Find the area of the surface given by z = f(x, y) that lies above the region R. f(x, y) = 64 + x2 − y2 R = {(x, y): x2 + y2 ≤ 64}

Answers

Answer 1

The area of the surface above the region R is 4096π square units.

Given that:

The function: [tex]f(x, y) = 64 + x^2 - y^2[/tex]

The region R is the disk with a radius of 8 units [tex]x^2 + y^2 \le 64[/tex].

To find the area of the surface given by z = f(x, y) that lies above the region R, to calculate the double integral over the region R of the function f(x, y) with respect to dA.

The integral for the area is given by:

[tex]Area = \int\int_R f(x, y) dA[/tex]

To evaluate this integral, we need to set up the limits of integration for x and y over the region R, which is the disk cantered at the origin with a radius of 8 units.

Using polar coordinates, we can parameterize the region R as follows:

x = rcos(θ)

y = rsin(θ)

where r goes from 0 to 8, and θ goes from 0 to 2π.

Now, rewrite the integral in polar coordinates:

[tex]Area =\int\int_R f(x, y) dA\\Area = \int_0 ^{2\pi} \int_0^8(64 + r^2cos^2(\theta) - r^2sin^2(\theta)) \times r dr d \theta[/tex]

Now, we can integrate with respect to r first and then with respect to θ:

[tex]Area = \int_0^{2\pi} \int_0^8] (64r + r^3cos^2(\theta) - r^3sin^2(\theta)) dr d \theta[/tex]

Integrate with respect to r:

[tex]Area = \int_0^{2\pi}[(32r^2 + (1/4)r^4cos^2(\theta) - (1/4)r^4sin^2(\theta))]_0^8 d \theta\\Area = \int_0^{2\pi} (2048 + 256cos^2(\theta) - 256sin^2(\theta)) d \theta[/tex]

Now, we can integrate with respect to θ:

[tex]Area = [2048\theta + 128(sin(2\theta) + \theta)]_0 ^{2\pi}[/tex]

Area = 2048(2π) + 128(sin(4π) + 2π) - (2048(0) + 128(sin(0) + 0))

Area = 4096π + 128(0) - 0

Area = 4096π square units

So, the area of the surface above the region R is 4096π square units.

Learn more about Integration here:

https://brainly.com/question/31744185

#SPJ4


Related Questions

Amy have 398.5 L of apple juice . Avery have 40098 ml of apple juice how many do they have all together

Answers

Answer:  438.5L = 438000ml

Step-by-step explanation:

In a Gallup poll of randomly selected adults, 66% said that they worry about identity theft. For a group of 1013 adults, the mean of those who do not worry about identify theft is closest to:

Answers

Answer:

[tex]Mean = 344[/tex]

Step-by-step explanation:

Given

[tex]Population = 1013[/tex]

Let p represents the proportion of those who worry about identity theft;

[tex]p = 66\%[/tex]

Required

Mean of those who do not worry about identity theft

First, the proportion of those who do not worry, has to be calculated;

Represent this with q

In probability;

[tex]p + q = 1[/tex]

Make q the subject of formula

[tex]q = 1 - p[/tex]

Substitute [tex]p = 66\%[/tex]

[tex]q = 1 - 66\%[/tex]

Convert percentage to fraction

[tex]q = 1 - 0.66[/tex]

[tex]q = 0.34[/tex]

Now, the mean can be calculated using:

[tex]Mean = nq[/tex]

Where n represents the population

[tex]Mean = 1013 * 0.34[/tex]

[tex]Mean = 344.42[/tex]

[tex]Mean = 344[/tex] (Approximated)

plzzzzz helpp j + 9 - 3 < 8

Answers

Answer:

j < 2

Step-by-step explanation:

Simplify both sides of the inequality and isolating the variable would get you the answer

PLEASE HELP ASAP. Drag each tile to the correct box

Answers

Answer:

3 <1<4<2

hope it worked

pls mark me as

BRAINLIEST

plss

Answer:

3>1>2>4

Step-by-step explanation:

Need Help finding the process for both of these ( due today)

Answers

Similar triangles have side lengths that are proportional to each other. To find each of the missing lengths, we need to set up proportions.

The proportions will look as follows:

(length or unknown of triangle 1) / (length or unknown of triangle 2) = (length of triangle 1) / (length of triangle 2)

-On both sides, remember to be consistent with which length/unknown you put on top! If a triangle 1 length is the numerator on the left, then it also needs to be the numerator on the right! And this also works vice versa with triangle 2.

In each proportion equation, we can only have one unknown. On the left side of the equation, we choose one length or unknown of triangle 1, and the corresponding side length of unknown of triangle 2 (whichever you did not choose from triangle 1). On the right side of the equation, we use a completed proportion. This is because all of the sides of one triangle are proportional to the other triangle, but we need to know that proportion/ratio in order to find other side lengths.

Let's start with problem a, to show how this works:

Triangle 1 side lengths - 16, a, 11

Triangle 2 side lengths - 8, 3, b

As you can tell, the side lengths match up (corresponding!) on each triangle, as in they are in the same position on each triangle. Now, we will set up a proportion to find the length of side a on triangle 1.

a / 3 = 16 / 8

48 = 8a

a = 6

Next, let's find the length of side b on triangle 2.

11 / b = 16 / 8

16b = 88

b = 5.5

Moving on to problem b, we'll apply the same concept and steps from problem a in order to find the missing side lengths.

Triangle 1 side lengths: 5, 5.5, d

Triangle 2 side lengths: 15, c, 18

5 / 15 = 5.5 / c

5c = 82.5

c = 16.5

5 / 15 = d / 18

15d = 90

d = 6

Hope this helps!! :)

Answer:

On a) you can see the shapes are simular. The blue line signatures that they are equal just reduced. You can see that 8 goes into 16 two times so for the orange line 3 must times 2. Which would mean a is 6. Now on the red line all you see is 11. So divide 11 by 2 and your answer should be 5.5 for b.

On b) it is the same thing but you have to find how the blue line is divisible. 5 divided by 15 is 3. So 3 is the number you will be using to divide or multiply. For the orange line you divide 18 by 3. The answer is 6 for d. For the red line 5.5 times 3 and you should get 11 for c.

Step-by-step explanation:

Hope this helped

Please answer this correctly without making mistakes

Answers

Shortest is Vindale to Wildgrove to Clarksville

18.9 + 13.2 = 32.1 km.

Determine whether 52c2y4 is a monomial, binomial, trinomial, or other polynomial.

Answers

Answer: Monomial.

Step-by-step explanation:

Ok, when we have a polynomial with only one term, this is a monomial.

If the polynomial has two terms, this is a binomial.

If the polynomial has 3 terms, this is a trinomial.

And so on.

In this particular case we have:

52*c^2*y^4

Where c and y may be variables.

We can see that here we have only one term, so this would be a monomial.

(notice that the number of variables does not affect the type of polynomial in this case, only the number of terms)

Answer:

binomial.

Step-by-step explanation:

The polynomial −50c3z3−41y220z4 has 2 terms, so it is a binomial.

9. A college financial advisor wants to estimate the mean cost of textbooks per quarter for students at the college. For the estimate to be useful, it should have a margin of error of 20 dollars or less. The standard deviation of prices is estimated to be around 100 dollars. How large of a sample size needs to be used to be 95% confident, with the given margin of error?

Answers

Answer: 97

Step-by-step explanation:

Formula to compute the required sample size :

[tex]n= (\dfrac{\sigma\times z_{\alpha/2}}{E})^2[/tex]

, where [tex]\sigma[/tex] = standard deviation

E= Margin of error

[tex]z_{\alpha/2}[/tex] = Two tailed z-value.

Here, E= 20

[tex]\sigma[/tex] = 100

For 95% confidence level: [tex]z_{\alpha/2}[/tex] =1.96

Required sample size:

[tex]n=(\dfrac{100\times1.96}{20})^2\\\\=(5\times1.96)^2\\\\=96.04\approx97[/tex]

Hence, the required sample size : 97

find the exact value of sin 0

Answers

Answer:

12/13

Step-by-step explanation:

First we must calculate the hypotenus using the pythagoran theorem

5²+12² = (MO)² MO = [tex]\sqrt{5^{2}+12^{2} }[/tex] MO = 13

Now let's calculate sin0

sin O = 12/13

So the exact value is 12/13

Answer:

C.) 12/13

Step-by-step explanation:

In a right angle triangle MN = 12, ON = 5 and; angle N = 90°

Now,

For hypotenuse we will use Pythagorean Theorem

(MO)² = (MN)² + (ON)²

(MO)² = (12)² + (5)²

(MO)² = 144 + 25

(MO)² = 169

MO = √169

MO = 13

now,

Sin O = opp÷hyp = 12÷13

What is (6b +4) when b is 2?

Answers

Answer:

16

Step-by-step explanation:

6*2 = 12

12 + 4 = 16

A company is evaluating which of two alternatives should be used to produce a product that will sell for $35 per unit. The following cost information describes the two alternatives.


Process A Process B
Fixed Cost $500,000 $750,000
Variable Cost per Unit $25 $23

Requirement:;
i) Calculate the breakeven volume for Process A. (show calculation to receive credit)

ii) Calculate the breakeven volume for Process B. (show calculation to receive credit)

III) Directions: Show calculation below and Circle the letter of the correct answer.
If total demand (volume) is 120,000 units, then the company should
select Process A with a profit of $940,000 to maximize profit
select Process B with a profit of $450,000 to maximize profit
select Process A with a profit of $700,000 to maximize profit
select Process B with a profit of $690,000 to maximize profit


Answers

Answer:

A.50,000 units

B.62,500 units

C.Process A with a profit of $700,000 to maximize profit

Step-by-step explanation:

A.Calculation for the breakeven volume for Process A

Using this formula

Breakeven volume for Process A= Fixed cost/(Sales per units-Variable cost per units)

Let plug in the formula

Breakeven volume for Process A=500,000/(35-25)

Breakeven volume for Process A=500,000/10

Breakeven volume for Process A=50,000 units

B.Calculation for the breakeven volume for Process B

Using this formula

Breakeven volume for Process B= Fixed cost/(Sales per units-Variable cost per units)

Let plug in the formula

Breakeven volume for Process B=750,000/(35-23)

Breakeven volume for Process B=750,000/12

Breakeven volume for Process B=62,500 units

C. Calculation for what the company should do if the total demand (volume) is 120,000 units

Using this formula

Profit=(Total demand*(Sales per units-Variable cost per units for Process A)- Process A fixed cost

Let plug in the formula

Profit =120,000*($35-$25)-$500,000

Profit=120,000*10-$500,000

Profit=1,200,000-$500,000

Profit= $700,000

Therefore If total demand (volume) is 120,000 units, then the company should select Process A with a profit of $700,000 to maximize profit.

Find two numbers in a given ratio such that the difference of their squares is to the sum of the numbers in a given ratio.Ratios, respectively, are 3 to 1 and 6 to 1.

Answers

According to the given situation, the computation of two number in a given ratio is shown below:-

We assume the numbers is x and y

Given that

[tex]\frac{x}{y} = \frac{3}{1}[/tex]

x = 3y

and

[tex]\frac{x^2-y^2}{x + y} = \frac{6}{1} \\\\\frac{(x + y) (x - y)}{(x + y)} = 6[/tex]

With the help of above formula we will put the value and be able to find the values of x and y

x - y = 6

3y - y = 6

2y = 6

y = 3

x = 3y = 9

x = 9, y = 3

Therefore the correct answer is x = 9 where as y = 3

Solve for x: 4 over x plus 4 over quantity x squared minus 9 equals 3 over quantity x minus 3. (2 points) Select one: a. x = -4 and x = -9 b. x = 4 and x = -9 c. x = -4 and x = 9 d. x = 4 and x = 9

Answers

Answer:

c. x = -4 or x = 9

Step-by-step explanation:

[tex]\dfrac{4}{x}+\dfrac{4}{x^2-9}=\dfrac{3}{x-3}[/tex]

Domain:

[tex]x\neq0\ \wedge\ x^2-9\neq0\ \wedge\ x-3\neq0\\\\x\neq0\ \wedge\ x\neq\pm3[/tex]

solution:

[tex]\dfrac{4}{x}+\dfrac{4}{x^2-3^2}=\dfrac{3}{x-3}[/tex]

use (a - b)(a + b) = a² - b²

[tex]\dfrac{4}{x}+\dfrac{4}{(x-3)(x+3)}=\dfrac{3}{x-3}[/tex]

multiply both sides by (x - 3) ≠ 0

[tex]\dfrac{4(x-3)}{x}+\dfrac{4(x-3)}{(x-3)(x+3)}=\dfrac{3(x-3)}{x-3}[/tex]

cancel (x - 3)

[tex]\dfrac{4(x-3)}{x}+\dfrac{4}{x+3}=3[/tex]

subtract [tex]\frac{4(x-3)}{x}[/tex] from both sides

[tex]\dfrac{4}{x+3}=3-\dfrac{4(x-3)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x}{x}-\dfrac{(4)(x)+(4)(-3)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x-\bigg(4x-12\bigg)}{x}\\\\\dfrac{4}{x+3}=\dfrac{3x-4x-(-12)}{x}\\\\\dfrac{4}{x+3}=\dfrac{-x+12}{x}[/tex]

cross multiply

[tex](4)(x)=(x+3)(-x+12)[/tex]

use FOIL

[tex]4x=(x)(-x)+(x)(12)+(3)(-x)+(3)(12)\\\\4x=-x^2+12x-3x+36[/tex]

subtract 4x from both sides

[tex]0=-x^2+12x-3x+36-4x[/tex]

combine like terms

[tex]0=-x^2+(12x-3x-4x)+36\\\\0=-x^2+5x+36[/tex]

change the signs

[tex]x^2-5x-36=0\\\\x^2-9x+4x-36=0\\\\x(x-9)+4(x-9)=0\\\\(x-9)(x+4)=0[/tex]

The product is 0 if one of the factors is 0. Therefore:

[tex]x-9=0\ \vee\ x+4=0[/tex]

[tex]x-9=0[/tex]            add 9 to both sides

[tex]x=9\in D[/tex]

[tex]x+4=0[/tex]          subtract 4 from both sides

[tex]x=-4\in D[/tex]

Suppose Miss Roxanne Davenport is 25 years old right now and puts away $1,800 per quarter in an account that returns 6% interest. a.) How much will be in the account when she turns 65? b.)What is her total contribution to the account?

Answers

Answer:

a. Total amount after 65 years = $1179415.39

b. The total contribution to the account  = $288000

Step-by-step explanation:

Given annuity amount = $1800

Total number of years for contribution = 65 – 25 = 40 years

Interest rate  = 6%

a. Total amount after 65 years = Annuity[((1+r)^n -1) / r]

Total amount after 65 years = 1800×((1+.06/4)^(4 × 40) - 1)/(.06/4)

Total amount after 65 years = $1179415.39

b. The total contribution to the account =1800 × 4 Quarter × 40 Years

        The total contribution to the account  = $288000

Quick!!! Urgent!!!!!!!!!

Answers

Answer:

my best answer for this is B. False.

I calculated as fast as i can.

Please answer this correctly without making mistakes
Simplify the correct answer

Answers

Answer:

7/44

Step-by-step explanation:

First find the total number of presidents.

2 + 7 + 13 + 12 + 7 + 3 = 44

There were 7 presidents that were 45-49 when elected.  Divide this number by the total number of presidents to find the fraction.

7/44 ≈ 0.159

Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )

Answers

Answer:

[tex]\boxed{x = 9}[/tex]

Step-by-step explanation:

m = -1/3

b = 7

And y = 4 (Given)

Putting all of the givens in [tex]y = mx+b[/tex] to solve for x

=> 4 = (-1/3) x + 7

Subtracting 7 to both sides

=> 4-7 = (-1/3) x

=> -3 = (-1/3) x

Multiplying both sides by -3

=> -3 * -3 = x

=> 9 = x

OR

=> x = 9

Answer:

x = 9

Step-by-step explanation:

m = -1/3

b = 7

Using slope-intercept form:

y = mx + b

m is slope, b is y-intercept.

y = -1/3x + 7

Solve for x:

Plug y as 4

4 = 1/3x + 7

Subtract 7 on both sides.

-3 = -1/3x

Multiply both sides by -3.

9 = x

Write these numbers in standard form 0.000 05

Answers

Answer:

5x 10 ^-5

Step-by-step explanation:

UHM that would be

NaN × [tex]10^{0}[/tex]

I hope this helps!

so my reasoning...  Any number that can be written in the decimal form between 1.0 to 10.0 multiplied by the power of 10.  

The area of a circle is found using the formula A=\pi r^(2) , where r is the radius. If the area of a circle is 36π square feet, what is the radius, in feet? A. 6 B. 6π C. 18 D. 9π

Answers

Answer:

A. 6 feet

Step-by-step explanation:

[tex]A=\pi r^2\\Area = 36\pi\\r = ?\\36\pi = \pi r^2\\Divide \:both \:sides \:of\: the \:equation\: by\: \pi\\\frac{36\pi}{\pi} = \frac{\pi r^2}{\pi} \\r^2 = 36\\Find\: the\: square\: root\: of\: both\: sides\: \\\sqrt{r^2} =\sqrt{36} \\\\r = 6\: feet\\[/tex]

convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.

Answers

Answer:

Standard form: [tex]12x+3y-2=0[/tex]

A = 12, B = 3 and C = -2

Step-by-step explanation:

Given:

The equation:

[tex]y= -4x + \dfrac{2}3[/tex]

To find:

The standard form of given equation and find A, B and C.

Solution:

First of all, let us write the standard form of an equation.

Standard form of an equation is represented as:

[tex]Ax+By+C=0[/tex]

A is the coefficient of x and can be positive or negative.

B is the coefficient of y and can be positive or negative.

C can also be positive or negative.

Now, let us consider the given equation:

[tex]y= -4x + \dfrac{2}3[/tex]

Multiplying the whole equation with 3 first:

[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]

Now, let us take all the terms on one side:

[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]

Now, let us compare with [tex]Ax+By+C=0[/tex].

So, A = 12, B = 3 and C = -2

Mia agreed to borrow a 3 year loan with 4 percent interest to buy a motorcycle if Mia will pay a total of $444 in interest how much money did she borrow how much interest would Mia pay if the simple interest rate was 5 percent

Answers

Answer:

a) $3700

b) $555

Step-by-step explanation:

The length of the loan is 3 years.

The interest after 3 years is $444.

The rate of the Simple Interest is 4%.

Simple Interest is given as:

I = (P * R * T) / 100

where P = principal (amount borrowed)

R = rate

T = length of years

Therefore:

[tex]444 = (P * 3 * 4) / 100\\\\444 = 12P / 100\\\\12P = 444 * 100\\\\12P = 44400\\\\P = 44400 / 12\\[/tex]

P = $3700

She borrowed $3700

b) If the simple interest was 5%, then:

I = (3700 * 5 * 3) / 100 = $555

The interest would be $555.

Find the midpoint of the segment between the points (17,−11) and (−14,−16)

Answers

Answer:

(1.5, -13.5)

Step-by-step explanation:

Midpoint Formula: [tex](\frac{x_1+x_2}{2} ,\frac{y_1+y_2}{2} )[/tex]

Simply plug in our coordinates into the formula:

x = (17 - 14)/2

x = 3/2

y = (-11 - 16)/2

y = -27/2

Answer:

(-1.5, -13.5)

Step-by-step explanation:

To find the x coordinate of the  midpoint, add the x coordinates and divide by 2

( 17+-14)/2 = 3/2 =1.5

To find the y coordinate of the  midpoint, add the x coordinates and divide by 2

( -11+-16)/2 = -27/2= - 13.5

The owner of a shoe store wanted to determine whether the average customer bought more than $100 worth of shoes. She randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below.
Use a TI-83, TI-83 Plus, or TI-84 calculator to test whether the mean is greater than $100 and then draw a conclusion in the context of the problem. Use α=0.05.
125 99 219 65 109 89 79 119 95 135
Select the correct answer below:
A) Reject the null hypothesis. There is sufficient evidence to conclude that the mean is greater than $100.
B) Reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.
C) Fail to reject the null hypothesis. There is sufficient evidence to conclude that the mean is greater than $100.
D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.

Answers

Answer:

D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.

Step-by-step explanation:

We are given that the owner of a shoe store randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below;

X: 125, 99, 219, 65, 109, 89, 79, 119, 95, 135.

Let [tex]\mu[/tex] = average customer bought worth of shoes.

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] $100      {means that the mean is smaller than or equal to $100}

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > $100      {means that the mean is greater than $100}

The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;

                            T.S.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = [tex]\frac{\sum X}{n}[/tex] = $113.4

             s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = $42.78

             n = sample of receipts = 10

So, the test statistics =  [tex]\frac{113.4-100}{\frac{42.78}{\sqrt{10} } }[/tex]  ~  [tex]t_9[/tex]

                                    =  0.991

The value of t-test statistics is 0.991.

Now, at a 0.05 level of significance, the t table gives a critical value of 1.833 at 9 degrees of freedom for the right-tailed test.

Since the value of our test statistics is less than the critical value of t as 0.991 < 1.833, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.

Therefore, we conclude that the mean is smaller than or equal to $100.

What is the total amount of 2/5+5/3+9/3 and the lowest common denominator?

Answers

The lowest common denominator is lcm(5, 3), which is 15.

The sum of 2/5 + 5/3 + 9/3 is 6/15 + 25/15 + 45/15, which is 76/15 or [tex]5\frac{1}{15}[/tex].

Please help. I’ll mark you as brainliest if correct

Answers

Answer:

1,-1,3,4

1,6,-2,-4

-4,6,-6,6

Step-by-step explanation:

I believe you just put in the values into the box. Watch the video to see how they did it to make sure it looks like how I did it.

Solve the proportion below.
X =
A. 24
B. 49
c. 27
D. 6

Answers

Answer:

A. 24

Step-by-step explanation:

4/9 = x/54

x= 54*4/9     ===== multiplying both sides by 54

x= 24

Answer is 24, choice A is correct one

That answer is 24 mate mate mate

An airplane descends during the last hour of it's flight to prepare for landing. It's altitude changes at an average of -0.15 km per minute for those 60 minutes. (What is the product) How does the elevation of the airplane change in that hour? The elevation of the airplane _________ by ______ km. increases 60 decreases 9 0.15
WILL GIVE BRAINLIEST, THANKS AND FIVE STARS

Answers

Answer:

The elevation of the airplane decreases by 9 km.

Step-by-step explanation:

We use the distance-rate-time formula: d = rt.

Here, the rate is r = 0.15 km/min and the time is t = 60 min. Simply plug these into the formula:

d = rt

d = 0.15 * 60 = 9 km

So, the change in elevation in the last 60 minutes is 9 km. However, note that the rate is negative (-0.15 km/min), which means that the elevation actually is decreasing.

Thus, the answer is: the elevation of the airplane decreases by 9 km.

~ an aesthetics lover

Answer:

The elevation of the airplane _decrease_ by __9____ km

Step-by-step explanation:

Take the rate and multiply by the time to get the distance traveled

-.15 km per minute * 60 minutes

- 9 km

The plane will go down 9 km in that 60 minutes

The temperature is 58° F. It gets warmer by h degrees and reaches to 65° F. Find h.

Answers

Answer:

h = 7 degrees

Step-by-step explanation:

To find h, we know that it is positive because it increases in value, not decreases:

h = 65 - 58

h = 7

Answer:

h = 7°F

Step-by-step explanation:

58 + h = 65

h = 65 - 58

h = 7

Check:

68 + 7 = 65

A living room is two times as long and one and one-half times as wide as a bedroom. The amount of
carpet needed for the living room is how many times greater than the amount of carpet needed for the
bedroom?
1 1/2
2
3
3 1/2

Answers

Answer:

3

Step-by-step explanation:

let's call X the length of the bedroom, Y the wide of the bedroom, A the length of the living room and B the wide of the living room

A living room is two times as long as the bedroom, so:

A = 2X

A living room is one and one-half times as wide as a bedroom, so:

B = 1.5Y

The amount of carpet needed for the living room is A*B and the amount of carpet needed by the bedroom is X*Y

So, AB in terms of XY is:

A*B = (2X)*(1.5Y) = 3(X*Y)

It means that the amount of c arpet needed for the living room is 3 times greater than the amount of carpet needed for the  bedroom.

water drips from a faucet at a rate of 41 drops/ minute. Assuming there are 15,000 drops in gallon, how many minutes would it take for the dripping faucet to fill a 1 gallon bucket? Round your answer to the nearest whole number​

Answers

Answer:

366 Minutes

Step-by-step explanation:

Other Questions
HELP ME PLEASSSSEE On a winter morning, the temperature before sunrise was -10. The temperature then rose by 1 each hour for 7 hours before dropping by 2 each hour for 3 hours. What was the temperature, in degrees Fahrenheit, after 10 hours? After the 1600s, how did observations of light being refracted change the way most scientists thought about light? Please help! "Create a real-life scenario involving an angle of elevation or depression. Draw an appropriate diagram and explain how to solve your example." Given the function [tex]h:x=px-\frac{5}{2}[/tex] and the inverse function [tex]h^{-1} :x=q+2x[/tex], where p and q are constants, find a) the value of p and q c)[tex]h^{-1} h(-3)[/tex] An investment earns 35% the first year, earns 40% the second year, and loses 37% the third year. The total compound return over the 3 years was ______. Multiple Choice 158.93% 19.07% 38.00% 6.36% Refer to the following wage breakdown for a garment factory: Hourly Wages Number of employees$4 up to $7 18 7 up to 10 36 10 up to 13 20 13 up to 16 6 What is the class interval for the preceding table of wages?A. $4B. $2C. $5D. $3 Determine the position in the oscillation where an object in simple harmonic motion: (Be very specific, and give some reasoning to your answer.) has the greatest speed has the greatest acceleration experiences the greatest restoring force experiences zero restoring force g Angiosperms (flowering plants) and vertebrates obtain nutrients from their environment in different ways. a. Discuss the type of nutrition and the nutritional requirements of angiosperms and vertebrates. b. Describe 2 structural adaptations in angiosperms for obtaining nutrients from the environment. Relate structure to function. c. Interdependence in nature is evident in symbiosis. Explain two symbiotic relationships that aid in nutrient uptake, using examples from angiosperms and/or vertebrates. (Both examples may be angiosperms, both may be vertebrates, or one may be from each group.) In 1967, Milton Glaser designed a poster to accompany an rock album. The singer was presented in silhouette with brightly colored hair patterns inspired by art nouveau sources. Nearly six million copies of the poster were produced for inclusion in the best-selling record album. Who was the singer/band featured if the denominator of a fraction is multiplied by 2,the value of the fraction is What listening strategy would you recommend to your friend who seems to be practicing selective listening because he can't seem to pay attention in his interpersonal communication class as his mind and attention often wander You are selling your product at a three-day event. Each day, there is a 60% chance that you will make money. What is the probability that you will make money on the first two days and lose money on the third day Research have found that other than for reasons of hunger, American women eat when they are depressed ,whereas Japanese women eat because of social demands.They found no significant differences between american and japanese men. These results demonstrate that ________ and _______ must be taken into account when studying why and under what circumstances people eat. please help!!!!!!!!!!! Solve and CHECK the following:8(5x2)=62(3x+1) HELP ASAP It defines "health promotion as the process of enabling people to increase control over and toimprove their health." It identifies that there are certain prerequisites or basic conditions andresources that must be available if any gains in health are to occur. These are peace, shelter,education, food, income, as a stable ecosystem, sustainable resources, and social justice.O Define the Biomedical Model of Health,Describe and explain the function of the Social Model of Health,Describe and explain the function of the Biomedical Model of Health.O Describe and explain the Ottawa CharterIdk if that answer is right I accidentally clicked it List the submultiples and multiple units of length, mass, and time with respect to real-life situations. How are these units are related to S I unit of the above mentioned physical quantity? Plzzzzz Help I really need helpA Line Segment has the points (1,-2), and (3,-2). What are the new points after its dilated by a scale factor of 3/2 or 1.5 Use multiplication to solve the proportion w/4 = 42/24 Production and Purchases Budgets At the beginning of October, Comfy Cushions had 2,600 cushions and 15,500 pounds of raw materials on hand. Budgeted sales for the next three months are: Month Sales October 13,000 cushions November 15,000 cushions December 18,000 cushions Comfy Cushions wants to have sufficient raw materials on hand at the end of each month to meet 25 percent of the following month's production requirements and sufficient cushions on hand at the end of each month to meet 20 percent of the following month's budgeted sales. Five pounds of raw materials, at a standard cost of $0.90 per pound, are required to produce each cushion. Required a. Prepare a production budget for October and November. Do not use a negative sign with your answers.