:

[tex]F_{k-1;N-k;1-\alpha }= F_{2; 73; 0.99}= 4.07[/tex]

If [tex]F_{H_0}[/tex] ≥ 4.07, reject the null hypothesis.

If [tex]F_{H_0}[/tex] < 4.07, do not reject the null hypothesis.

Since the calculated value is less than the critical value, the decision is to not reject the null hypothesis.

Then at a 1% significance level you can conclude that the average highway mileage is the same for the three types of vehicles (mid size, SUV and pickup trucks)

I hope this helps!

The line x + y - 6= 0 is the right bisector
of the segment PQ. If P is the point (4,3),
then the point Q is

Answers

Answer:

Therefore, the coordinates of point Q is (2,3)

Step-by-step explanation:

Let the coordinates of Q be(a,b)

Let R be the midpoint of PQ

Coordinates of R [tex]=(\frac{4+a}{2}, \frac{3+b}{2})[/tex]

R lies on the line x + y - 6= 0, therefore:

[tex]\implies \dfrac{4+a}{2}+ \dfrac{3+b}{2}-6=0\\\implies 4+a+3+b-12=0\\\implies a+b-5=0\\\implies a+b=5[/tex]

Slope of AR X Slope of PQ = -1

[tex]-1 \times \dfrac{b-3}{a-4}=-1\\b-3=a-4\\a-b=-3+4\\a-b=-1[/tex]

Solving simultaneously

a+b=5

a-b=-1

2a=4

a=2

b=3

Therefore, the coordinates of point Q is (2,3)

What is the equation of a line passes thru the point (4, 2) and is perpendicular to the line whose equation is y = ×/3 - 1 ??

Answers

Answer:

Perpendicular lines have slopes that are opposite and reciprocal. Therefore, the line we are looking for has a -3 slope.

y= -3x+b

Now, we can substitute in the point given to find the intercept.

2= -3(4)+b

2= -12+b

b=14

Finally, put in everything we've found to finish the equation.

y= -3x+14

Answer:

y = -3x + 14

Step-by-step explanation:

First find the reciprocal slope since it is perpendicular.  Slope of the other line is 1/3 so the slope for our new equation is -3.  

Plug information into point-slope equation

(y - y1) = m (x-x1)

y - 2 = -3 (x-4)

Simplify if needed

y - 2 = -3x + 12

y = -3x + 14

help please this is important​

Answers

Answer:

D. [tex]3^3 - 4^2[/tex]

Step-by-step explanation:

Well if Alia gets 4 squared less than Kelly who get 3 cubed it’s natural the expression is 3^3 - 4 ^2

The solutions to the inequality y < to -x+1 sre shaded on the graph. Which point is a solution

Answers

Answer:  B.  (3,-2)

There are two ways to confirm this is the answer. The first is to note that (3,-2) is on the boundary, so it is part of the solution set. This only works if the boundary line is a solid line (as opposed to a dashed or dotted line).

The second way is to plug (x,y) = (3,-2) into the given inequality to find that

[tex]y \le -x+1\\\\-2 \le -3+1\\\\-2 \le -2[/tex]

which is a true statement. So this confirms that (3,-2) is in the solution set of the inequality.

Find AC. (Khan Academy-Math)

Answers

Answer:

[tex]\boxed{11.78}[/tex]

Step-by-step explanation:

From observations, we can note that BC is the hypotenuse.

As the length of hypotenuse is not given, we can only use tangent as our trig function.

tan(θ) = opposite/adjacent

tan(67) = x/5

5 tan(67) = x

11.77926182 = x

x ≈ 11.78

For the binomial distribution with the given values for n and p, state whether or not it is suitable to use the normal distribution as an approximation. n = 24 and p = 0.6.

Answers

Answer:

Since both np > 5 and np(1-p)>5, it is  suitable to use the normal distribution as an approximation.

Step-by-step explanation:

When the normal approximation is suitable?

If np > 5 and np(1-p)>5

In this question:

[tex]n = 24, p = 0.6[/tex]

So

[tex]np = 24*0.6 = 14.4[/tex]

And

[tex]np(1-p) = 24*0.6*0.4 = 5.76[/tex]

Since both np > 5 and np(1-p)>5, it is  suitable to use the normal distribution as an approximation.

Susan decides to take a job as a transcriptionist so that she can work part time from home. To get started, she has to buy a computer, headphones, and some special software. The equipment and software together cost her $1000. The company pays her $0.004 per word, and Susan can type 90 words per minute. How many hours must Susan work to break even, that is, to make enough to cover her $1000 start-up cost? If Susan works 4 hours a day, 3days a week, how much will she earn in a month.

Answers

Answer:

46.3 hours of work to break even.

$1036.8 per month (4 weeks)

Step-by-step explanation:

First let's find how much Susan earns per hour.

She earns $0.004 per word, and she does 90 words per minute, so she will earn per minute:

0.004 * 90 = $0.36

Then, per hour, she will earn:

0.36 * 60 = $21.6

Now, to find how many hours she needs to work to earn $1000, we just need to divide this value by the amount she earns per hour:

1000 / 21.6 = 46.3 hours.

She works 4 hours a day and 3 days a week, so she works 4*3 = 12 hours a week.

If a month has 4 weeks, she will work 12*4 = 48 hours a month, so she will earn:

48 * 21.6 = $1036.8

Answer:

46.3 hours of work to break even.

$1036.8 per month (4 weeks)

Step-by-step explanation:

Find the directional derivative of at the point (1, 3) in the direction toward the point (3, 1). g

Answers

Complete Question:

Find the directional derivative of g(x,y) = [tex]x^2y^5[/tex]at the point (1, 3) in the direction toward the point (3, 1)

Answer:

Directional derivative at point (1,3),  [tex]D_ug(1,3) = \frac{162}{\sqrt{8} }[/tex]

Step-by-step explanation:

Get [tex]g'_x[/tex] and [tex]g'_y[/tex] at the point (1, 3)

g(x,y) = [tex]x^2y^5[/tex]

[tex]g'_x = 2xy^5\\g'_x|(1,3)= 2*1*3^5\\g'_x|(1,3) = 486[/tex]

[tex]g'_y = 5x^2y^4\\g'_y|(1,3)= 5*1^2* 3^4\\g'_y|(1,3)= 405[/tex]

Let P =  (1, 3) and Q = (3, 1)

Find the unit vector of PQ,

[tex]u = \frac{\bar{PQ}}{|\bar{PQ}|} \\\bar{PQ} = (3-1, 1-3) = (2, -2)\\{|\bar{PQ}| = \sqrt{2^2 + (-2)^2}\\[/tex]

[tex]|\bar{PQ}| = \sqrt{8}[/tex]

The unit vector is therefore:

[tex]u = \frac{(2, -2)}{\sqrt{8} } \\u_1 = \frac{2}{\sqrt{8} } \\u_2 = \frac{-2}{\sqrt{8} }[/tex]

The directional derivative of g is given by the equation:

[tex]D_ug(1,3) = g'_x(1,3)u_1 + g'_y(1,3)u_2\\D_ug(1,3) = (486*\frac{2}{\sqrt{8} } ) + (405*\frac{-2}{\sqrt{8} } )\\D_ug(1,3) = (\frac{972}{\sqrt{8} } ) + (\frac{-810}{\sqrt{8} } )\\D_ug(1,3) = \frac{162}{\sqrt{8} }[/tex]

Ann's $6,900 savings is in two accounts. One account earns 3% annual interest and the other earns 8%. Her total interest for the year is $342. How much does she have in each account?

Answers

Answer:

x=4200, y=2700

Step-by-step explanation:

let x be first account

y the second

x+y=6900

0.03x+0.08y=342

solve by addition/elimination)

multiply first equation by 0.03

0.03x+0.03y=207  subtract from second

0.03x+0.03y-0.03x-0.08y=207-342

0.05y=135

y=2700, x=4200

Simplify the algebraic expression: 7x2 + 6x – 9x – 6x2 + 15. A) x2 + 15x + 15 B) x2 – 3x + 15 C) 13x2 + 3x + 15 D) x4 – 3x + 15

Answers

Answer:

B) [tex]x^2-3x+15[/tex]

Step-by-step explanation:

[tex]7x^2+6x-9x-6x^2+15=\\7x^2-6x^2+6x-9x+15=\\x^2+6x-9x+15=\\x^2-3x+15[/tex]

A) [tex]x^2+15x+15[/tex]

B) [tex]x^2-3x+15[/tex]

C) [tex]13x^2 + 3x + 15[/tex]

D) [tex]x^4-3x + 15[/tex]

━━━━━━━☆☆━━━━━━━

▹ Answer

B. x² - 3x + 15

▹ Step-by-Step Explanation

7x² + 6x - 9x - 6x² + 15

Collect like terms

x² + 6x - 9x + 15

Subtract

x² - 3x + 15

Final Answer

x² - 3x + 15

Hope this helps!

- CloutAnswers ❁

Brainliest is greatly appreciated!

━━━━━━━☆☆━━━━━━━

The foundation of a building is in the shape of a rectangle, with a length of 20 meters (m) and a width of 18 m. To the nearest meter, what is the distance from the top left corner of the foundation to the bottom right corner?

Answers

Answer:

27m

Step-by-step explanation:

It's the Pythagorean Theorem.

20^2+18^2=c^2

400+324=c^2

724=c^2

take the square root of both sides

26.9m=c

to the nearest meter = 27

Suppose we write down the smallest positive 2-digit, 3-digit, and 4-digit multiples of 9,8 and 7(separate number sum for each multiple). What is the sum of these three numbers?

Answers

Answer:

Sum of 2 digit = 48

Sum of 3 digit = 317

Sum of 4 digit = 3009

Total = 3374

Step-by-step explanation:

Given:

9, 8 and 7

Required

Sum of Multiples

The first step is to list out the multiples of each number

9:- 9,18,....,99,108,117,................,999

,1008

,1017....

8:- 8,16........,96,104,...............,992,1000,1008....

7:- 7,14,........,98,105,.............,994,1001,1008.....

Calculating the sum of smallest 2 digit multiple of 9, 8 and 7

The smallest positive 2 digit multiple of:

- 9 is 18

- 8 is 16

- 7 is 14

Sum = 18 + 16 + 14

Sum = 48

Calculating the sum of smallest 3 digit multiple of 9, 8 and 7

The smallest positive 3 digit multiple of:

- 9 is 108

- 8 is 104

- 7 is 105

Sum = 108 + 104 + 105

Sum = 317

Calculating the sum of smallest 4 digit multiple of 9, 8 and 7

The smallest positive 4 digit multiple of:

- 9 is 1008

- 8 is 1000

- 7 is 1001

Sum = 1008 + 1000 + 1001

Sum = 3009

Sum of All = Sum of 2 digit + Sum of 3 digit + Sum of 4 digit

Sum of All = 48 + 317 + 3009

Sum of All = 3374

Kara categorized her spending for this month into four categories: Rent, Food, Fun, and Other. The amounts she spent in each category are pictured here. Rent $433 Food $320 Fun $260 Other $487 What percent of her total spending did she spend on Rent? % (Please enter your answer to the nearest whole percent.) What percent of her total spending did she spend on Food? % (Please enter your answer to the nearest whole percent.) What percent of her total spending did she spend on Fun? % (Please enter your answer to the nearest whole percent.)

Answers

Answer: Rent = 29%,  Food = 21%,    Fun = 17%

Step-by-step explanation:

Rent =     $433

Food =    $320

Fun =       $260

Other =   $487  

TOTAL = $1500

[tex]\dfrac{Rent}{Total}=\dfrac{433}{1500}\quad =0.2886\quad =\large\boxed{29\%}\\\\\\\dfrac{Food}{Total}=\dfrac{320}{1500}\quad =0.2133\quad =\large\boxed{21\%}\\\\\\\dfrac{Fun}{Total}=\dfrac{260}{1500}\quad =0.1733\quad =\large\boxed{17\%}[/tex]

Suppose μ1 and μ2 are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems. Use the two-sample t test at significance level 0.01 to test H0: μ1 − μ2 = −10 versus Ha: μ1 − μ2 < −10 for the following data: m = 8, x = 115.6, s1 = 5.04, n = 8, y = 129.3, and s2 = 5.32.

Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.)

t = ________

P-value = _________

Answers

Answer:

Step-by-step explanation:

This is a test of 2 independent groups. Given that μ1 and μ2 are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems, the hypothesis are

For null,

H0: μ1 − μ2 = - 10

For alternative,

Ha: μ1 − μ2 < - 10

This is a left tailed test.

Since sample standard deviation is known, we would determine the test statistic by using the t test. The formula is

(x1 - x2)/√(s1²/n1 + s2²/n2)

From the information given,

x1 = 115.6

x2 = 129.3

s1 = 5.04

s2 = 5.32

n1 = 8

n2 = 8

t = (115.6 - 129.3)/√(5.04²/8 + 5.32²/8)

t = - 2.041

Test statistic = - 2.04

The formula for determining the degree of freedom is

df = [s1²/n1 + s2²/n2]²/(1/n1 - 1)(s1²/n1)² + (1/n2 - 1)(s2²/n2)²

df = [5.04²/8 + 5.32²/8]²/[(1/8 - 1)(5.04²/8)² + (1/8 - 1)(5.32²/8)²] = 45.064369/3.22827484

df = 14

We would determine the probability value from the t test calculator. It becomes

p value = 0.030

Since alpha, 0.01 < the p value, 0.03, then we would fail to reject the null hypothesis.

. If α and β are the roots of
2x^2+7x-9=0 then find the equation whose roots are
α/β ,β/α

Answers

Answer:

[tex]18x^2+85x+18 = 0[/tex]

Step-by-step explanation:

Given Equation is

=> [tex]2x^2+7x-9=0[/tex]

Comparing it with [tex]ax^2+bx+c = 0[/tex], we get

=> a = 2, b = 7 and c = -9

So,

Sum of roots = α+β = [tex]-\frac{b}{a}[/tex]

α+β = -7/2

Product of roots = αβ = c/a

αβ = -9/2

Now, Finding the equation whose roots are:

α/β ,β/α

Sum of Roots = [tex]\frac{\alpha }{\beta } + \frac{\beta }{\alpha }[/tex]

Sum of Roots = [tex]\frac{\alpha^2+\beta^2 }{\alpha \beta }[/tex]

Sum of Roots = [tex]\frac{(\alpha+\beta )^2-2\alpha\beta }{\alpha\beta }[/tex]

Sum of roots = [tex](\frac{-7}{2} )^2-2(\frac{-9}{2} ) / \frac{-9}{2}[/tex]

Sum of roots = [tex]\frac{49}{4} + 9 /\frac{-9}{2}[/tex]

Sum of Roots = [tex]\frac{49+36}{4} / \frac{-9}{2}[/tex]

Sum of roots = [tex]\frac{85}{4} * \frac{2}{-9}[/tex]

Sum of roots = S = [tex]-\frac{85}{18}[/tex]

Product of Roots = [tex]\frac{\alpha }{\beta } \frac{\beta }{\alpha }[/tex]

Product of Roots = P = 1

The Quadratic Equation is:

=> [tex]x^2-Sx+P = 0[/tex]

=> [tex]x^2 - (-\frac{85}{18} )x+1 = 0[/tex]

=> [tex]x^2 + \frac{85}{18}x + 1 = 0[/tex]

=> [tex]18x^2+85x+18 = 0[/tex]

This is the required quadratic equation.

Answer:

α/β= -2/9      β/α=-4.5

Step-by-step explanation:

So we have quadratic equation  2x^2+7x-9=0

Lets fin the roots  using the equation's  discriminant:

D=b^2-4*a*c

a=2 (coef at x^2)   b=7(coef at x)  c=-9

D= 49+4*2*9=121

sqrt(D)=11

So x1= (-b+sqrt(D))/(2*a)

x1=(-7+11)/4=1   so   α=1

x2=(-7-11)/4=-4.5    so  β=-4.5

=>α/β= -2/9       => β/α=-4.5

A group of 20 people were asked to remember as many items as possible from a list before and after being taught a memory device. Researchers want to see if there is a significant difference in the amount of items that people are able to remember before and after being taught the memory device. They also want to determine whether or not men and women perform differently on the memory test. They choose α = 0.05 level to test their results. Use the provided data to run a Two-way ANOVA with replication.


A B C
Before After
Male 5 7
4 5
7 8
7 8
7 8
7 8
5 6
7 7
6 7
Female 5 8
5 6
8 8
7 7
6 6
8 9
8 8
6 6
7 6
8 8

Answers

Answer:

1. There is no difference in amount of items that people are able to remember before and after being taught the memory device.

2. There is no difference between performance of men and women on memory test.

Step-by-step explanation:

Test 1:

The hypothesis for the two-way ANOVA test can be defined as follows:

H₀: There is no difference in amount of items that people are able to remember before and after being taught the memory device.

Hₐ: There is difference in amount of items that people are able to remember before and after being taught the memory device.

Use MS-Excel to perform the two-way ANOVA text.

Go to > Data > Data Analysis > Anova: Two-way with replication  

A dialog box will open.

Input Range: select all data

Rows per sample= 10

Alpha =0.05

Click OK

The ANOVA output is attaches below.

Consider the Columns data:

The p-value is 0.199.

p-value > 0.05

The null hypothesis will not be rejected.

Conclusion:

There is no difference in amount of items that people are able to remember before and after being taught the memory device.

Test 2:

The hypothesis  to determine whether or not men and women perform differently on the memory test is as follows:

H₀: There is no difference between performance of men and women on memory test.

Hₐ: There is a difference between performance of men and women on memory test.

Consider the Sample data:

The p-value is 0.075.

p-value > 0.05

The null hypothesis will not be rejected.

Conclusion:

There is no difference between performance of men and women on memory test.

The monthly profit for a company that makes decorative picture frames depends on the price per frame. The company determines that the profit is approximated by f(p)= -80p + 3440p -36,000, where p is the price per frame and f(p) is the monthly profit based on that price.

Requried:
a. Find the price that generates the maximum profit.
b. Find the maximum profit.
c. Find the price(s) that would enable the company to break even.

Answers

Answer:

a. $21.50

b. $980

c. $25 and $18

Step-by-step explanation:

a. The price that generates the maximum profit is

In this question we use the vertex formula i.e shown below:

[tex](-\frac{b}{2a}, f(-\frac{b}{2a} ))\\\\[/tex]

where a = -80

b = 3440

c = 36000

hence,

P-coordinate is

[tex](-\frac{b}{2a}, (-\frac{3440}{2\times -80} ))\\\\[/tex]

[tex]= \frac{3440}{160}[/tex]

= $21.5

b. Now The maximum profit could be determined by the following equation

[tex]f(p) = 80p^2 + 3440p - 36000\\\\f($21.5) = -80(21.5)^2 + 3440(21.5) - 36000\\\\[/tex]

= $980

c. The price that would enable the company to break even that is

f(p) = 0

[tex]f(p) = -80p^2 + 3440p - 36000\\\\-80p^2 + 3440p - 36000 = 0\\\\p^2 -43p + 450 = 0\\\\p^2 - 25p - 18p + 450p = 0\\\\p(p - 25) - 18(p-25) = 0\\\\(p - 25) (p - 18) = 0[/tex]

By applying the factoring by -50 and then divided it by -80 and after that we split middle value and at last factors could come

(p - 25) = 0 or (p - 18) = 0

so we can write in this form as well which is

p = 25 or p = 18

Therefore the correct answer is $25 and $18

2-x=-3(x+4)+6 please help

Answers

Answer:

2-x=-3x-12+6

2-x=-3x-6

8=-3x+x

8=-2x

x=-4

hope it's clear

mark me as brainliest

Answer:

X = -4

Option B is the correct option.

Step by step explanation

2 - x = -3 ( x + 4) +6

Distribute -3 through the paranthesis

2 - x = - 3x - 12 + 6

Calculate

2 - x = - 3x - 6

Move variable to LHS and change its sign

2 - x + 3x = -6

Move constant to R.H.S and change its sign

- x + 3x = -6 - 2

Collect like terms and simplify

2x = -8

Divide both side by 2

2x/2 = -8/2

Calculate

X = -4

Hope this helps....

Good luck on your assignment..

A sphere and a cylinder have the same radius and height. The volume of the cylinder is 30 meters cubed A sphere with height h and radius r. A cylinder with height h and radius r. What is the volume of the sphere? 10 meters cubed 20 meters cubed 30 meters cubed 40 meters cubed

Answers

Answer:

30 m^3

Step-by-step explanation:

Answer:

B. 20m3

Step-by-step explanation:

i dont know if its correct, hope it is tho

Hi, can someone help me on this. I'm stuck --

Answers

Answer:

a) Fx=-5N  Fy=-5*sqrt(3) N   b) Fx= 5*sqrt(3) N    Fy=-5N

c) Fx=-5*sqrt(2) N    Fy=-5*sqrt(2)   N

Step-by-step explanation:

The arrow's F ( weight) component on axle x  is Fx= F*sinA  and on axle y is

Fy=F*cosA

a) The x component and y component both are opposite directed to axle x and axle y accordingly.  So both components are negative.

So Fx = - 10*sin(30)= -5 N      Fy= -10*cos(30)= -10*sqrt(3)/2= -5*sqrt (3) N

b) Now the x component  is co directed to axle x , and y component is opposite directed to axle y.

So x component is positive and y components is negative

So Fx = 10*sin(60)= 5*sqrt(3) N       Fy= -10*cos(60)= -10*1/2= -5 N

c)The x component and y component both are opposite directed to axle x and axle y accordingly.  So both components are negative.

So Fx = - 10*sin(45)= -5*sqrt(2)  N    

 Fy= -10*cos(45)= -10*sqrt(2)/2= -5*sqrt (2) N

On a piece of paper, graph y + 2 ≤ -2/3x +4. Then determine which answer choice matches the graph you drew.

Answers

Answer:

  B

Step-by-step explanation:

You only need to look at the comparison symbol (≤) to determine the correct graph. It tells you the shading is below the boundary line, and the boundary line is included in the solution region (a solid line).

The shading is below the line because y-values are less than (or equal to) values on the line.

Choice B matches the attached graph.

Answer:

it is graph b

Step-by-step explanation:

Other Questions
Hitler's hatred of the Jews began with what assumption Which effect is most likely to occur as a result of clear-cutting?extinction of speciesdeath of organismsspeciationglobal warming In the diagram below, AB is parallel to CD. What is the value of x? If you guys watch The Black Butler on Netflix. Do you have any ships on there? If so what are they? Senora Beltran, aqui estan las latas. Por favor, (ponerlas) en la basura explain how to solve 2x+9=15 A solid conducting sphere is placed in an external uniform electric field. With regard to the electric field on the sphere's interior, which statement is correct In the hydrogenation of oils the catalyst used is: A. PtB. Ni C. FeD. V2O5 what does the term implicit mean?a. used in literal or exact wayb. suggest but not clearly expressedc. leaving no question or ambiguity to meaningd. providing dictionary definition for the word Gwen is travelling to another country. She flies for 3 hours at an average speed of 625 km/h on one plane. She then flies for 4 hours 15 minutes at an average speed of 880 km/h on a second plane. What is the total distance, in km, she travelled by plane? The first glycolysis rate-limiting enzyme is under various allosteric regulations. This protein is nearly inactive because of inhibition by ( ) under physiological conditions. The activity is restored by ( ), its most potent allosteric activator.a. AMP :::: citrateb. AMP :::: Fru-2,6-P2c. ATP :::: citrated. ATP :::: Fru-2,6-P2e. All of these Proteins are complex molecules. True or False Ronald ran 6 laps in 12 minutes. Which ratio can be used to find the number of laps that Ronald ran in 1 minute? What are good metaphors and similes for broken shards of glass scattered on the floor? ANSWERFind the scale factor of the dilation shown in the diagram. 1/2 1/3 2 3 Muons are elementary particles that are formed high in the atmosphere by the interactions of cosmic rays with atomic nuclei. Muons are radioactive and have average lifetimes of about two-millionths of a second. Even though they travel at almost the speed of light, they have so far to travel through the atmosphere that very few should be detected at sea level - at least according to classical physics. Laboratory measurements, however, show that muons in great number do reach the earth's surface. What is the explanation? solve 2x - 1/5 + 2x - 19.6 A professional football prospect runs 40 yards dash in 5 seconds. What is the player's average speed over this distance Find a solution to the linear equation y=12x24 can someone please help me