Answer:
0
Step-by-step explanation:
Solution:-
We are given two functions as follows:
[tex]f ( x ) = x^2 - 15\\\\g ( x ) = 2x[/tex]
We need to determine the composite function defined as ( g - f ) ( x ). To determine this function we need to make sure that both function exist for all real positive value of x.
The function f ( x ) is a quadratic function which has real values for all values of x. Similarly, function g ( x ) is a linear line that starts from the origin. Hence, both functions are defined over the domain ( -∞, ∞ )
We will perform arithmetic operation of subtracting function f ( x ) from g ( x ) as follows:
[tex][ g - f ] ( x ) = g ( x ) - f ( x )\\\\\\( g - f ) ( x ) = x^2 - 15 - 2x\\\\[/tex]
Now evaluate the above determined function at x = -3 as follows:
[tex]( g - f ) ( -3 ) = ( -3 )^2 - 2 ( -3 ) - 15\\\\( g - f ) ( -3 ) = 9 + 6 - 15\\\\( g - f ) ( -3 ) = 0[/tex]
The measure of minor arc JL is 60°. Circle M is shown. Line segments M J and M L are radii. Tangents J K and L K intersect at point K outside of the circle. Arc J L is 60 degrees. What is the measure of angle JKL? 110° 120° 130° 140°
Answer:
angle JKL = 120 degrees
Step-by-step explanation:
Since arc JL is 60 degrees, the central angle is also 60 degrees.
Point K is the intersection of tanges at J and L, therefore KJM and KLM are 90 degrees.
Consider quadrilateral JKLM whose sum of internal angles = 360.
Therefore
angle JKL + angle KLM + angle LMJ + angle MJK = 360 degrees
angle JKL + 90 + 60 + 90 = 360
angle JKL = 360 - 90 - 60 -90 = 120 degrees
Answer:
120 degrees
Step-by-step explanation:
Since arc JL is 60 degrees, the central angle is also 60 degrees.
Point K is the intersection of tanges at J and L, therefore KJM and KLM are complementary or equal 90 degrees.
look at quadrilateral JKLM whose sum of internal angles = 360.
Therefore
angle JKL plus angle KLM plus angle LMJ plus angle MJK = 360 degrees
angle JKL + 90 + 60 + 90 = 360
In a random sample of 40 refrigerators, the mean repair cost was $150. Assume the population standard deviation is $15.50. Construct a 99% confidence interval for the population mean repair cost. Then change the sample size to n = 60. Which confidence interval has the better estimate?
Answer: ($143.69, $156.31)
Step-by-step explanation:
Confidence interval to estimate population mean :
[tex]\overline{x}\ \pm z\dfrac{\sigma}{\sqrt{n}}[/tex]
, where [tex]\sigma[/tex] = population standard deviation
n= sample size
[tex]\overline{x}=[/tex] Sample mean
z= critical value.
As per given,
n= 40
[tex]\sigma[/tex] = $15.50
[tex]\overline{x}=[/tex] $150
Critical value for 99% confidence level = 2.576
Then, 99% confidence interval for the population mean:
[tex]150\pm(2.576)\dfrac{15.50}{\sqrt{40}}\\\\\Rightarrow\ 150\pm6.31 \ \ (approx)\\\\\Rightarrow(150-6.31,150+6.31)=(143.69,156.31)[/tex]
Hence, the required confidence interval : ($143.69, $156.31)
when Charles eats Oreos , he likes to dunk 2 out of every 5 cookies in a cold glass of milk. if he eats a total of 15 Oreos , how many will he dunk ? how many will ge eat without dunking?
Answer: 6 with milk, 9 without
Step-by-step explanation:
2/5 of the cookies he eats are dunked. Thus, simply do 2/5, or .4*15 to get that 6 cookies are dunked, and 15-6 to get that 9 cookies are not dunked.
Hope it helps <3
Which describes the graph in words?
A. All numbers less than -10 and less than or equal to 8.
B. All numbers greater than -10 and less than 8
C. All numbers greater than or equal to -10 and less than or equal to 8
D. All numbers greater than -10 and less than or equal to 8.
D. All numbers greater than -10 and less than or equal to 8
A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five. The study involved a large random sample of mothers and children and was conducted over several years. What is the population of interest in this survey
Answer: Parents and children ( till the age of 5) of Norway
Step-by-step explanation:
The population in a survey is the group of people sharing common features or characteristics as per the researcher point of view.Here, A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five.
Since the study involved a large random sample of mothers and children and was conducted over several years.
So, the population of interest in this survey is "Parents and children ( till the age of 5) of Norway".
When testing the claim that p 1p1equals=p 2p2, a test statistic of zequals=2.04 is obtained. Find the p-value obtained from this test statistic.
Answer:
0.0414 with an upper tailed test
Step-by-step explanation:
Claim: P1P1 = P2P2
The above is a null hypothesis
The alternative hypothesis for a two-tailed test would be:
P1P1 \=/ P2P2
Where "\=/" represents "not equal to".
Using a z-table or z-calculator, we derive the p-value (probability value) for the z-score 2.04
With an upper tailed test, the
2 × [probability that z>2.04] = 2[0.0207] = 0.0414
This is the p-value for the test statistic.
Focus is on the alternative hypothesis.
Consider a triangle ABC like the one below. Suppose that B=36°, C= 62°, and b= 40. (The figure is not drawn to scale.) Solve the triangle.
Round your answers to the nearest tenth.
If there is more than one solution, use the button labeled "or".
Answer:
A=82°
a= 67.4
c = 60.1
Step-by-step explanation:
For A
A+B+C =180°
A= 180-(B+C)
A= 180-(36+62)
A= 189-(98)
A= 82°
For a
a/sinA= b/sinB
a/sin82= 40/sin36
a= (40*sin82)/sin36
a=( 40*0.9903)/0.5878
a=67.39
Approximately = 67.4
For c
c/sinC= b/sinB
c= (sinC*b)/sinB
c= (sin62*40)/sin36
c =(0.8829*40)/0.5878
c = 60.08
Approximately = 60.1
F(n)=6.5n+4.5 find the 5th term of the sequence defined by the given rule
Answer:
37
Step-by-step explanation:
To find the fifth term , we have to take the value of n as 5
So, F(5)= 6.5 (5) +4.5
= 32.5 + 4.5
= 37
A small fruit basket with 6 apples and 6 oranges costs $7.50. A different fruit basket with 10 apples and 5 oranges costs $8.75. If x is the cost of one apple and y is the cost of one orange, the system of equations below can be used to determine the cost of one apple and one orange. 6x+6y=7.50 10x+5y=8.75 What is the cost of one apple?
Answer:
$0.50
Step-by-step explanation:
Let's remove common factors from the equations.
x + y = 1.25 . . . . divide the first equation by 62x +y = 1.75 . . . divide the second equation by 5Subtracting the first equation from the second, we find the cost of an apple:
(2x +y) -(x +y) = 1.75 -1.25
x = 0.50
The cost of one apple is $0.50.
Graph a line that contains the point (-7,-4)and has a slope of - 2/3
Hi there! :)
Answer:
Given the information, we can write an equation in slope-intercept form
(y = mx + b) to graph the line:
Plug in the slope for 'm', the y-coordinate of the point given for 'y', and the
x-coordinate given for 'x':
-4 = -2/3(-7) + b
-4 = 14/3 + b
Solve for b:
-12/3 = 14/3 + b
-12/3 - 14/3 = b
-26/3 = b
Therefore, the equation of the line is y = -2/3x - 26/3 (Graphed below)
Some points on the line include:
(-7, -4)
(-4, -6)
(0, -26/3)
(2, -10)
(5, -12)
Given the radius of a circle is 7 cm, what is the circumference?
Answer:
14π or 43.96
Step-by-step explanation:
C = 2πr and we know that r = 7 so C = 14π or 43.96.
Consider this quote: "In a recent survey, 65 out of 100 consumers reported that they preferred plastic bags instead of paper bags for their groceries. If there is no difference in the proportions who prefer each type in the population, the chance of such extreme results in a sample of this size is about .03. Because .03 is less than .05, we can conclude that there is a statistically significant difference in preference." Give a numerical value for each of the following.
a. The p-value.
b. The level of significance, α.
c. The sample proportion.
d. The sample size.
e. The null value.
Answer:
Step-by-step explanation:
The p value (probability of obtaining results as extreme the z score if null is true) is usually the value derived to make a conclusion and in this case the p value is 0.03
The level of significance is the value usually compared with the p value which is 0.05
The sample promotion is 65 out of 100 = 65/100 = 0.65
The sample size is the total number of consumers which is 100
The null value is usually the default value. The null value would assume that there is no difference in the proportions who prefer each type in the population. There are two preferences: 100/2 = 50- 0.5 for each preference.
Look at the number pattern shown below:3 × 17 = 5133 × 167 = 5511333 × 1667 = 555111What will be 33333 × 166667?
Answer:
33333 x 166667 = 5555511111
I think that is the answer you wanted
Step-by-step explanation:
166667
x 33333
5555511111
Find the present value of an investment that is worth $19,513.75 after earning 3% simple interest for 512 years.
Answer:
$16,750.00
Step-by-step explanation:
Simple interest:
I = Prt
Value of an investment of value P over t years at r interest rate:
F = P + Prt
F = P(1 + rt)
19,513.75 = P(1 + 0.03 * 5.5)
1.165P = 19,513.75
P = 16,750
Answer: $16,750.00
The present value of the investment was $16,750 which is worth $19,513.75 after earning 3% simple interest for 512 years.
What is the simple interest?Simple interest is defined as interest paid on the original principal and calculated with the following formula:
S.I. = P × R × T, where P = Principal, R = Rate of Interest in % per annum, and T = Time, usually calculated as the number of years. The rate of interest is in percentage r% and is to be written as r/100
We have been given data as:
Rate of Interest (R) = 3% = 3/100 = 0.03
Time (T) = 512 years
Value of an investment of value P over t years at r interest rate:
A = P + Prt
A = P(1 + rt)
19,513.75 = P(1 + 0.03 × 5.5)
19,513.75 = 1.165P
1.165P = 19,513.75
P = 19,513.75/1.165
P = 16,750
Thus, the present value of the investment was $16,750 which is worth $19,513.75 after earning 3% simple interest for 512 years.
Learn more about the simple interest here:
brainly.com/question/22621039
#SPJ2
A bag contains a collection of distinguishable marbles. The bag has two red marbles, three green ones, one lavender one, two yellows, and two orange marbles. HINT [See Example 7.] How many sets of four marbles include exactly two green marbles
Answer:
63
Step-by-step explanation:
Given that;
The bag has two red marbles, n(red) =2
three green ones marbles, n(green) = 3
one lavender one marbles, n(lavender) = 1
two yellows marbles, n(yellow ) = 2
two orange marbles. n(orange) = 2
number of non green marbles = 2+1+2+2 = 7
The objective is to find out how many sets of four marbles include exactly two green marbles
Since sets of four marbles contain exactly two green marbles, then N(select 2 from 3 marbles and 2 from 7 marbles)
= [tex]^3C_2 \times ^{7}C _2[/tex]
= [tex]\dfrac{3!}{2!(3-2)!} \times \dfrac{7!}{2!(7-2)!}[/tex]
= [tex]\dfrac{3*2!}{2!} \times \dfrac{7*6*5!}{2!(5)!}[/tex]
= [tex]3 \times 7\times 3[/tex]
= 63
Which pairs of angles are alternate exterior angles? select yes or no
A - No
B - No
C - Yes
D - Yes
.
C and D are alternate exterior angles
For the functions f(x)=8 x 2 +7x and g(x)= x 2 +2x , find (f+g)(x) and (f+g)(3)
Answer:
(f+g)(x)= 9x² + 9x
(f+g)(3) = 108
Step-by-step explanation:
f(x)=8x² +7x
g(x)= x² +2x
(f+g)(x) = f(x) + g(x) = 8x² +7x +x² +2x = 9x² + 9x
(f+g)(x)= 9x² + 9x
(f+g)(3)= 9*3² + 9*3 = 108
4. Simplify the following.
3
a. 2-X5-:11
3
x5
5
6
7
Answer:
[tex]1 \frac{1}{4} [/tex]Step-by-step explanation:
[tex]2 \frac{3}{7} \times 5\frac{5}{6} \div 11 \frac{1}{3} [/tex]
Convert the mixed number to an improper fraction
[tex] \frac{17}{7} \times \frac{35}{6} \div \frac{34}{3} [/tex]
To divide by a fraction, multiply the reciprocal of that fraction
[tex] \frac{17}{7} \times \frac{35}{6} \times \frac{3}{34} [/tex]
Reduce the number with the G.C.F 7
[tex]17 \times \frac{5}{6} \times \frac{3}{34} [/tex]
Reduce the numbers with the G.C.F 17
[tex] \frac{5}{6} \times \frac{3}{2} [/tex]
Reduce the numbers with the G.C.F 3
[tex] \frac{5}{2} \times \frac{1}{2} [/tex]
Multiply the fraction
[tex] \frac{5}{4} [/tex]
In mixed fraction:
[tex]1 \frac{1}{4} [/tex]
Hope this helps..
Good luck on your assignment...
Suppose that you have $100. You have two options for investing your money.
Option 1: Increase by $10 each year
Year
Amount
1
100
110
Type:
a =
b =
Answer:
Option One:
type : linear growth
a : 120
b : 130
Option 2:
type: linear growth
d : 121
e : 133
Step-by-step explanation:
its right on EDG 2020
Option One:
type: linear growth
a: 120
b: 130
Option 2:
type: linear growth
d: 121
e: 133
What is linear and exponential growth?Linear growth occurs with the aid of including an equal amount in each unit of time. An exponential increase happens while a preliminary population will increase by the same percent or issue over the same time increments or generations.
What is the distinction between linear and exponential?Linear and exponential relationships vary within the way the y-values change whilst the x-values increase with the aid of a steady quantity: In linear dating, the y-values have identical variations. In an exponential relationship, the y-values have identical ratios.
Learn more about Linear growth here: brainly.com/question/4025726
#SPJ2
A factory manufactures chairs and tables, each requiring the use of three operations: cutting, assembly, and finishing. The first operation can use at most 40 hours; the second at most 42 hours; and the third at most 25 hours. A chair requires 1 hour of cutting, 2 hours of assembly, and 1 hour of finishing; a table needs 2 hours of cutting, 1 hour of assembly, and 1 hour of finishing. If the profit is $20 per unit for a chair and $30 for a table, what is the maximum revenue? Round your answer to the nearest whole number. Do not include a dollar sign or comma in your answer.
Answer:
z(max) = 650 $
x₁ = 10 units
x₂ = 15 units
Step-by-step explanation:
That is a linear programming problem, we will use a simplex method to solve it
Formulation:
Let´s call x₁ number of chairs and x₂ number of tables then :
Item (in hours) cutting assembly finishing Profit ($)
Chairs (x₁) 1 2 1 20
Tables (x₂) 2 1 1 30
Availability 40 42 25
Objective Function
z = 20*x₁ + 30x₂ ( to maximize) subject to:
x₁ + 2x₂ ≤ 40
2x₁ + x₂ ≤ 42
x₁ + x₂ ≤ 25
x₁ , x₂ >= 0
Using excel or any other software we find:
z(max) = 650
x₁ = 10
x₂ = 15
The chairs and tables manufactured by the factory is an illustration of linear programming, where the maximum revenue is 674
Let x represent chairs, and y represent tables
So, the given parameters are:
Cutting:
Chairs: 1 hourTable: 2 hoursHour available: 40So, the constraint is:
[tex]\mathbf{x + 2y \le 40}[/tex]
Assembly:
Chairs: 2 hoursTable: 1 hourHour available: 42So, the constraint is:
[tex]\mathbf{2x + y \le 42}[/tex]
Finishing:
Chairs: 1 hourTable: 1 hourHour available: 25So, the constraint is:
[tex]\mathbf{x + y \le 25}[/tex]
The unit profit on the items are:
Chairs: $20Table: $30So, the objective function to maximize is:
[tex]\mathbf{Max\ z = 20x + 30y}[/tex]
And the constraints are:
[tex]\mathbf{x + 2y \le 40}[/tex]
[tex]\mathbf{2x + y \le 42}[/tex]
[tex]\mathbf{x + y \le 25}[/tex]
[tex]\mathbf{x,y \ge 0}[/tex]
Using graphical method (see attachment for graph), we have the following feasible points:
[tex]\mathbf{(x,y) = \{(10,15),\ (17,8),\ (14.67, 12.67)\}}[/tex]
Calculate the objective function using the feasible points.
[tex]\mathbf{z = 20 \times 10 + 30 \times 15}[/tex]
[tex]\mathbf{z = 650}[/tex]
[tex]\mathbf{z = 20 \times 17 + 30 \times 8}[/tex]
[tex]\mathbf{z = 580}[/tex]
[tex]\mathbf{z = 20 \times 14.67+ 30 \times 12.67}[/tex]
[tex]\mathbf{z = 673.5}[/tex]
Approximate
[tex]\mathbf{z = 674}[/tex]
Hence, the maximum revenue is 674
Read more about linear programming at:
https://brainly.com/question/14225202
Amber says that the data set is left-skewed because the box is farther to the left on the number line. (A) Is Amber correct? (B) Explain your reasoning.
(SAT Prep) Find the value of x.
Answer:
x = 65°
Step-by-step explanation:
Naming the sides of the parallelogram formed ABCD as shown in the attached image to this solution.
Angle A = 2x (vertically opposite angles are equal)
Angle A = Angle C (opposite angles of a parallelogram are equal)
Angle A = Angle C = 2x
(Angle C) + 50° = 180° (Sum of angles on a straight line is 180°)
2x + 50° = 180°
2x = 180° - 50° = 130°
x = (130°/2) = 65°
Hope this Helps!!!
Answer:
65 degrees
Step-by-step explanation:
The state of CT claims that the average time on death row is 15 years. A random survey of 75 death row inmates revealed that the average length of time on death row is 17.8 years with a standard deviation of 5.9 years. Conduct a hypothesis to test the state of CT's claim. What type of test should be run? t-test of a mean z-test of a proportion The alternative hypothesis indicates a right-tailed test left-tailed test two-tailed test Calculate the p-value. What is the decision? We reject the claim that the average time on death row is 15 years We fail to reject the claim that the average time on death row is 15 years
Answer:
a)The calculated value t = 4.111 > 1.9925 at 5 % level of significance
Null hypothesis is rejected
The claim that the average time on death row is not 15 years
b) The p-value is 0.000101<0.05
we reject Null hypothesis
The claim that the average time on death row is not 15 years
Step-by-step explanation:
Step(i):-
Sample size 'n' =75
Mean of the sample x⁻ = 17.8
standard deviation of the sample (S) = 5.9
Mean of the Population = 15
Null hypothesis:H₀:μ = 15 years
Alternative Hypothesis :H₁:μ≠15 years
Step(ii):-
Test statistic
[tex]t = \frac{x^{-} -mean}{\frac{S}{\sqrt{n} } }[/tex]
[tex]t = \frac{x^{-} -mean}{\frac{S}{\sqrt{n} } }=\frac{17.8-15}{\frac{5.9}{\sqrt{75} } }[/tex]
t = 4.111
Degrees of freedom
ν = n-1 = 75-1=74
t₀.₀₂₅ = 1.9925
The calculated value t = 4.111 > 1.9925 at 5 % level of significance
Null hypothesis is rejected
The claim that the average time on death row is not 15 years
P-value:-
The p-value is 0.000101<0.05
we reject Null hypothesis
The claim that the average time on death row is not 15 years
what equals 1+1= Why can't I see any answers help i logged off etc is it just me?
Answer:
1 + 1 = 2
Step-by-step explanation:
^
Answer:
no , it's happening to everyone , even I can't see it .
PLEASE ANSWER FAST I WILL MARK BRAINLEIST AMD 20 POINTSBased on the figure below what is the value of X
Answer:
[tex]\boxed{9}[/tex]
Step-by-step explanation:
The two angles are complementary to each other.
That means they add up to 90 degrees.
[tex]5x+15+30=90[/tex]
[tex]5x+45=90[/tex]
[tex]5x=45[/tex]
[tex]x=9[/tex]
Answer:
x = 9
Step-by-step explanation:
So you know that the total is 90 degrees.
What you need to do is create an equation.
5x + 15 + 30 = 90
Then, solve the equation like this.
5x + 15 + 30 = 90
5x + 45 = 90
5x = 90 - 45
5x = 45
x = 45 ÷ 5
x = 9
Hope this helps! :)
1. Manuel quiere fabricar banderitas chilenas para venderlas en los partidos de la selección nacional. Si se demora 1 hora en hacer 45 banderitas y trabaja 5 horas diarias. ¿Cuántos días se demorará en fabricar 1800 banderitas?
Answer:
[tex]\large \boxed{\text{Eight days}}[/tex]
Step-by-step explanation:
1. Calculate the hours
[tex]\text{Hours} = \text{1800 flags} \times \dfrac{\text{1 h}}{\text{45 flags}} = \textbf{40 h}[/tex]
2. Calculate the days
[tex]\text{Days} = \text{40 h} \times \dfrac{\text{1 da}}{\text{5 h}} = \text{8 da}\\\\\text{It will take $\large \boxed{\textbf{eight days}}$ to make 4500 flags.}[/tex]
Let T:V→W be a linear transformation from a vector space V into a vector space W. Prove that the range of T is a subspace of W.
Answer:
The range of T is a subspace of W.
Step-by-step explanation:
we have T:V→W
This is a linear transformation from V to W
we are required to prove that the range of T is a subspace of W
0 is a vector in range , u and v are two vectors in range T
T = T(V) = {T(v)║v∈V}
{w∈W≡v∈V such that T(w) = V}
T(0) = T(0ⁿ)
0 is Zero in V
0ⁿ is zero vector in W
T(V) is not an empty subset of W
w₁, w₂ ∈ T(v)
(v₁, v₂ ∈V)
from here we have that
T(v₁) = w₁
T(v₂) = w₂
t(v₁) + t(v₂) = w₁+w₂
v₁,v₂∈V
v₁+v₂∈V
with a scalar ∝
T(∝v) = ∝T(v)
such that
T(∝v) ∈T(v)
so we have that T(v) is a subspace of W. The range of T is a subspace of W.
Find the length of AG
Answer:
[tex]AG=22[/tex]
Step-by-step explanation:
Follow the next steps:
[tex]\frac{A-B}{A-E} =\frac{B-C}{E-F} =\frac{C-D}{F-G} =\frac{A-C}{A-F} =\frac{B-D}{E-G} =\frac{A-D}{A-G}[/tex]
Let:
[tex]\frac{A-B}{A-E} =\frac{B-C}{E-F}\\ \\\frac{4}{A-E} =\frac{5}{10x}\\ \\Solving\hspace{3}for\hspace{3}A-E\\\\A-E=8x[/tex]
Now:
[tex]\frac{C-D}{F-G} =\frac{A-C}{A-F} \\\\\frac{2}{F-G} =\frac{9}{18x} \\\\Solving\hspace{3}for\hspace{3}F-G\\\\F-G=4x[/tex]
Hence:
[tex]A-G=(A-E)+(E-F)+(F-G)=22x[/tex]
Finally:
[tex]\frac{B-D}{E-G} =\frac{A-D}{A-G}\\\\\frac{A-D}{B-D} =\frac{A-G}{E-G}\\[/tex]
[tex]\frac{11}{7} =\frac{22x}{14x} \\\\\frac{11x^{2} }{7} -\frac{11}{7} =0\\\\[/tex]
Hence:
[tex]x=1\\x=-1[/tex]
Since it would be absurd for [tex]x=-1[/tex], the real solution is [tex]x=1[/tex]
Therefore:
[tex]AG=22[/tex]
A catering company is catering a large wedding reception. The host of the reception has
asked the company to spend a total of $454 on two types of meat: chicken and beef. The
chicken costs $5 per pound, and the beef costs $ 7 per pound. If the catering company
buys 25 pounds of chicken, how many pounds of beef can they buy?
The answer is 47 pounds
Explanation:
1. First, let's calculate the amount of money that was spent on chicken
$5 per pound of chicken x 25 pounds = $125
2. Calculate the amount of money left to buy beef by subtracting the total spend on chicken to the total of the budget.
$454 (total) - $125 (chicken) = $329
3. Calculate how many pounds of beef you can buy with the money left by dividing the money into the price for one pound.
$329 / $7 = 47 pounds
the solution of the equation 0=4+4(m+1) is
Answer:
[tex]\boxed{m = -2}[/tex]
Step-by-step explanation:
[tex]0 = 4+4(m+1)[/tex]
Resolving Parenthesis
[tex]0 = 4+4m + 4[/tex]
[tex]0 = 4m+8[/tex]
Subtracting 8 to both sides
[tex]-8 = 4m[/tex]
[tex]4m = -8[/tex]
Dividing both sides by 4
m = -8/4
m = -2
Step-by-step explanation:
4+4m+4= 0
4m+8=0
4m=-8
m= -8/4=-2