Find \( \frac{d y}{d x} \) by Implicit differentiation. \( \tan 2 x=x^{3} e^{2 y}+\ln y \)

Answers

Answer 1

The required solution is,

[tex]\[\frac{d y}{d x}=\frac{2 \sec ^{2} 2 x-x^{3} (2 e^{2 y})}{3 x^{2} e^{2 y}}-\frac{1}{y} \frac{d x}{d y}\][/tex]

The given function is,

[tex]\[ \tan 2 x=x^{3} e^{2 y}+\ln y \][/tex]

In order to find [tex]\(\frac{d y}{d x}\)[/tex]

by Implicit differentiation, we need to differentiate both sides with respect to x, then use the Chain Rule where required. Let's differentiate the given function with respect to x,

[tex]\[\frac{d}{d x}\tan 2 x=\frac{d}{d x}(x^{3} e^{2 y}+\ln y)\][/tex]

By Chain rule, we get

[tex]\[2 \sec ^{2} 2 x=3 x^{2} e^{2 y} \frac{d x}{d y}+x^{3} (2 e^{2 y})+ \frac{1}{y} \frac{d y}{d x}\][/tex]

Let's arrange the terms in terms of

[tex]\(\frac{d y}{d x}\),\[\frac{d y}{d x}=\frac{2 \sec ^{2} 2 x-x^{3} (2 e^{2 y})}{3 x^{2} e^{2 y}}-\frac{1}{y} \frac{d x}{d y}\][/tex]

Hence, the required solution is,

[tex]\[\frac{d y}{d x}=\frac{2 \sec ^{2} 2 x-x^{3} (2 e^{2 y})}{3 x^{2} e^{2 y}}-\frac{1}{y} \frac{d x}{d y}\][/tex]

In order to find[tex]\(\frac{d y}{d x}\)[/tex]

by Implicit differentiation, we need to differentiate both sides with respect to x, then use the Chain Rule where required.

Let's differentiate the given function with respect to x,

[tex]\[\frac{d}{d x}\tan 2 x=\frac{d}{d x}(x^{3} e^{2 y}+\ln y)\][/tex]

By the Chain rule, we get

[tex]\[2 \sec ^{2} 2 x=3 x^{2} e^{2 y} \frac{d x}{d y}+x^{3} (2 e^{2 y})+ \frac{1}{y} \frac{d y}{d x}\][/tex]

Let's arrange the terms in terms of

[tex]\(\frac{d y}{d x}\),\[\frac{d y}{d x}=\frac{2 \sec ^{2} 2 x-x^{3} (2 e^{2 y})}{3 x^{2} e^{2 y}}-\frac{1}{y} \frac{d x}{d y}\]\\[/tex]

Hence, the required solution is, [tex]\[\frac{d y}{d x}=\frac{2 \sec ^{2} 2 x-x^{3} (2 e^{2 y})}{3 x^{2} e^{2 y}}-\frac{1}{y} \frac{d x}{d y}\][/tex]

To know more about solution visit:

https://brainly.com/question/30133552

#SPJ11


Related Questions

Determine all the singular points of the given differential equation. (θ^2 −11)y ′′ +8y +(sinθ)y=0 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The singular points are all θ≤ B. The singular points are all θ≥ and θ= (Use a comma to separate answers as needed.) The singular point(s) is/are θ= (Use a comma to separate answers as needed.) D. The singular points are all θ≥ E. The singular points are all θ≤ and θ= (Use a comma to separate answers as needed.) F. There are no singular points.

Answers

The correct choice is:

D. The singular point(s) is/are θ = √11, -∞

To determine the singular points of the given differential equation, we need to consider the values of θ where the coefficient of the highest derivative term, (θ² - 11), becomes zero.

Solving θ² - 11 = 0 for θ, we have:

θ² = 11

θ = ±√11

Therefore, the singular points are θ = √11 and θ = -√11.

The correct choice is:

D. The singular points are all θ≥ E

Explanation: The singular points are the values of θ where the coefficient of the highest derivative term becomes zero. In this case, the coefficient is (θ² - 11), which becomes zero at θ = √11 and θ = -√11. Therefore, the singular points are all θ greater than or equal to (√11, -∞).

Learn more about differential equation here:

https://brainly.com/question/32538700

#SPJ11

Complete (a) and (b). You can verify your conclusions by graphing the functions with a graphing calculator. Ilm X- (a) Use analytic methods to evaluate the limit. (If the limit is infinite, enter '' or 'co', as appropriate. If the limit does not otherwise exist, enter DNE.) X (b) What does the result from part (a) tell you about horizontal asymptotes? The result indicates that there is a horizontal asymptote. The result does not yleld any Information regarding horizontal asymptotes. The result indicates that there are no horizontal asymptotes. x Need Help? Read it 7. (-/1 Points] DETAILS HARMATHAP12 9.2.029. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHE Complete (a) and (b). You can verify your conclusions by graphing the functions with a graphing calculator. 11x3 - 4x lim x - 5x3 - 2 (a) Use analytic methods to evaluate the limit. (If the limit is infinite, enter 'o' or '-o', as appropriate. If the limit does not otherwise exist, enter DNE.)

Answers

We are asked to evaluate the limit of the given expression as x approaches infinity. Using analytic methods, we will simplify the expression and determine the limit value.

To evaluate the limit of the expression \[tex](\lim_{{x \to \infty}} \frac{{11x^3 - 4x}}{{5x^3 - 2}}\)[/tex], we can focus on the highest power of x in the numerator and denominator. Dividing both the numerator and denominator by [tex]\(x^3\)[/tex], we get:

[tex]\(\lim_{{x \to \infty}} \frac{{11 - \frac{4}{x^2}}}{{5 - \frac{2}{x^3}}}\)[/tex]

As x approaches infinity, the terms [tex]\(\frac{4}{x^2}\) and \(\frac{2}{x^3}\) approach[/tex] zero, since any constant divided by an infinitely large value becomes negligible.

Therefore, the limit becomes:

[tex]\(\frac{{11 - 0}}{{5 - 0}} = \frac{{11}}{{5}}\)[/tex]

Hence, the limit of the given expression as x approaches infinity is[tex]\(\frac{{11}}{{5}}\)[/tex].

Now let's move on to part (b), which asks about the implications of the result from part (a) on horizontal asymptotes. The result [tex]\(\frac{{11}}{{5}}\)[/tex]indicates that there is a horizontal asymptote at y = [tex]\(\frac{{11}}{{5}}\)[/tex]. This means that as x approaches infinity or negative infinity, the function tends to approach the horizontal line y = [tex]\(\frac{{11}}{{5}}\)[/tex]. The presence of a horizontal asymptote can provide valuable information about the long-term behavior of the function and helps in understanding its overall shape and range of values.

Learn more about limit here:

https://brainly.com/question/12211820

#SPJ11

Find the length x to the nearest whole number. 60⁰ 30° 400 X≈ (Do not round until the final answer. Then round to the nearest whole number.)

Answers

The length x to the nearest whole number is 462

Finding the length x to the nearest whole number

from the question, we have the following parameters that can be used in our computation:

The triangle (see attachment)

Represent the small distance with h

So, we have

tan(60) = x/h

tan(30) = x/(h + 400)

Make h the subjects

h = x/tan(60)

h = x/tan(30) - 400

So, we have

x/tan(30) - 400 = x/tan(60)

Next, we have

x/tan(30) - x/tan(60) = 400

This gives

x = 400 * (1/tan(30) - 1/tan(60))

Evaluate

x = 462

Hence, the length x is 462

Read more about triangles at

https://brainly.com/question/32122930

#SPJ4

Is it 14? I am trying to help my daughter with her
math and unfortunately my understanding of concepts isn't the best.
Thank you in advance.
10 Kayla keeps track of how many minutes it takes her to walk home from school every day. Her recorded times for the past nine school-days are shown below. 22, 14, 23, 20, 19, 18, 17, 26, 16 What is t

Answers

According to the information we can infer that the range of the recorded times is 12 minutes.

How to calculate the range?

To calculate the range, we have to perform the following operation. In this case we have to subtract the smallest value from the largest value in the data set. In this case, the smallest value is 14 minutes and the largest value is 26 minutes. Here is the operation:

Largest value - smallest value = range

26 - 14 = 12 minutes

According to the above we can infer that the correct option is C. 12 minutes (range)

Note: This question is incomplete. Here is the complete information:

10 Kayla keeps track of how many minutes it takes her to walk home from school every day. Her recorded times for the past nine school-days are shown below:

22, 14, 23, 20, 19, 18, 17, 26, 16

What is the range of these values?

A. 14

B. 19

C. 12

D. 26

Learn more about range in: https://brainly.com/question/29204101
#SPJ4

The population of a certain inner-city area is estimated to be declining according to the model P(t) = 333,000e-0.0221, where t is the number of years from the present. What does this model predict the population will be in 12 years? Round to the nearest person. Answer How to enter your answer (opens in new window) people Keypad Keyboard Shortcuts

Answers

Based on the given model, which estimates the population of a certain inner-city area to be declining, the predicted population after 12 years is approximately 221,367 people.

This prediction is obtained by substituting t=12 into the given model P(t) = 333,000e^(-0.0221t). The model assumes an exponential decay in population, with a decay rate of 0.0221 per year.

The predicted decline in population over the next 12 years highlights the need for policymakers and urban planners to develop strategies to address this issue. A declining population can have several negative impacts on an area, such as reduced economic activity, decreased tax revenue, and a dwindling workforce. Such effects can further exacerbate the population decline, creating a vicious cycle that can be difficult to break.

To address the issue of declining population in inner-city areas, policymakers could focus on initiatives that promote economic growth, affordable housing, and better access to healthcare and education. Additionally, they could consider developing policies that encourage immigration or incentivize families to move into the area. By taking proactive steps to address the issue of declining population, policymakers can help ensure that these areas remain vibrant and sustainable communities.

Learn more about population here:

https://brainly.com/question/31598322

#SPJ11

If you are not in the tennis tournament, you will not meet Ed. If you aren't in the tennis tournament or if you aren't in the play, you won't meet Kelly. You meet Kelly or you meet Ed. It is false that you are in the tennis tournament and in the play. Therefore, you are in the tennis tournament.

Answers

it can be concluded that the person is indeed in the tennis tournament.

The statements provided establish a logical chain of events and conditions.

"If you are not in the tennis tournament, you will not meet Ed": This means that meeting Ed is contingent upon being in the tennis tournament.

"If you aren't in the tennis tournament or if you aren't in the play, you won't meet Kelly": This implies that meeting Kelly is dependent on either being in the tennis tournament or being in the play.

"You meet Kelly or you meet Ed": This indicates that meeting either Kelly or Ed is a possibility.

"It is false that you are in the tennis tournament and in the play": This statement negates the possibility of being in both the tennis tournament and the play simultaneously.

Learn more about events here : brainly.com/question/15292853

#SPJ11

In how many ways can a 6 -card hand be dealt from a standard deck of 52 cards (a) if all 6 cards are red cards? (b) if all 6 cards are face cards? (c) if at least 4 cards are face cards?

Answers

(a) If all 6 cards are red cards, there are 1,296 possible ways. (b) If all 6 cards are face cards, there are 2,280 possible ways. (c) If at least 4 cards are face cards, there are 1,864,544 possible ways.

(a) To find the number of ways a 6-card hand can be dealt if all 6 cards are red cards, we need to consider that there are 26 red cards in a standard deck of 52 cards. We choose 6 cards from the 26 red cards, which can be done in [tex]\(\binom{26}{6}\)[/tex] ways. Evaluating this expression gives us 1,296 possible ways.

(b) If all 6 cards are face cards, we consider that there are 12 face cards (3 face cards for each suit). We choose 6 cards from the 12 face cards, which can be done in [tex]\(\binom{12}{6}\)[/tex] ways. Evaluating this expression gives us 2,280 possible ways.

(c) To find the number of ways if at least 4 cards are face cards, we consider different scenarios:

  1. If exactly 4 cards are face cards: We choose 4 face cards from the 12 available, which can be done in [tex]\(\binom{12}{4}\)[/tex] ways. The remaining 2 cards can be chosen from the remaining non-face cards in [tex]\(\binom{40}{2}\)[/tex] ways. Multiplying these expressions gives us a number of ways for this scenario.

  2. If exactly 5 cards are face cards: We choose 5 face cards from the 12 available, which can be done in [tex]\(\binom{12}{5}\)[/tex] ways. The remaining 1 card can be chosen from the remaining non-face cards in [tex]\(\binom{40}{1}\)[/tex] ways.

  3. If all 6 cards are face cards: We choose all 6 face cards from the 12 available, which can be done in [tex]\(\binom{12}{6}\)[/tex] ways.

  We sum up the number of ways from each scenario to find the total number of ways if at least 4 cards are face cards, which equals 1,864,544 possible ways.

To learn more about cards visit:

brainly.com/question/30100978

#SPJ11

8. Isf(x)= 3x2-8x-3 x-3 equivalent to g(x)=3x+1? Why or why not? (3x+1)(x-2) (3x+1)(6)

Answers

Isf(x) = 3x² - 8x - 3 / x - 3 and g(x) = 3x + 1 are not equivalent. This is because the roots of the two functions are not the same.

Given that Isf(x) = 3x² - 8x - 3 / x - 3 and g(x) = 3x + 1, we are required to determine whether they are equivalent or not.

To check for equivalence between the two functions, we substitute the value of x in Isf(x) with g(x) as shown below;

Isf(g(x)) = 3(g(x))² - 8(g(x)) - 3 / g(x) - 3

= 3(3x + 1)² - 8(3x + 1) - 3 / (3x + 1) - 3

= 3(9x² + 6x + 1) - 24x - 5 / 3x - 2

= 27x² + 18x + 3 - 24x - 5 / 3x - 2

= 27x² - 6x - 2 / 3x - 2

Equating Isf(g(x)) with g(x), we have; Isf(g(x)) = g(x)27x² - 6x - 2 / 3x - 2 = 3x + 1. Multiplying both sides by 3x - 2, we have;27x² - 6x - 2 = (3x + 1)(3x - 2)27x² - 6x - 2 = 9x² - 3x - 2+ 18x² - 3x - 2 = 0.

Simplifying, we have;45x² - 6x - 4 = 0. Dividing the above equation by 3, we have; 15x² - 2x - 4/3 = 0. Using the quadratic formula, we obtain;x = (-(-2) ± √((-2)² - 4(15)(-4/3))) / (2(15))x = (2 ± √148) / 30x = (1 ± √37) / 15

The roots of the two functions Isf(x) and g(x) are not the same. Therefore, Isf(x) is not equivalent to g(x).

For more questions on quadratic formula, click on:

https://brainly.com/question/30487356

#SPJ8

To attend​ school, Arianna deposits ​$280at the end of every quarter for five and​ one-half years. What is the accumulated value of the deposits if interest is 2%compounded anually ? the accumulated value is ?

Answers

We find that the accumulated value of the deposits is approximately $3,183.67.

Arianna deposits $280 at the end of every quarter for five and a half years, with an annual interest rate of 2% compounded annually. The accumulated value of the deposits can be calculated using the formula for compound interest.

To calculate the accumulated value of the deposits, we can use the formula for compound interest:

[tex]A = P(1 + r/n)^{(nt)[/tex]

Where:

A is the accumulated value,

P is the principal amount (the deposit amount),

r is the annual interest rate (as a decimal),

n is the number of times the interest is compounded per year, and

t is the number of years.

In this case, Arianna deposits $280 at the end of every quarter, so there are four compounding periods per year (n = 4). The interest rate is 2% per year (r = 0.02). The total time period is five and a half years, which is equivalent to 5.5 years (t = 5.5).

Plugging in these values into the compound interest formula, we have:

A = $280 *[tex](1 + 0.02/4)^{(4 * 5.5)[/tex]

Calculating this expression, we find that the accumulated value of the deposits is approximately $3,183.67.

To learn more about accumulated value visit:

brainly.com/question/30964852

#SPJ11

help if you can asap pls!!!!

Answers

Answer:  x= 7

Step-by-step explanation:

Because they said the middle bisects both sides.  There is a rule that says that line is half as big as the other line.

RS = 1/2 (UW)                               >Substitute

x + 4 = 1/2 ( -6 + 4x)                     > distribut 1/2

x + 4 =  -3 + 2x                             >Bring like terms to 1 side

7 = x

Let n ∈ Z. Prove n2 is congruent to x (mod 7) where x
∈ {0, 1, 2, 4}.

Answers

There exists an integer \(k\) such that \(n^2 = 7k + 4\) for all possible remainders of \(n\) when divided by 7. The existence of an integer \(k\) that satisfies the congruence \(n^2 \equiv x\) (mod 7) for \(x \in \{0, 1, 2, 4\}\

To prove that \(n^2\) is congruent to \(x\) (mod 7), where \(x\) belongs to the set \(\{0, 1, 2, 4\}\), we need to show that there exists an integer \(k\) such that \(n^2 = 7k + x\).

We will consider the cases for \(x = 0, 1, 2, 4\) separately:

1. For \(x = 0\):

  We need to show that there exists an integer \(k\) such that \(n^2 = 7k + 0\).

  Since any integer squared is still an integer, we can express \(n\) as \(n = 7m\), where \(m\) is an integer.

  Substituting this into the equation \(n^2 = 7k\), we get \((7m)^2 = 49m^2 = 7(7m^2)\).

  Thus, we can take \(k = 7m^2\), which is an integer, satisfying the congruence.

2. For \(x = 1\):

  We need to show that there exists an integer \(k\) such that \(n^2 = 7k + 1\).

  Let's consider the possible remainders of \(n\) when divided by 7:

  - If \(n\) is congruent to 0 (mod 7), then \(n\) can be expressed as \(n = 7m\), where \(m\) is an integer.

    Substituting this into the equation \(n^2 = 7k + 1\), we get \((7m)^2 = 49m^2 = 7(7m^2) + 1\).

    Thus, we can take \(k = 7m^2\), which is an integer, satisfying the congruence.

  - If \(n\) is congruent to 1 (mod 7), then \(n\) can be expressed as \(n = 7m + 1\), where \(m\) is an integer.

    Substituting this into the equation \(n^2 = 7k + 1\), we get \((7m + 1)^2 = 49m^2 + 14m + 1 = 7(7m^2 + 2m) + 1\).

    Thus, we can take \(k = 7m^2 + 2m\), which is an integer, satisfying the congruence.

  - If \(n\) is congruent to 2, 3, 4, 5, or 6 (mod 7), we can follow a similar reasoning as the case for \(n \equiv 1\) to show that the congruence holds.

3. For \(x = 2\):

  Following a similar approach as in the previous cases, we can show that there exists an integer \(k\) such that \(n^2 = 7k + 2\) for all possible remainders of \(n\) when divided by 7.

4. For \(x = 4\):

  Similarly, we can show that there exists an integer \(k\) such that \(n^2 = 7k + 4\) for all possible remainders of \(n\) when divided by 7.

In each case, we have demonstrated the existence of an integer \(k\) that satisfies the congruence \(n^2 \equiv x\) (mod 7) for \(x \in \{0, 1, 2, 4\}\

Learn more about integer here

https://brainly.com/question/31048829

#SPJ11

Animals in an experiment are to be kept under a strict diet. Each animal should receive 30 grams of protein and 8 grams of fat. The laboratory technician is able to purchase two food mixes: Mix A has 10% protein and 6% fat; mix B has 40% protein and 4% fat. How many grams of each mix should be used to obtain the right diet for one animal? One animal's diet should consist of grams of Mix A. One animal's diet should consist of grams of Mix B.

Answers

Given that each animal should receive 30 grams of protein and 8 grams of fat. Also, the laboratory technician can purchase two food mixes :Mix A has 10% protein and 6% fat Mix B has 40% protein and 4% fat.

To find the number of grams of each mix should be used to obtain the right diet for one animal, we can solve the system of equations: x+y=1....(1)0.1x+0.4y=30....(2)Let's solve the equation (1) for x:  x=1-ySubstitute this value of x in equation[tex](2): 0.1(1-y)+0.4y=300.1-0.1y+0.4y=30[/tex]Simplify the equation: [tex]0.3y=20y=20/0.3=66.67[/tex]grams (approximately), the number of grams of Mix A should be: 1-0.6667 = 0.3333 grams (approximately)Hence, the animal's diet should consist of 66.67 grams of Mix B and 0.3333 grams of Mix A.

To know more about technician visit:

https://brainly.com/question/32830409

#SPJ11

Derive the conclusion of the following arguments.
1. (∀x)(Ox ⊃ Qx)
2. (∀x)(Ox ∨ Px)
3. (∃x)(Nx • ~Qx) / (∃x)(Nx • Px)

Answers

The conclusion of the given arguments is: (∃x)(Nx • Px).

The conclusion of the given arguments can be derived using the rules of predicate logic.

From premise 1, we know that for all x, if x is O then x is Q.

From premise 2, we know that for all x, either x is O or x is P.

From premise 3, we know that there exists an x such that x is N and not Q.

To derive the conclusion, we need to use existential instantiation to introduce a new constant symbol (let's say 'a') to represent the object that satisfies the condition in premise 3. So, we have:

4. Na • ~Qa (from premise 3)

Now, we can use universal instantiation to substitute 'a' for 'x' in premises 1 and 2:

5. (Oa ⊃ Qa) (from premise 1 by UI with a)

6. (Oa ∨ Pa) (from premise 2 by UI with a)

Next, we can use disjunctive syllogism on premises 4 and 6 to eliminate the disjunction:

7. Pa • Na (from premises 4 and 6 by DS)

Finally, we can use existential generalization to conclude that there exists an object that satisfies the condition in the conclusion:

8. (∃x)(Nx • Px) (from line 7 by EG)

Therefore, the conclusion of the given arguments is: (∃x)(Nx • Px).

To know more about existential instantiation refer here:

https://brainly.com/question/31421984#

#SPJ11

Find a polynomial p(x) which has real roots at −2,1, and 7 and
has the following end behavior:
limx→[infinity]p(x) = −[infinity],
limx→-[infinity]p(x) = −[infinity]

Answers

A polynomial function is a mathematical expression with more than two algebraic terms, especially the sum of many products of variables that are raised to powers.

A polynomial function can be written in the formf(x)=anxn+an-1xn-1+...+a1x+a0,where n is a nonnegative integer and an, an−1, an−2, …, a2, a1, and a0 are constants that are added together to obtain the polynomial.

The end behavior of a polynomial is defined as the behavior of the graph of p(x) for x that are very large in magnitude in the positive or negative direction.

If the leading coefficient of a polynomial function is positive and the degree of the function is even, then the end behavior is the same as that of y=x2. If the leading coefficient of a polynomial function is negative and the degree of the function is even,

then the end behavior is the same as that of y=−x2.To obtain a polynomial function that has the roots of −2, 1, and 7 and end behavior as limx→[infinity]p(x) = −[infinity] and limx→−[infinity]p(x) = −[infinity], we can consider the following steps:First, we must determine the degree of the polynomial.

Since it has three roots, the degree of the polynomial must be 3.If we want the function to have negative infinity end behavior on both sides, the leading coefficient of the polynomial must be negative.To obtain a polynomial that passes through the three roots, we can use the factored form of the polynomial.f(x)=(x+2)(x−1)(x−7)

If we multiply out the three factors in the factored form, we obtain a cubic polynomial in standard form.f(x)=x3−6x2−11x+42

Therefore, the polynomial function that has real roots at −2, 1, and 7 and has the end behavior as limx→[infinity]p(x) = −[infinity] and limx→−[infinity]p(x) = −[infinity] is f(x)=x3−6x2−11x+42.

To know more about real roots, click here

https://brainly.com/question/21664715

#SPJ11

5. Water from an open tank elevated 5m above ground is allowed to flow down to a pump. From the pump, it then flows horizontally through 105m of piping, and out into the atmosphere. If there are 2 standard elbows and one wide open gate valve in the discharge line, determine a) all friction losses in the system and b) the power requirement of the pump if it is to maintain 0.8 cubic meters per minute of flow. Assume a pump efficiency of 75%, and that friction is negligible in the pump suction line

Answers

In fluid dynamics, understanding the flow of water in a system and calculating the associated losses and power requirements is crucial. In this scenario, we have an open tank elevated above the ground, which allows water to flow down to a pump. The water then travels through piping, including elbows and a gate valve, before being discharged into the atmosphere. Our goal is to determine the friction losses in the system and calculate the power requirement of the pump to maintain a specific flow rate.

Step 1: Calculate the friction losses in the system

Friction losses occur due to the resistance encountered by the water as it flows through the piping. The losses can be calculated using the Darcy-Weisbach equation, which relates the friction factor, pipe length, diameter, and velocity of the fluid.

a) Determine the friction losses in the straight pipe:

The friction loss in a straight pipe can be calculated using the Darcy-Weisbach equation:

∆P = f * (L/D) * (V²/2g)

Where:

∆P is the pressure drop due to friction,

f is the friction factor,

L is the length of the pipe,

D is the diameter of the pipe,

V is the velocity of the fluid, and

g is the acceleration due to gravity.

Since friction is negligible in the pump suction line, we only need to consider the losses in the horizontal section of the piping.

Given:

Length of piping (L) = 105m

Velocity of fluid (V) = 0.8 m³/min (We'll convert it to m/s later)

Diameter of the pipe can be assumed or provided in the problem statement. If it's not provided, we'll need to make an assumption.

b) Determine the friction losses in the elbows and the gate valve:

To calculate the friction losses in fittings such as elbows and gate valves, we need to consider the equivalent length of straight pipe that would cause the same pressure drop.

For each standard elbow, we can assume an equivalent length of 30 pipe diameters (30D).

For the wide open gate valve, an equivalent length of 10 pipe diameters (10D) can be assumed.

We'll need to know the diameter of the pipe to calculate the friction losses in fittings.

Step 2: Calculate the power requirement of the pump

The power requirement of the pump can be calculated using the following formula:

Power = (Flow rate * Head * Density * g) / (Efficiency * 60)

Where:

Flow rate is the desired flow rate (0.8 cubic meters per minute, which we'll convert to m³/s later),

Head is the total head of the system (sum of the elevation head and the losses),

Density is the density of water,

g is the acceleration due to gravity, and

Efficiency is the efficiency of the pump (given as 75%).

To calculate the total head, we need to consider the elevation difference and the losses in the system.

Given:

Elevation difference = 5m (height of the tank)

Density of water = 1000 kg/m³

Now, let's proceed with the calculations using the provided information.

To know more about Friction here

https://brainly.com/question/28356847

#SPJ4

Hello! Please help me solve these truth tables
Thank you! :)
1) ~P & ~Q
2) P V ( Q & P)
3)~P -> ~Q
4) P <-> (Q -> P)
5) ((P & P) & (P & P)) -> P

Answers

A set of truth tables showing the truth values of each proposition for all possible combinations of truth values for the variables involved.

Here, we have,

To find the truth tables for each proposition, we need to evaluate the truth values of the propositions for all possible combinations of truth (T) and false (F) values for the propositional variables involved (p, q, r). Let's solve each step by step:

Let's start with the first one:

~P & ~Q

P Q ~P ~Q ~P & ~Q

T T F F F

T F F T F

F T T F F

F F T T T

Next, let's solve the truth table for the second expression:

P V (Q & P)

P Q Q & P P V (Q & P)

T T T             T

T F F              T

F T F              F

F F F              F

Moving on to the third expression:

~P -> ~Q

P Q ~P ~Q ~P -> ~Q

T T F F T

T F F T T

F T T F F

F F T T T

Now, let's solve the fourth expression:

P <-> (Q -> P)

P Q Q -> P P <-> (Q -> P)

T T   T            T

T F   T            T

F T   T             F

F F   T             T

Finally, we'll solve the fifth expression:

((P & P) & (P & P)) -> P

P (P & P) ((P & P) & (P & P)) ((P & P) & (P & P)) -> P

T T                      T                           T

F F                       F                   T

Learn more about the truth table at

brainly.com/question/30588184

#SPJ4

Assume the property is located outside the city limits. Calculate the applicable property taxes. a. $3,513 total taxes due. b. $3,713 total taxes due. c. $3,613 total taxes due. d. $3,413 total taxes due.

Answers

The applicable property taxes for a property located outside the city limits are calculated based on the appraised value of the property, which is multiplied by the tax rate. In this case, the applicable property taxes are d. $3,413 total taxes due.

Given that the property is located outside the city limits and you have to calculate the applicable property taxes. The applicable property taxes in this case are d. $3,413 total taxes due.

It is given that the property is located outside the city limits. In such cases, it is the county tax assessor that assesses the taxes. The property tax is calculated based on the appraised value of the property, which is multiplied by the tax rate.

The appraised value of the property is calculated by the county tax assessor who takes into account the location, size, and condition of the property.

The tax rate varies depending on the location and the type of property.

For properties located outside the city limits, the tax rate is usually lower as compared to the properties located within the city limits. In this case, the applicable property taxes are d. $3,413 total taxes due.

:The applicable property taxes for a property located outside the city limits are calculated based on the appraised value of the property, which is multiplied by the tax rate. In this case, the applicable property taxes are d. $3,413 total taxes due.

To know more about tax rate.visit:

brainly.com/question/30629449

#SPJ11

Listen When an axon is bathed in an isotonic solution of choline chloride, instead of a normal saline (0.9% sodium chloride), what would happen to it when you apply a suprathreshold electrical stimulu

Answers

When an axon is bathed in an isotonic solution of choline chloride instead of normal saline (0.9% sodium chloride), applying a suprathreshold electrical stimulus would result in a reduced or abolished action potential generation.

The normal functioning of an axon relies on the presence of an appropriate extracellular environment, including specific ion concentrations. In a normal saline solution, the axon's resting membrane potential is maintained by the balance of sodium (Na+) and potassium (K+) ions. When a suprathreshold electrical stimulus is applied, the depolarization of the axon triggers the opening of voltage-gated sodium channels, leading to an action potential.

However, when the axon is bathed in an isotonic solution of choline chloride, which lacks sodium ions, the normal ion balance is disrupted. Choline chloride does not provide the necessary sodium ions required for the proper functioning of the voltage-gated sodium channels. As a result, the axon's ability to generate an action potential is significantly impaired or completely abolished.

Without sufficient sodium ions, the depolarization phase of the action potential cannot occur efficiently, hindering the propagation of the electrical signal along the axon. This disruption prevents the generation of a full action potential and consequently limits the axon's ability to transmit signals effectively. In this altered extracellular environment, the absence of sodium ions in choline chloride solution interferes with the axon's normal electrophysiological processes, leading to a diminished or absent response to a suprathreshold electrical stimulus.

Learn more about solution here:

https://brainly.com/question/29009587

#SPJ11

A fish fly density is 2 million insects per acre and is decreasing by one-half (50%) every week. Estimate their density after 3.3 weeks. M The estimated fish fly density after 3.3 weeks is approximately million per acre. (Round to nearest hundredth as needed.)

Answers

The estimated fish fly density after 3.3 weeks is approximately 0.303 million per acre.

We are given that the initial fish fly density is 2 million insects per acre, and it decreases by one-half (50%) every week.

To estimate the fish fly density after 3.3 weeks, we need to determine the number of times the density is halved in 3.3 weeks.

Since there are 7 days in a week, 3.3 weeks is equivalent to 3.3 * 7 = 23.1 days.

We can calculate the number of halvings by dividing the total number of days by 7 (the number of days in a week). In this case, 23.1 days divided by 7 gives approximately 3.3 halvings.

To find the estimated fish fly density after 3.3 weeks, we multiply the initial density by (1/2) raised to the power of the number of halvings. In this case, the calculation would be: 2 million * [tex](1/2)^{3.3}[/tex]

Using a calculator, we find that [tex](1/2)^{3.3}[/tex] is approximately 0.303.

Therefore, the estimated fish fly density after 3.3 weeks is approximately 0.303 million insects per acre, rounded to the nearest hundredth.

To learn more about density visit:

brainly.com/question/29775886

#SPJ11

24. How is the area of two similar triangles related to the length of the sides of triangles? (2 marks)

Answers

The area of two similar triangles is related to the length of the sides of triangles by the square of the ratio of their corresponding sides.

Hence, the  for the above question is explained below. The ratio of the lengths of the corresponding sides of two similar triangles is constant, which is referred to as the scale factor.

When the sides of the triangles are multiplied by a scale factor of k, the corresponding areas of the two triangles are multiplied by a scale factor of k², as seen below. In other words, if the length of the corresponding sides of two similar triangles is 3:4, then their area ratio is 3²:4².

To know more more triangles visit:

https://brainly.com/question/2773823

#SPJ11

Consider this scenario for your initial response:
As a teacher, you wish to engage the children in learning and enjoying math through outdoor play and activities using a playground environment (your current playground or an imagined playground).
Share activity ideas connected to each of the 5 math domains that you can do with children using the outdoor playground environment. You may list different activities for each domain or you may come up with ideas that connect to multiple math domains. For each activity idea, state the associated math domain and list a math related word or phrase that could be used to engage in "math talk" to extend child learning. Examples of math words or phrases include symmetry, cylinder, how many, inch, or make a pattern.

Answers

The following are five activity ideas connected to the 5 math domains that can be done with children using the outdoor playground environment:

1. Numbers and OperationsChildren can create a math equation with numbers using a hopscotch game or math-related story problems.

It can help them develop their counting skills and engage in math talk such as addition, subtraction, multiplication, or division.

2. GeometryChildren can use chalk to draw shapes on the playground or can make shapes using a jump rope, hula hoop, or other materials.

They can discuss symmetry, shape names, edges, vertices, sides, and angles during the activity.

3. MeasurementChildren can measure things using a measuring tape, yardstick, or ruler.

They can measure things like the height of a slide, the length of a balance beam, or the distance they jump.

During the activity, they can learn words like length, height, weight, capacity, time, etc.

4. AlgebraChildren can play outdoor games that help them develop algebraic reasoning.

For example, they can play a game of "I Spy" where one child gives clues about a shape, and the other child guesses which shape it is.

In the process, they will use words such as equal, unequal, greater than, less than, or the same as.

5. Data and ProbabilityChildren can collect data outside using a chart or graph and then analyze the results.

For example, they can take a poll on which is their favorite equipment on the playground, and then graph the results.

In this activity, they can learn words such as graph, chart, data, probability, etc.

To know more about probability,visit:

https://brainly.com/question/31828911

#SPJ11

Compute the following modular inverses
1/3 mod 10=

Answers

The modular inverses of 1/5 modulo 14, 13, and 6 are 3, 8, and 5, respectively.

To compute the modular inverse of 1/5 modulo a given modulus, we are looking for an integer x such that (1/5) * x ≡ 1 (mod m). In other words, we want to find a value of x that satisfies the equation (1/5) * x ≡ 1 (mod m).

For the modulus 14, the modular inverse of 1/5 modulo 14 is 3. When 3 is multiplied by 1/5 and taken modulo 14, the result is 1.

For the modulus 13, the modular inverse of 1/5 modulo 13 is 8. When 8 is multiplied by 1/5 and taken modulo 13, the result is 1.

For the modulus 6, the modular inverse of 1/5 modulo 6 is 5. When 5 is multiplied by 1/5 and taken modulo 6, the result is 1.

Therefore, the modular inverses of 1/5 modulo 14, 13, and 6 are 3, 8, and 5, respectively.

Learn more about modular inverse here:

https://brainly.com/question/31052114

#SPJ11

Compute the following modular inverses. (Remember, this is *not* the same as the real inverse).

1/5 mod 14 =

1/5 mod 13 =

1/5 mod 6 =

Suppose that $18,527 is invested at an interest rate of 5.5% per year, compounded continuously. a) Find the exponential function that describes the amount in the account after time t, in years. b) What is the balance after 1 year? 2 years? 5 years? 10 years? c) What is the doubling time?

Answers

a)  A(t) = 18,527 e^(0.055t)

b)  A(10) = 18,527 e^(0.055(10)) ≈ $32,438.25

c)  The doubling time is approximately 12.6 years.

a) The exponential function that describes the amount in the account after time t, in years, is given by:

A(t) = P e^(rt)

where A(t) is the balance after t years, P is the initial investment, r is the annual interest rate as a decimal, and e is the base of the natural logarithm.

In this case, P = 18,527, r = 0.055 (since the interest rate is 5.5%), and we are compounding continuously, which means the interest is being added to the account constantly throughout the year. Therefore, we can use the formula:

A(t) = P e^(rt)

A(t) = 18,527 e^(0.055t)

b) To find the balance after 1 year, we can simply plug in t = 1 into the equation above:

A(1) = 18,527 e^(0.055(1)) ≈ $19,506.67

To find the balance after 2 years, we can plug in t = 2:

A(2) = 18,527 e^(0.055(2)) ≈ $20,517.36

To find the balance after 5 years, we can plug in t = 5:

A(5) = 18,527 e^(0.055(5)) ≈ $24,093.74

To find the balance after 10 years, we can plug in t = 10:

A(10) = 18,527 e^(0.055(10)) ≈ $32,438.25

c) The doubling time is the amount of time it takes for the initial investment to double in value. We can solve for the doubling time using the formula:

2P = P e^(rt)

Dividing both sides by P and taking the natural logarithm of both sides, we get:

ln(2) = rt

Solving for t, we get:

t = ln(2) / r

Plugging in the values for P and r, we get:

t = ln(2) / 0.055 ≈ 12.6 years

Therefore, the doubling time is approximately 12.6 years.

Learn more about doubling time here:

https://brainly.com/question/30636985

#SPJ11

Let S = (1, 2, 3, 4, 5, 6, 7, 8) be a sample space with P(x) = k²x where x is a member of S. and k is a positive constant. Compute E(S). Round your answer to the nearest hundredths.

Answers

To compute E(S), which represents the expected value of the sample space S, we need to find the sum of the products of each element of S and its corresponding probability.

Given that P(x) = k²x, where x is a member of S, and k is a positive constant, we can calculate the expected value as follows:

E(S) = Σ(x * P(x))

Let's calculate it step by step:

Compute P(x) for each element of S: P(1) = k² * 1 = k² P(2) = k² * 2 = 2k² P(3) = k² * 3 = 3k² P(4) = k² * 4 = 4k² P(5) = k² * 5 = 5k² P(6) = k² * 6 = 6k² P(7) = k² * 7 = 7k² P(8) = k² * 8 = 8k²

Calculate the sum of the products: E(S) = (1 * k²) + (2 * 2k²) + (3 * 3k²) + (4 * 4k²) + (5 * 5k²) + (6 * 6k²) + (7 * 7k²) + (8 * 8k²) = k² + 4k² + 9k² + 16k² + 25k² + 36k² + 49k² + 64k² = (1 + 4 + 9 + 16 + 25 + 36 + 49 + 64)k² = 204k²

Round the result to the nearest hundredths: E(S) ≈ 204k²

The expected value E(S) of the sample space S with P(x) = k²x is approximately 204k².

To know more about sample space, visit :

https://brainly.com/question/30206035

#SPJ11

Determine the composite function for each of the following. a. Given that f(a)=5a²-2a-4, and g(x)= a + 2, find f(g(x)). f(g(x)) = b. Given that f(a)=5a²-2-4, and g(x) = x +h, find f(g(x)). Preview f

Answers

a. The composite function f(g(x)) is given by f(g(x)) = 5a^2 + 18a + 12.

b. The composite function f(g(x)) is given by f(g(x)) = 5x^2 + (10h - 2)x + (5h^2 - 2h - 4).

a. To find f(g(x)), we need to substitute g(x) into the function f(a). Given that g(x) = a + 2, we can substitute a + 2 in place of a in the function f(a):

f(g(x)) = f(a + 2)

Now, let's substitute this expression into the function f(a):

f(g(x)) = 5(a + 2)^2 - 2(a + 2) - 4

Expanding and simplifying:

f(g(x)) = 5(a^2 + 4a + 4) - 2a - 4 - 4

f(g(x)) = 5a^2 + 20a + 20 - 2a - 4 - 4

Combining like terms:

f(g(x)) = 5a^2 + 18a + 12

Therefore, the composite function f(g(x)) is given by f(g(x)) = 5a^2 + 18a + 12.

b. Similarly, to find f(g(x)), we substitute g(x) into the function f(a). Given that g(x) = x + h, we can substitute x + h in place of a in the function f(a):

f(g(x)) = f(x + h)

Now, let's substitute this expression into the function f(a):

f(g(x)) = 5(x + h)^2 - 2(x + h) - 4

Expanding and simplifying:

f(g(x)) = 5(x^2 + 2hx + h^2) - 2x - 2h - 4

f(g(x)) = 5x^2 + 10hx + 5h^2 - 2x - 2h - 4

Combining like terms:

f(g(x)) = 5x^2 + (10h - 2)x + (5h^2 - 2h - 4)

Therefore, the composite function f(g(x)) is given by f(g(x)) = 5x^2 + (10h - 2)x + (5h^2 - 2h - 4).

To know more about expression, visit

https://brainly.com/question/28170201

#SPJ11

Andrew is saving up money for a down payment on a car. He currently has $3078, but knows he can get a loan at a lower interest rate if he can put down $3887. If he invests the $3078 in an account that earns 4.4% annually, compounded monthly, how long will it take Andrew to accumulate the $3887 ? Round your answer to two decimal places, if necessary. Answer How to enter your answer (opens in new window) Keyboard Shortcuts

Answers

To accumulate $3887 by investing $3078 at an annual interest rate of 4.4% compounded monthly, it will take Andrew a certain amount of time.

To find out how long it will take Andrew to accumulate $3887, we can use the formula for compound interest:

A = P[tex](1 + r/n)^{nt}[/tex]

Where:

A = the final amount (in this case, $3887)

P = the principal amount (in this case, $3078)

r = annual interest rate (4.4% or 0.044)

n = number of times the interest is compounded per year (12 for monthly compounding)

t = number of years

We need to solve for t. Rearranging the formula, we have:

t = (1/n) * log(A/P) / log(1 + r/n)

Substituting the given values, we get:

t = (1/12) * log(3887/3078) / log(1 + 0.044/12)

Evaluating this expression, we find that t ≈ 0.57 years. Therefore, it will take Andrew approximately 3.42 years to accumulate the required amount of $3887 by investing $3078 at a 4.4% annual interest rate compounded monthly.

Learn more about compounded monthly here:

https://brainly.com/question/28985307

#SPJ11

7. The accessories buyer sold a group of pearl earrings very well. 1150 pairs were sold at $10.00 each. To clear the remaining stock the buyer reduced the remaining 50 pairs on hand to one half price. What was the percent of markdown sales to total sales?

Answers

The percent of markdown sales to total sales is approximately 2.13%.

To calculate the percent of markdown sales to total sales, we need to determine the total sales amount before and after the markdown.

Before the markdown:

Number of pairs sold = 1150

Price per pair = $10.00

Total sales before markdown = Number of pairs sold * Price per pair = 1150 * $10.00 = $11,500.00

After the markdown:

Number of pairs sold at half price = 50

Price per pair after markdown = $10.00 / 2 = $5.00

Total sales after markdown = Number of pairs sold at half price * Price per pair after markdown = 50 * $5.00 = $250.00

Total sales = Total sales before markdown + Total sales after markdown = $11,500.00 + $250.00 = $11,750.00

To calculate the percent of markdown sales to total sales, we divide the sales amount after the markdown by the total sales and multiply by 100:

Percent of markdown sales to total sales = (Total sales after markdown / Total sales) * 100

= ($250.00 / $11,750.00) * 100

≈ 2.13%

To know more about markdown refer to-

https://brainly.com/question/13877080

#SPJ11

15. Prove: \[ \sec ^{2} \theta-\sec \theta \tan \theta=\frac{1}{1+\sin \theta} \]

Answers

To prove the identity [tex]\(\sec^2\theta - \sec\theta \tan\theta = \frac{1}{1+\sin\theta}\)[/tex], we will manipulate the left-hand side expression to simplify it and then equate it to the right-hand side expression.

Starting with the left-hand side expression [tex]\(\sec^2\theta - \sec\theta \tan\theta\)[/tex], we can rewrite it using the definition of trigonometric functions. Recall that [tex]\(\sec\theta = \frac{1}{\cos\theta}\) and \(\tan\theta = \frac{\sin\theta}{\cos\theta}\).[/tex]
Substituting these definitions into the left-hand side expression, we get[tex]\(\frac{1}{\cos^2\theta} - \frac{1}{\cos\theta}\cdot\frac{\sin\theta}{\cos\theta}\[/tex]).
To simplify this expression further, we need to find a common denominator. The common denominator is[tex]\(\cos^2\theta\)[/tex], so we can rewrite the expression as[tex]\(\frac{1 - \sin\theta}{\cos^2\theta}\).[/tex]
Now, notice that [tex]\(1 - \sin\theta\[/tex]) is equivalent to[tex]\(\cos^2\theta\)[/tex]. Therefore, the left-hand side expression becomes [tex]\(\frac{\cos^2\theta}{\cos^2\theta} = 1\)[/tex].
Finally, we can see that the right-hand side expression is also equal to 1, as[tex]\(\frac{1}{1 + \sin\theta} = \frac{\cos^2\theta}{\cos^2\theta} = 1\).[/tex]
Since both sides of the equation simplify to 1, we have proven the identity[tex]\(\sec^2\theta - \sec\theta \tan\theta = \frac{1}{1+\sin\theta}\).[/tex]

learn more about identity here

https://brainly.com/question/27162747



#SPJ11

How marny 2-fetter code words can be fomed from the letters M,T,G,P,Z, H if no letter is repeated? if letters can be repeated? If adjacent letters must be diterent? There are 30 possible 2letter code words if no letter is tepeated (Type a whole number) There are ¿ossible 2 tetter code words if letiens can be repeated. (Type a whole namber)

Answers

If no letter is repeated, there are 15 possible 2-letter code words. If letters can be repeated, there are 36 possible 2-letter code words. If adjacent letters must be different, there are 30 possible 2-letter code words.

If no letter is repeated, the number of 2-letter code words that can be formed from the letters M, T, G, P, Z, H can be calculated using the formula for combinations:

[tex]^nC_r = n! / (r!(n-r)!)[/tex]

where n is the total number of letters and r is the number of positions in each code word.

In this case, n = 6 (since there are 6 distinct letters) and r = 2 (since we want to form 2-letter code words).

Using the formula, we have:

[tex]^6C_2 = 6! / (2!(6-2)!)[/tex]

= 6! / (2! * 4!)

= (6 * 5 * 4!)/(2! * 4!)

= (6 * 5) / (2 * 1)

= 30 / 2

= 15

Therefore, if no letter is repeated, there are 15 possible 2-letter code words that can be formed from the letters M, T, G, P, Z, H.

If letters can be repeated, the number of 2-letter code words is simply the product of the number of choices for each position. In this case, we have 6 choices for each position:

6 * 6 = 36

Therefore, if letters can be repeated, there are 36 possible 2-letter code words that can be formed.

If adjacent letters must be different, the number of 2-letter code words can be calculated by choosing the first letter (6 choices) and then choosing the second letter (5 choices, since it must be different from the first). The total number of code words is the product of these choices:

6 * 5 = 30

Therefore, if adjacent letters must be different, there are 30 possible 2-letter code words that can be formed.

To know more about code words,

https://brainly.com/question/33019951

#SPJ11

Mattie Evans drove 80 miles in the same amount of time that it took a turbopropeller plane to travel 480 miles. The speed of the plane was 200 mph faster than the speed of the car. Find the speed of the plane. The speed of the plane was mph.

Answers

Let's denote the speed of the car as "c" in mph. According to the given information, the speed of the plane is 200 mph faster than the speed of the car, so we can represent the speed of the plane as "c + 200" mph.

To find the speed of the plane, we need to set up an equation based on the time it took for each to travel their respective distances.

The time it took for Mattie Evans to drive 80 miles can be calculated as: time = distance / speed.

So, for the car, the time is 80 / c.

The time it took for the plane to travel 480 miles can be calculated as: time = distance / speed.

So, for the plane, the time is 480 / (c + 200).

Since the times are equal, we can set up the following equation:

80 / c = 480 / (c + 200)

To solve this equation for "c" (the speed of the car), we can cross-multiply:

80(c + 200) = 480c

80c + 16000 = 480c

400c = 16000

c = 40

Therefore, the speed of the car is 40 mph.

To find the speed of the plane, we can substitute the value of "c" into the expression for the speed of the plane:

Speed of the plane = c + 200 = 40 + 200 = 240 mph.

So, the speed of the plane is 240 mph.

To learn more about speed : brainly.com/question/17661499

#SPJ11

Other Questions
GlowWell is a paint manufacturing company, It has formulations for two new brands of paint, Premium Plus and Ultra Hide. There are none of these in stock so they must be manufactured from scratch. A new order has come in and these two products has to be manufactured in 8 hrs. The two main ingredients in these paints are pigments and resins. The Premium brand requires 5mg of pigments and 0.2 mg of resins in each can of paint. The Ultra Hide brand requires 4mg of pigments and 0.1 mg of resins in each can of paint. These formulations stipulate that pigments must be no more than 100mg and resins must be no less than 3mg per can of paint. GlowWell requires 12 minutes to manufacture a can of Premium Plus and 48 minutes for a can of Ultra Hide. The company needs to know the combination of paints to maximise its revenue. GlowWell will sell a can of Premium Plus for $10 and a can of Ultra Hide for $15.Use X1 and X2 to define the variables indicating which variable is X1 and X22 MarksDerive GlowWells Objective Function in terms of X1 and X2 3 MarksWhat are the Contraints under which GlowWell must operate 7 MarksGraphically illustrate the Feasible Region 4 MarksState the coordinates of the corner points e.g A(2,7), B(12,5) 8 MarksDetermine optimal solution 4 MarksDetermine the revenue at the optimal solution 2 Marks A Question 88 (3 points) Retake question If an incoming light ray strikes a spherical mirror at an angle of 54.1 degrees from the normal to the surface, the reflected ray reflects at an angle of ___ d There is only one copying machine in the student lounge of the business school. Students arrive at the rate of = 45 per hour (according to a Poisson distribution). Copying takes an average of 40 seconds, or u-90 per hour (according to a negative exponential distribution). a) The percentage of time the machine is used 50 percent (round your response to the nearest whole number). b) The average length of the queue students (round your response to two decimal places). 5+i 5-i A ; write the quotient in standard form. -7 5 3+1/30 B -i C 5 + i 13 10 E 12 13 13 D) None of these Questions Filter (13) A gas mixture, comprised of 3 component gases, methane, butane and ethane, has mixture properties of 4 bar, 60C, and 0.4 m. If the partial pressure of ethane is 90 kPa and considering ideal gas model, what is the mass of ethane in the mixture? Express your answer in kg. 0.5 kg of a gas mixture of N and O is inside a rigid tank at 1.1 bar, 60C with an initial composition of 18% O by mole. O is added such that the final mass analysis of O is 39%. How much O was added? Express your answer in kg. french company marks up its goods 45% on cost. what is french's equivalent markup on selling price? note: round to the nearest hundredth percent. Customer ComplaintA customer towed his vehicle into the workshop with an alarm system problem and complained that:She cannot start the engine The siren is not triggered 1)Known Information-Vehicle operating voltage 13.7 volt a-All circuit fuses are OK-a Alarm module is in good condition-a The H.F(High Frequency) remote unit is OKAnswer the following question.1. With the known information above, what is the most likely cause of the problem in () and (ii).2. What diagnostic steps would you use to find the suspected problem in (1) and (0)?) Draw the flow chart to show the steps taken. Explain the difference between close economy and open economy with appropriate example. Newcastle University Vibration Tutorial 1: Q2 A radar mast 20m high supports an antenna of mass 350kg. It is found by experiment that a horizontal force of 200N applied at the top of the mast causes a horizontal deflection of 50mm. Calculate the effective stiffness of the mast and hence the natural frequency of vibration in Hz. The antenna rotates at 32 rev/min, and it is found that this causes a significant vibration of the mast. How might you modify the design to eliminate the problem? Answers: 4000N/m, 0.54Hz. School of Engineering 3 What is the difference between the following radiationdetectors?- Giger- muller counter- Scintillation detector- SIRISNote:- Please answer in the form of simple and clear points.- The answer sh Define the terms Total ion chromatogram and Selected ionchromatogram. How may a Selected ion chromatogram be useful whentrying to calculate low levels of a specific pesticide in a riverwater sample Order the following in sequence of function during replication 3 Primase < 1 telomerase < 4 DNA polymerase < 2 single strand binding protein Fill in the blank: _______is a model used for the standardization of aircraft instruments. It was established, with tables of values over a range of altitudes, to provide a common reference for temperature and pressure. What is an aggregate limit?A. The maximum an insurer will pay per incident.B. The minimum an insurer will pay per incident.C. The maximum amount an insurer will pay during the life of the insurance policy.D. The minimum amount an insurer will pay during the life of the insurance policy. the half-life of radium-226 is 1600 years. Suppose you have a 20-mg sample. How much of the sample will remain after 4000 years? Round to 4 decimal places. You inherit one of these from your mother and one from your father: O Mitochondria O Chromatin O Ribosome O Alleles O Protein Your individual project required you to create a blog on a business-related topic. Now that you have completed this substantial piece of work, you are asked to reflect back on the process of how it all came together. What did you learn about your ability to communicate through an online platform? What do you think worked well, and what would you do differently if you could do it a second time? Explain how and why is the technique to scale a model in order to make an experiment involving Fluid Mechanics. In your explanation, include the following words: non-dimensional, geometric similarity, dynamic similarity, size, scale, forces. Everyone who can face up to decision making can learn to be anentrepreneur and to behave entrepreneurially. Entrepreneurship,then, is 5 behaviour rather than personality trait. With specificexample NASA: Asteroid that dwarfs Empire State Building heading for Earth; Huge NEO to reach soon. .. NASA: Asteroid is monstrous at 4,265 feet wide and it is approaching Earth fast. 'Potentially hazardous' asteroid just a month away." The Asteroid does NOT "dwarf the Empire State building'. (at its maximum estimated size it is about the same size as the height of the Empire State Building): TRUE or FALSE The Asteroid is a NEO: TRUE or FALSEThe Asteroid size is 4,265 feet wide: TRUE or FALSE The Asteroid is estimated to impact in one month: TRUE or FALSE