Answer:
2250
Step-by-step explanation:
Balance : 2100
2 Years
2100 ÷ 100 x 103.5 ÷ 100 x 103.5 = 2249.5725
helppppppppppp i give you brailienst
Answer:
5%
Step-by-step explanation:
Well let’s make a fraction 2/40.
So we have to simplify it to 1/20.
And we do 1 / 20.
So 1 / 20 is .05.
To make this a percent we put the seminal place 2 places to the right.
So the percent is 5%.
Using traditional methods, it takes 9.5 hours to receive a basic flying license. A new license training method using Computer Aided Instruction (CAI) has been proposed. A researcher used the technique with 15 students and observed that they had a mean of 10.0 hours with a standard deviation of 1.6. A level of significance of 0.1 will be used to determine if the technique performs differently than the traditional method. Assume the population distribution is approximately normal. Make the decision to reject or fail to reject the null hypothesis.
Answer:
Step-by-step explanation:
Null hypothesis: u = 9.5hrs
Alternative: u =/ 9.5hrs
Using the t test
t = x-u/sd/√n
Where x is 10hrs, u is 9.5, sd is 1.6 and n is 15
t = 10-9.5 / (1.6/√15)
t = 0.5 / (0.4131)
t = 1.21
In order to make a conclusion, we have to find the p value at a significance level lot 0.1. The p value is 0.2263 which is greater than 0.1. This, we will fail to reject the null hypothesis and conclude that there is not enough statistical evidence to prove that the technique performs differently than the traditional method.
Find the lateral area of the prism.
Answer:
576"
Step-by-step explanation:
AL=ph
AL= (4*12)12
AL= 48*12
AL=576"
Calculate the length of the unknown side of this right angled triangle
Answer:
12.04
Step-by-step explanation:
Well to solve for the unknown side "c" we need to use the Pythagorean Theorem formula,
[tex]a^2 + b^2 = c^2[/tex]
We already have a and b which are 8 and 9 so we plug them in.
[tex](8)^2 + (9)^2 = c^2[/tex]
64 + 81 = c^2
145 = c^2
c = 12.04 rounded to the nearest hundredth.
Thus,
the unknown side is about 12.04.
Hope this helps :)
What is the solution to this equation? w - 3 = 15
Answer:
w = 18Step-by-step explanation:
w - 3 = 15
Add 3 to both sides to make w stand alone
That's
w - 3 + 3 = 15 + 3
w = 15 + 3
We have the final answer as
w = 18
Hope this helps you
Answer: w = 18
Step-by-step explanation: To solve for w in this equation, we want to get w by itself on the left side of the equation.
Since 3 is being subtracted from w, to get w by itself,
we need to add 3 to the left side of the equation.
If we add 3 to the left side, we must also add 3 to the right side.
Notice that on the left side, -3 and +3 cancel
each other out so were simply left with w.
On the right side, 15 + 3 is 18.
So we have w = 18.
What is x? The angle x
Answer:
x=60
Step-by-step explanation:
This is an equilateral triangle which means all the sides are equal.
If all the sides are equal then all the angles are equal
180/3 = 60
x=60
Answer:
x= 60°
Step-by-step explanation:
We can tell that both of these triangles are equilateral. We can tell because all of their sides have little tick marks, meaning that they are all equal, meaning that the triangle is equilateral. In an equilateral triangle, we know that through definitions all of the angles are equal to 60°. Since y is an angle inside of an equilateral triangle, it is equal to 60°
Solve the following for x. 3(x-2)-6x=4(x-5)
Answer:
x=2
Step-by-step explanation:
3(x-2)-6x=4(x-5)
Distribute
3x -6 -6x = 4x -20
Combine like terms
-3x-6 = 4x-20
Add 3x to each side
-3x-6+3x = 4x-20+3x
-6 = 7x-20
Add 20 to each side
-6+20 = 7x-20+20
14 = 7x
Divide by 7
14/7 =7x/7
2=x
Answer:
x = 2Step-by-step explanation:
[tex]3(x - 2) - 6x = 4(x - 5)[/tex]
Distribute 3 through the parentheses
[tex]3x - 6 - 6x = 4(x - 5)[/tex]
Distribute 4 through the parentheses
[tex]3x - 6 - 6x = 4x - 20[/tex]
Collect like terms
[tex] - 3x - 6 = 4x - 20[/tex]
Move variable to L.H.S and change it's sign
[tex] - 3x - 4x - 6 = - 20[/tex]
Move constant to RHS and change it's sign
[tex] - 3x - 4x = - 20 + 6[/tex]
Collect like terms
[tex] - 7x = - 20 + 6[/tex]
Calculate
[tex] - 7x = - 14[/tex]
Divide both sides of the equation by -7
[tex] \frac{ - 7x}{ - 7} = \frac{ - 14}{ - 7} [/tex]
Calculate
[tex]x = 2[/tex]
Hope this helps..
Best regards!!
In a four-digit number, the sum of the thousands and hundred digits is 3.
The tens digit is 4 times the hundreds digit.
The ones digit is seven more than the thousands digit.
No two digits are equal.
What is the four-digit number?
Answer: 2149
Step-by-step explanation: If the sum of the first two digits is 3, the choices must be 1 and 2 (or 2 and 1) In order to satisfy the other specifications, "the tens digit is 4 times the hundreds digit." the hundreds digit can't be 2 because that would make the tens dight 8. and the ones digit would also have to 8 in order to satisfy the "seven more than the thousands digit" which would be a 1. And that violates the condition, "No two digits are equal."
So the only possible combination is 2149
4 is 4 times 1
9 is 7 +2
The Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year. A random sample of 51 households is monitored for one year to determine aluminum usage. If the population standard deviation of annual usage is 12.2 pounds, what is the probability that the sample mean will be each of the following? Appendix A Statistical Tables a. More than 61 pounds b. More than 57 pounds c. Between 55 and 58 pounds d. Less than 55 pounds e. Less than 48 pounds
Answer:
(a) The probability that the sample mean will be more than 61 pounds is 0.0069.
(b) The probability that the sample mean will be more than 57 pounds is 0.4522.
(c) The probability that the sample mean will be between 55 and 58 pounds is 0.6112.
(d) The probability that the sample mean will be less than 55 pounds is 0.14686.
(e) The probability that the sample mean will be less than 48 pounds is 0.00001.
Step-by-step explanation:
We are given that the Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year.
A random sample of 51 households is monitored for one year to determine aluminum usage. Also, the population standard deviation of annual usage is 12.2 pounds.
Let [tex]\bar X[/tex] = sample mean
The z-score probability distribution for the sample mean is given by;
Z = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = average aluminum used by American = 56.8 pounds
[tex]\sigma[/tex] = population standard deviation = 12.2 pounds
n = sample of households = 51
(a) The probability that the sample mean will be more than 61 pounds is given by = P([tex]\bar X[/tex] > 61 pounds)
P([tex]\bar X[/tex] > 61 pounds) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{61-56.8}{\frac{12.2}{\sqrt{51} } }[/tex] ) = P(Z > 2.46) = 1 - P(Z [tex]\leq[/tex] 2.46)
= 1 - 0.9931 = 0.0069
The above probability is calculated by looking at the value of x = 2.46 in the z table which has an area of 0.9931.
(b) The probability that the sample mean will be more than 57 pounds is given by = P([tex]\bar X[/tex] > 57 pounds)
P([tex]\bar X[/tex] > 57 pounds) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{57-56.8}{\frac{12.2}{\sqrt{51} } }[/tex] ) = P(Z > 0.12) = 1 - P(Z [tex]\leq[/tex] 0.12)
= 1 - 0.5478 = 0.4522
The above probability is calculated by looking at the value of x = 0.12 in the z table which has an area of 0.5478.
(c) The probability that the sample mean will be between 55 and 58 pounds is given by = P(55 pounds < [tex]\bar X[/tex] < 58 pounds)
P(55 pounds < [tex]\bar X[/tex] < 58 pounds) = P([tex]\bar X[/tex] < 58 pounds) - P([tex]\bar X[/tex] [tex]\leq[/tex] 55 pounds)
P([tex]\bar X[/tex] < 58 pounds) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{58-56.8}{\frac{12.2}{\sqrt{51} } }[/tex] ) = P(Z < 0.70) = 0.75804
P([tex]\bar X[/tex] [tex]\leq[/tex] 55 pounds) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{55-56.8}{\frac{12.2}{\sqrt{51} } }[/tex] ) = P(Z [tex]\leq[/tex] -1.05) = 1 - P(Z < 1.05)
= 1 - 0.85314 = 0.14686
The above probability is calculated by looking at the value of x = 0.70 and x = 1.05 in the z table which has an area of 0.75804 and 0.85314.
Therefore, P(55 pounds < [tex]\bar X[/tex] < 58 pounds) = 0.75804 - 0.14686 = 0.6112.
(d) The probability that the sample mean will be less than 55 pounds is given by = P([tex]\bar X[/tex] < 55 pounds)
P([tex]\bar X[/tex] < 55 pounds) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{55-56.8}{\frac{12.2}{\sqrt{51} } }[/tex] ) = P(Z < -1.05) = 1 - P(Z [tex]\leq[/tex] 1.05)
= 1 - 0.85314 = 0.14686
The above probability is calculated by looking at the value of x = 1.05 in the z table which has an area of 0.85314.
(e) The probability that the sample mean will be less than 48 pounds is given by = P([tex]\bar X[/tex] < 48 pounds)
P([tex]\bar X[/tex] < 48 pounds) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{48-56.8}{\frac{12.2}{\sqrt{51} } }[/tex] ) = P(Z < -5.15) = 1 - P(Z [tex]\leq[/tex] 5.15)
= 1 - 0.99999 = 0.00001
The above probability is calculated by looking at the value of x = 5.15 in the z table which has an area of 0.99999.
A family dines in a popular franchise restaurant. At the end of the meal, they decide to leave their server a monetary tip that is equal to 20% of the total bill amount, $60.50. How much will the family leave their server as a tip?
Answer:
$12.10
Step-by-step explanation:
First, you have to set up a proportion to find what 20% of $60.50, or 60.5, is. On one side of the proportion you have 20/100 to represent the percent, anytime you have a percent it will always go over 100. On the other side you'll have x/60.5 because you are trying to find a value out of 60.5. This gives you the proportion 20/100=x/60.5. In order to solve this you have to cross multiply using the equation 20(60.5)=100x. First, you multiply to get 1210=100x, then divide both sides by 100 to get 12.1=x. In order for this to represent money, we add a zero on the end. This means that 20% of $60.50 is $12.10, so $12.10 is the tip.
There are two pennies lying flat on a table. One of the pennies is fixed to the table, while the other one is being rolled around the fixed one staying tangent to it all the way. How many spins will it make by the time it returns to the starting point ?
Answer:
well if you want my answer even though it could not be right so dont get mad at me if i am wrong but i think that it is all mostly based on how far they are from each other the further it is the more it will roll the closer it is the less it it will roll
Step-by-step explanation:
Answer:
1
Step-by-step explanation:
rolling it shows its circumference and the other pennine has the ame circumference
1. Suppose f(x) = x^4-2x^3+ax^2+x+3. If f(3) = 2, then what is a? 2. Let f, g, and h be polynomials such that h(x) = f(x) * g(x). If the constant term of f(x) is -4 and the constant term of h(x) is 3, what is g(0)? 3. Suppose the polynomials f and g are both monic polynomials. If the sum f(x) + g(x) is also monic, what can we deduce about the degrees of f and g? 4. If f(x) is a polynomial, is f(x^2) also a polynomial 5. Consider the polynomial function g(x) = x^4-3x^2+9 a. What must be true of a polynomial function f(x) if f(x) and f(-x) are the same polynomial b.What must be true of a polynomial function f(x) if f(x) and -f(-x) are the same polynomial
Answer:
1. a = -31/9
2. -3/4
3. Different degree polynomials
4. Yes, of a degree 2n
5. a. Even-degree variables
b. Odd- degree variables
Step-by-step explanation:
1. Suppose f(x) = x^4-2x^3+ax^2+x+3. If f(3) = 2, then what is a?
Plugging in 3 for x:
f(3)= 3^4 - 2*3^3 + a*3^2 + 3 + 3= 81 - 54 + 6 + 9a = 33 + 9a and f(3)= 2
9a+33= 29a= -31a = -31/9------------
2. Let f, g, and h be polynomials such that h(x) = f(x) * g(x). If the constant term of f(x) is -4 and the constant term of h(x) is 3, what is g(0)?
f(0)= -4, h(0)= 3, g(0) = ?h(x)= f(x)*g(x)g(x)= h(x)/f(x)g(0) = h(0)/f(0) = 3/-4= -3/4g(0)= -3/4------------
3. Suppose the polynomials f and g are both monic polynomials. If the sum f(x) + g(x) is also monic, what can we deduce about the degrees of f and g?
A monic polynomial is a single-variable polynomial in which the leading coefficient is equal to 1.If the sum of monic polynomials f(x) + g(x) is also monic, then f(x) and g(x) are of different degree and their sum only change the one with the lower degree, leaving the higher degree variable unchanged.
------------
4. If f(x) is a polynomial, is f(x^2) also a polynomial?
If f(x) is a polynomial of degree n, then f(x^2) is a polynomial of degree 2n------------
5. Consider the polynomial function g(x) = x^4-3x^2+9
a. What must be true of a polynomial function f(x) if f(x) and f(-x) are the same polynomial?
If f(x) and f(-x) are same polynomials, then they have even-degree variables.b.What must be true of a polynomial function f(x) if f(x) and -f(-x) are the same polynomial?
If f(x) and -f(-x) are the same polynomials, then they have odd-degree variables.Which of the following is equivalent to 18 minus StartRoot negative 25 EndRoot?
Answer: 12-i
12-(√-1)
Step-by-step explanation:
[tex]18-\sqrt{-25}[/tex] Original Question
[tex]18-(\sqrt{25} * \sqrt{-1} )[/tex] Split
[tex]18-5*(\sqrt{-1} )[/tex] Solve for square root
[tex]12-\sqrt{-1}[/tex] Subtract
You can substitute [tex]\sqrt{-1}[/tex] for i
[tex]12-i[/tex] Substitute
Answer:
18-5i
Step-by-step explanation:
The 3rd degree Taylor polynomial for cos(x) centered at a = π 2 is given by, cos(x) = − (x − π/2) + 1/6 (x − π/2)3 + R3(x). Using this, estimate cos(86°) correct to five decimal places.
Answer:
The cosine of 86º is approximately 0.06976.
Step-by-step explanation:
The third degree Taylor polynomial for the cosine function centered at [tex]a = \frac{\pi}{2}[/tex] is:
[tex]\cos x \approx -\left(x-\frac{\pi}{2} \right)+\frac{1}{6}\cdot \left(x-\frac{\pi}{2} \right)^{3}[/tex]
The value of 86º in radians is:
[tex]86^{\circ} = \frac{86^{\circ}}{180^{\circ}}\times \pi[/tex]
[tex]86^{\circ} = \frac{43}{90}\pi\,rad[/tex]
Then, the cosine of 86º is:
[tex]\cos 86^{\circ} \approx -\left(\frac{43}{90}\pi-\frac{\pi}{2}\right)+\frac{1}{6}\cdot \left(\frac{43}{90}\pi-\frac{\pi}{2}\right)^{3}[/tex]
[tex]\cos 86^{\circ} \approx 0.06976[/tex]
The cosine of 86º is approximately 0.06976.
A sample of 13 small bags of the same brand of candies was selected. Assume that the population distribution of bag weights is normal. The weight of each bag was then recorded. The mean weight was 3 ounces with a standard deviation of 0.15 ounces. The population standard deviation is known to be 0.1 ounce.Required:a. Construct a 98% confidence interval for the population mean weight of the candies.b. State the confidence interval. (Round your answers to three decimal places.)c. Draw the Graph
Answer:
The answer is below
Step-by-step explanation:
Given that:
Mean (μ) = 3 ounces. standard deviation (σ) = 0.15, sample size (n) = 13 and confidence (C) = 98%
α = 1 - C = 1 - 0.98 = 0.02
α/2 = 0.02/2 = 0.01.
The z score of 0.01 (α/2) corresponds to the z score of 0.49 (0.5 - 0.01) which from the normal distribution table is 2.33.
The margin of error (E) is:
[tex]E=z_{0.01}*\frac{\sigma}{\sqrt{n} } = 2.33*\frac{0.15}{\sqrt{13} }=0.1\\[/tex]
The confidence interval = μ ± E = 3 ± 0.1 = (2.9, 3.1)
The confidence interval is between 2.9 ounce and 3.1 ounce
3. Write an equation of a line that is perpendicular to the line x – 2y = 8.
Answer:
y=0.5x+40
Step-by-step explanation:
Copy the equation.
x-2y=8
Subtract x from both sides.
-2y=-x-8
Divide both sides by -2.
y=0.5x+4
Now we know the slope is 0.5.
Any line with a slope of 0.5 will be perpendiculr to the original line.
One that you can use is y=0.5x+40.
HELP PLEASE ANYONE !!!!!
Answer:
B. -3x
Step-by-step explanation:
A term is defined as either a constant or a variable with a coefficient.
-3 is incorrect because there is no constant -3 in the expression.
-3x is correct because there is a -3x in the expression
(x + 4) is incorrect because that is a linear binomial and has yet to be distributed.
-7 is incorrect because it has to be distributed.
w=pv for p, how do you get the answer?
Answer:
you need to have values for w and v
but u basically have to do
MOVE V TO THE OTHER SIDE
SO
W/V=P
Step-by-step explanation:
HOPE I HELPED
PLS MARK BRAINLIEST
DESPERATELY TRYING TO LEVEL UP
✌ -ZYLYNN JADE ARDENNE
A student's course grade is based on one midterm that counts as 10% of his final grade, one class project that counts as 5% of his final grade, a set of homework assignments that counts as 45% of his final grade, and a final exam that counts as 40% of his final grade. His midterm score is 60, his project score is 80, his homework score is 75, and his final exam score is 78. What is his overall final score? What letter grade did he earn (A, B, C, D, or F)? Assume that a mean of 90 or above is an A, a mean of at least 80 but less than 90 is a B, and so on.
Answer:
His overall final score is a 73, which means that that student recieved a letter grade of a C.
Step-by-step explanation:
First, we are finding the mean of the scores to average everything out.
So, start by adding up all the scores given: 60+80+75+78=293.
Then, divide that sum by the number of scores given: 293/5=73.25, or rounded to a whole number is a 73.
In most schools, a 73 is a C, so this students letter grade for this course is a C.
Hermina cut a 10'' by 15'' piece of cardboard down the diagonal. A rectangle is 10 inches wide and 15 inches long. A diagonal cut is shown with a line labeled c. The cut divides the rectangle in half and creates two right triangles. The hypotenuse of each right triangle is the line labeled c. What is the length c of the cut, in inches?
Answer:
18.03 inches
Step-by-step explanation:
The cardboard is cut as shown below.
The line c cuts the rectangle into 2 right angled triangles.
To find the diagonal (hypotenuse), we have to apply Pythagoras Rule:
[tex]hyp^2 = opp^2 + adj^2\\\\=> c^2 = 10^2 + 15^2\\\\c^2 = 100 + 225 = 325\\\\[/tex]
=> c = 18.03" = 18.03 inches
The length of c, the diagonal, is 18.03 inches.
use what you know about zeros of a function and end behavior of a graph that matches the function f(x) = (x+3)(x+2)(x-1)
Answer:
The zeros are x=-3,-2,1
end behavior is one up one down
Step-by-step explanation:
The zeros are x=-3,-2,1
The end behaviors are one up one down because the function is of degree 3 meaning it is odd function and has opposite end directions.
Find the sum of the following infinite geometric series
Answer:
[tex]\large \boxed{\ \ \dfrac{63}{5} \ \ }[/tex]
Step-by-step explanation:
Hello,
"Find the sum of the following infinite geometric series"
infinite
We will have to find the limit of something when n tends to [tex]+\infty[/tex]
geometric series
This is a good clue, meaning that each term of the series follows a geometric sequence. Let's check that.
The sum is something like
[tex]\displaystyle \sum_{k=0}^{+\infty} a_k[/tex]
First of all, we need to find an expression for [tex]a_k[/tex]
First term is
[tex]a_0=7[/tex]
Second term is
[tex]a_1=\dfrac{4}{9}\cdot a_0=7*\boxed{\dfrac{4}{9}}=\dfrac{7*4}{9}=\dfrac{28}{9}[/tex]
Then
[tex]a_2=\dfrac{4}{9}\cdot a_1=\dfrac{28}{9}*\boxed{\dfrac{4}{9}}=\dfrac{28*4}{9*9}=\dfrac{112}{81}[/tex]
and...
[tex]a_3=\dfrac{4}{9}\cdot a_2=\dfrac{112}{81}*\boxed{\dfrac{4}{9}}=\dfrac{112*4}{9*81}=\dfrac{448}{729}[/tex]
Ok we are good, we can express any term for k integer
[tex]a_k=a_0\cdot (\dfrac{4}{9})^k[/tex]
So, for n positive integer
[tex]\displaystyle \sum_{k=0}^{n} a_k=\displaystyle \sum_{k=0}^{n} 7\cdot (\dfrac{4}{9})^k=7\cdot \dfrac{1-(\dfrac{4}{9})^{n+1}}{1-\dfrac{4}{9}}=\dfrac{7*9*[1-(\dfrac{4}{9})^{n+1}]}{9-4}=\dfrac{63}{5}\cdot [1-(\dfrac{4}{9})^{n+1}}][/tex]
And the limit of that expression when n tends to [tex]+\infty[/tex] is
[tex]\large \boxed{\ \ \dfrac{63}{5} \ \ }[/tex]
as
[tex]\dfrac{4}{9}<1[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
G(x) = 5x + 3
Find g(b2)
Answer:
g(2) =10x+6
Step-by-step explanation:
g(x) =5x+3
g(2)=5x+3
g(2)=10x+6
have a great day
The number that, when increased by 30% equals 78
Answer:
60
Step-by-step explanation:
x + 0.30x = 78
1.30x = 78
x = 60
Answer:
The answer is 60.
Step-by-step explanation:
here, let another number be x.
according to the question the number when increased by 30% will be 78. so,
x+ 30% of x =78
now, x+ 30/100×x =78
or, x+0.3x=78
or, 1.3x=78
Therefore the another number is 60.
Hope it helps...
[tex]x+7-4(x+1)=-10[/tex]
━━━━━━━☆☆━━━━━━━
▹ Answer
x = 13/3, 4 1/3, or 4.3
▹ Step-by-Step Explanation
x + 7 - 4(x + 1) = -10
x + 7 - 4x - 4 = -10
-3x + 7 - 4 = -10
-3x + 3 = -10
-3x = -10 - 3
-3x = -13
x = 13/3, 4 1/3, or 4.3
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Answer:
x = 13/3
Step-by-step explanation:
x + 7 - 4(x + 1) = -10
x + 7 - 4x - 4 = -10
-3x + 3 = -10
-3x = -13
x = -13/(-3)
x = 13/3
Which graph shows the solution to the system of linear inequalities?
y > Two-thirdsx + 3
y ≤ Negative one-thirdx + 2
Mark this and return
Answer:
its b i got it right on edge
Step-by-step explanation:
What is the product of 3x(x^2+4)?
0 + 3x + 4
3+ 12
31
124
Answer: i honestly dont know this seems very complicated
Step-by-step explanation:
Answer:
3x^3+12x
Step-by-step explanation:
Forty percent of all undergraduates at a university are chemistry majors. In a random sample of six students, find the probability that exactly two are chemistry majors. 12. The probability that exactly two are chemistry majors is Type an integer or a decimal. Round to four decimal places as needed.)
Answer:
0.3110
Step-by-step explanation:
This is a binomial distribution with probability of success (being a chemistry major) p = 0.40.
The general formula for a binomial distribution is:
[tex]P(x=k)=\frac{n!}{(n-k)!k!}*p^k*(1-p)^{n-k}[/tex]
Where n is the sample size and k is the desired number of successes.
The probability of k=2 in a sample of n =6 is:
[tex]P(x=2)=\frac{6!}{(6-2)!2!}*0.4^2*(1-0.4)^{6-2} \\P(x=2)=\frac{6!}{(6-2)!2!}*0.4^2*(1-0.4)^{6-2}\\P(x=2)=3*5*0.4^2*0.6^4\\P(x=2)=0.3110[/tex]
The probability is 0.3110
The height of a projectile launched upward at a speed of 32 feet/second from a height of 128 feet is given by the function h(t) = -16t^2 + 32t +128. How long will it take the projectile to hit the ground?
Answer:
It takes 4 seconds for the projectile to hit the ground
Step-by-step explanation:
The height of the projectile after t seconds is given by the following equation:
[tex]h(t) = -16t^{2} + 32t + 128[/tex]
How long will it take the projectile to hit the ground?
It happens when [tex]h(t) = 0[/tex]
So
[tex]h(t) = -16t^{2} + 32t + 128[/tex]
[tex]-16t^{2} + 32t + 128 = 0[/tex]
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]\bigtriangleup = b^{2} - 4ac[/tex]
In this question:
[tex]-16t^{2} + 32t + 128 = 0[/tex]
So [tex]a = -16, b = 32, c = 128[/tex]
[tex]\bigtriangleup = 32^{2} - 4*(-16)*(128) = 9216[/tex]
[tex]t_{1} = \frac{-32 + \sqrt{9216}}{2*(-16)} = -2[/tex]
[tex]t_{2} = \frac{-32 - \sqrt{9216}}{2*(-16)} = 4[/tex]
Time is a positive measure, so:
It takes 4 seconds for the projectile to hit the ground
WILL MAKE BRAINLIST. - - - If a golden rectangle has a width of 9 cm, what is its length?
Step-by-step explanation:
a = 14.56231 cm
b(width) = 9 cm
a+b = 23.56231 cm
A(area) = 343.1215 cm
Sorry if this doesnt help
Answer:
length = [9/2 + (9/2)sqrt(5)] cm
length = 14.56 cm
Step-by-step explanation:
In a golden rectangle, the width is a and the length is a + b.
The proportion of the lengths of the sides is:
(a + b)/a = a/b
Here, the width is 9 cm, so we have a = 9 cm.
(9 + b)/9 = 9/b
(9 + b)b = 81
b^2 + 9b - 81 = 0
b = (-9 +/- sqrt(9^2 - 4(1)(-81))/(2*1)
b = (-9 +/- sqrt(81 + 324)/2
b = (-9 +/- sqrt(405)/2
b = -9/2 +/- 9sqrt(5)/2
Length = a + b = 9 - 9/2 +/- 9sqrt(5)/2
Length = a + b = 9/2 +/- 9sqrt(5)/2
Since the length of a side of a rectangle cannot be negative, we discard the negative answer.
length = [9/2 + (9/2)sqrt(5)] cm
length = 14.56 cm