Find the lateral area of the prism.

Find The Lateral Area Of The Prism.

Answers

Answer 1

Answer:

576"

Step-by-step explanation:

AL=ph

AL= (4*12)12

AL= 48*12

AL=576"


Related Questions

Assume that there is a 6% rate of disk drive failure in a year. a. If all your computer data is stored on a hard disk drive with a copy stored on a second hard disk drive, what is the probability that during a year, you can avoid catastrophe with at least one working drive? b. If copies of all your computer data are stored on independent hard disk drives, what is the probability that during a year, you can avoid catastrophe with at least one working drive? four a. With two hard disk drives, the probability that catastrophe can be avoided is . (Round to four decimal places as needed.) b. With four hard disk drives, the probability that catastrophe can be avoided is . (Round to six decimal places as needed.)

Answers

Answer: 0.9964

Step-by-step explanation:

Consider,

P (disk failure) = 0.06

q = 0.06

p = 1- q

p = 1- 0.06,

p = 0.94

Step 2

Whereas p represents the probability that a disk does not fail. (i.e. working entire year).

a)

Step 3

a)

n = 2,

let x be a random variable for number...

Continuation in the attached document

In which table does y vary inversely with x? A. x y 1 3 2 9 3 27 B. x y 1 -5 2 5 3 15 C. x y 1 18 2 9 3 6 D. x y 1 4 2 8 3 12

Answers

Answer:

In Table C, y vary inversely with x.

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Step-by-step explanation:

We are given four tables and asked to find out in which table y vary inversely with x.

We know that an inverse relation has a form given by

y = k/x

xy = k

where k must be a constant

Table A:

x     |      y

1     |      3

2     |     9

3     |    27

1×3 = 3

2×9 = 18

3×27 = 81

3 ≠ 18 ≠ 81

Hence y does not vary inversely with x.

Table B:

x     |      y

1     |     -5

2     |     5

3     |    15

1×-5 = -5

2×5 = 10

3×15 = 45

-5 ≠ 10 ≠ 45

Hence y does not vary inversely with x.

Table C:

x     |      y

1     |      18

2     |     9

3     |     6

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Hence y vary inversely with x.

Table D:

x     |      y

1     |      4

2     |     8

3     |    12

1×4 = 4

2×8 = 16

3×12 = 36

4 ≠ 16 ≠ 36

Hence y does not vary inversely with x.

A car travels 133 mi averaging a certain speed. If the car had gone 30 mph​ faster, the trip would have taken 1 hr less. Find the​ car's average speed.

Answers

Answer:

49.923 mph

Step-by-step explanation:

we know that the car traveled 133 miles in h hours at an average speed of x mph.

That is, xh = 133.

We can also write this in terms of hours driven: h = 133/x.

 

If x was 30 mph faster, then h would be one hour less.

That is, (x + 30)(h - 1) = 133, or h - 1 = 133/(x + 30).

We can rewrite the latter equation as h = 133/(x + 30) + 1

We can then make a system of equations using the formulas in terms of h to find x:

h = 133/x = 133/(x + 30) + 1

133/x = 133/(x + 30) + (x + 30)/(x + 30)

133/x = (133 + x + 30)/(x + 30)

133 = x*(133 + x + 30)/(x + 30)

133*(x + 30) =  x*(133 + x + 30)

133x + 3990 = 133x + x^2 + 30x

3990 = x^2 + 30x

x^2 + 30x - 3990 = 0

Using the quadratic formula:

x = [-b ± √(b^2 - 4ac)]/2a  

= [-30 ± √(30^2 - 4*1*(-3990))]/2(1)  

= [-30 ± √(900 + 15,960)]/2

= [-30 ± √(16,860)]/2

= [-30 ± 129.846]/2

= 99.846/2  -----------  x is miles per hour, and a negative value of x is neglected, so we'll use the positive value only)

= 49.923

Check if the answer is correct:

h = 133/49.923 = 2.664, so the car took 2.664 hours to drive 133 miles at an average speed of 49.923 mph.

If the car went 30 mph faster on average, then h = 133/(49.923 + 30) = 133/79.923 = 1.664, and 2.664 - 1 = 1.664.

Thus, we have confirmed that a car driving 133 miles at about 49.923 mph would have arrive precisely one hour earlier by going 30 mph faster

Which statement about the following equation is true?
2x2-9x+2-1​

Answers

Complete Question:

Which statement about the following equation is true?

[tex]2x^2-9x+2 = -1[/tex]

A) The discriminant is less than 0, so there are two real roots

B) The discriminant is less than 0, so there are two complex roots

C) The discriminant is greater than 0, so there are two real roots

D) The discriminant is greater than 0, so there are two complex roots

Answer:

C) The discriminant is greater than 0, so there are two real roots

Step-by-step explanation:

The given equation is [tex]2x^2-9x+2 = -1[/tex] which by simplification becomes

[tex]2x^2 - 9x + 3 = 0[/tex]

For a quadratic equation of the form [tex]ax^2 + bx + c = 0[/tex], the discriminant is given by the equation, [tex]D = b^2 - 4ac[/tex]

If the discriminant D is greater than 0, the roots are real and different

If the discriminant D is equal to 0, the roots are real and equal

If the discriminant D is less than 0, the roots are imaginary

For the quadratic equation under consideration, a = 2, b = -9, c = 3

Let us calculate the discriminant D

D = (-9)² - 4(2)(3)

D = 81 - 24

D = 57

Since the Discriminant D is greater than 0, the roots are real and different.

Answer:

Step-by-step explanation:

C) The discriminant is greater than 0, so there are two real roots

17. An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. How large a sample is need it if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean

Answers

Answer:

A sample of at least 541 is needed if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean.

Step-by-step explanation:

We are given that an electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours.

We have to find a sample such that we are 98% confident that our sample mean will be within 4 hours of the true mean.

As we know that the Margin of error formula is given by;

The margin of error =  [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]

where, [tex]\sigma[/tex] = standard deviation = 40 hours

            n = sample size

            [tex]\alpha[/tex] = level of significance = 1 - 0.98 = 0.02 or 2%

Now, the critical value of z at ([tex]\frac{0.02}{2}[/tex] = 1%) level of significance n the z table is given as 2.3263.

So, the margin of error =  [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]

                 [tex]4=2.3263 \times \frac{40}{\sqrt{n} }[/tex]

                 [tex]\sqrt{n}= \frac{40 \times 2.3263}{ 4}[/tex]

                  [tex]\sqrt{n}=23.26[/tex]

                   n = [tex]23.26^{2}[/tex] = 541.03 ≈ 541

Hence, a sample of at least 541 is needed if we wish to be 98% confident that our sample mean will be within 4 hours of the true mean.

Sam weights 51kg. What is this weight to the nearest stone?. Use this conversion, 1kg= 2.2 pounds and 14 pounds= 1 stone

Answers

Sam's weight to the nearest stone is equal to 8.0 stone.

Given the following data:

Sam's weight = 51 kg.1 kg = 2.2 pounds.14 pounds = 1 stone.

To determine Sam's weight to the nearest stone:

How to convert the units of measurement.

In this exercise, you're required to determine Sam's weight to the nearest stone. Thus, we would convert his weight in kilograms to pounds and lastly to stone as follows:

Conversion:

1 kg = 2.2 pounds.

51 kg = [tex]51 \times 2.2[/tex] = 112.2 pounds.

Next, we would convert the value in pounds to stone:

14 pounds = 1 stone.

112.2 pounds = X stone.

Cross-multiplying, we have:

[tex]14X = 112.2\\\\X=\frac{112.2}{14}[/tex]

X = 8.01 8.0 stone.

Read more on weight here: brainly.com/question/13833323

Find the directional derivative of f at the given point in the direction indicated by the angle θ. f(x, y) = y cos(xy), (0, 1), θ = π/3

Answers

Answer:

√3/2

Explanation:

The directional derivative at the given point is gotten using the formula;

∇f(x,y)•u where u is the unit vector in that direction.

∇f(x,y) = f/x i + f/y j

Given the function f(x, y) = y cos(xy),

f/x = -y²sin(xy) and

f/y = -xysin(xy)+cos(xy)

∇f(x,y) = -y²sin(xy) i + (cos(xy)-xysin(xy)) j

∇f(x,y) at (0,1) will give;

∇f(0,1) = -0sin0 i + cos0j

∇f(0,1) = 0i+j

The unit vector in the direction of angle θ is given as u = cosθ i + sinθ j

u = cos(π/3)i+ sin(π/3)j

u = 1/2 i + √3/2 j

Taking the dot product of both vectors;

∇f(x,y)•u = (0i+j)•(1/2 i + √3/2 j)

Note that i.i = j.j = 1 and i.j = 0

∇f(x,y)•u = 0 + √3/2

∇f(x,y)•u = √3/2

The directional derivative of [tex]f[/tex] at the given point in the direction indicated is [tex]\frac{\sqrt{3}}{2}[/tex].

How to calculate the directional derivative of a multivariate function

The directional derivative is represented by the following formula:

[tex]\nabla_{\vec v} f = \nabla f(x_{o},y_{o}) \cdot \vec v[/tex]    (1)

Where:

[tex]\nabla f(x_{o}, y_{o})[/tex] - Gradient evaluated at point [tex](x_{o},y_{o})[/tex].[tex]\vec v[/tex] - Directional vector

The gradient of [tex]f[/tex] is calculated below:

[tex]\nabla f (x_{o},y_{o}) = \left[\begin{array}{cc}\frac{\partial f}{\partial x} (x_{o}, y_{o}) \\\frac{\partial f}{\partial y} (x_{o}, y_{o})\end{array}\right][/tex] (2)

Where [tex]\frac{\partial f}{\partial x}[/tex] and [tex]\frac{\partial f}{\partial y}[/tex] are the partial derivatives with respect to [tex]x[/tex] and [tex]y[/tex], respectively.

If we know that [tex](x_{o}, y_{o}) = (0, 1)[/tex], then the gradient is:

[tex]\nabla f(x_{o}, y_{o}) = \left[\begin{array}{cc}-y^{2}\cdot \sin xy\\\cos xy -x\cdot y\cdot \sin xy\end{array}\right][/tex]

[tex]\nabla f (x_{o}, y_{o}) = \left[\begin{array}{cc}-1^{2}\cdot \sin 0\\\cos 0-0\cdot 1\cdot \sin 0\end{array}\right][/tex]

[tex]\nabla f (x_{o}, y_{o}) = \left[\begin{array}{cc}0\\1\end{array}\right][/tex]

If we know that [tex]\vec v = \cos \frac{\pi}{3}\,\hat{i} + \sin \frac{\pi}{3} \,\hat{j}[/tex], then the directional derivative is:

[tex]\Delta_{\vec v} f = \left[\begin{array}{cc}0\\1\end{array}\right]\cdot \left[\begin{array}{cc}\cos \frac{\pi}{3} \\\sin \frac{\pi}{3} \end{array}\right][/tex]

[tex]\nabla_{\vec v} f = (0)\cdot \cos \frac{\pi}{3} + (1)\cdot \sin \frac{\pi}{3}[/tex]

[tex]\nabla_{\vec v} f = \frac{\sqrt{3}}{2}[/tex]

The directional derivative of [tex]f[/tex] at the given point in the direction indicated is [tex]\frac{\sqrt{3}}{2}[/tex]. [tex]\blacksquare[/tex]

To learn more on directional derivatives, we kindly invite to check this verified question: https://brainly.com/question/9964491

Which of the following is false? Correlation measures the strength of linear association between two numerical variables. If the correlation between two variables is close to 0.01, then there is a very weak linear relation between them. Correlation coefficient and the slope always have the same sign (positive or negative). If the correlation coefficient is 1, then the slope must be 1 as well.

Answers

Answer:

If the correlation coefficient is 1, then the slope must be 1 as well.

Step-by-step explanation:

Coefficient of correlation is used in statistics to determine the relationship between two variables. Correlation coefficient and slope always have same sign. It measures the strength of linear relation between two variables. The values of correlation coefficient ranges between 0 to 1. where 0 determines that there is no relationship between two variables.

A triangle has interior measures of 32° and 90°. What is the measure of the third angle?

Answers

Answer:

58°

Step-by-step explanation:

Let the measure of third angle be X

The sum of interior angle of triangle = X

Let's create an equation

[tex]x + 32 + 90 = 180[/tex]

Add the numbers

[tex]x + 122 = 180[/tex]

Move constant to R.H.S and change its sign

[tex]x = 180 - 122[/tex]

Subtract the numbers

[tex]x = 58[/tex] °

Hope this helps...

Best regards!!

Find the area of the shaded region if the dimensions of the unshaded region are 12ft x 20ft . Use 3.14 for π as necessary. - - - no lengthy explanation needed! all I need is the answer! first answer gets brainliest!

Answers

Answer:

810.66 ft²

Step-by-step explanation:

Short answer:

Shaded region:

(12+2*7)*20 - 12*20 + 3.14*((12+2*7)/2)² =14*20 + 530.66 = 810.66 ft²

Answer: 810.66 ft²

I agree.

may someone assist me?

Answers

Answer:

28

Step-by-step explanation:

Let x be the missing segment

We will use the proportionality property to find x

24/16 = 42/x

Simplify 24/16

24/16= (4×6)/(4×4)= 4/6 = 3/2

So 3/2 = 42/x

3x = 42×2

3x = 84

x = 84/3

x= 28

Which graph shows the solution to the system of linear inequalities? y ≥ 2x + 1 y ≤ 2x – 2

Answers

The lines of the inequalities are parallel, and the system of inequalities do not have any solution.

How to determine the solution of the inequalities

The system of inequalities are  given as:

y ≥ 2x + 1 y ≤ 2x – 2

The inequality y ≥ 2x + 1 has the following characteristics:

A slope of 2A y-intercept of 1A closed line, where the upper region is shaded

The inequality y ≤ 2x – 2 has the following characteristics:

A slope of 2A y-intercept of -2A closed line, where the lower region is shaded

See attachment for the graphs of the system of inequalities

Read more about system of inequalities at:

https://brainly.com/question/9774970

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

8lb of the cheaper Candy

17.5lb of the expensive candy

Step-by-step explanation:

Let the cheaper candy be x

let the costly candy be y

X+y = 25.5....equation one

2.2x +7.3y = 25.5(5.7)

2.2x +7.3y = 145.35.....equation two

X+y = 25.5

2.2x +7.3y = 145.35

Solving simultaneously

X= 25.5-y

Substituting value of X into equation two

2.2(25.5-y) + 7.3y = 145.35

56.1 -2.2y +7.3y = 145.35

5.1y = 145.35-56.1

5.1y = 89.25

Y= 89.25/5.1

Y= 17.5

X= 25.5-y

X= 25.5-17.5

X= 8

A tech company is curious about marketing their new drones for home security. Let the proportion of houses that have home security be p. If the tech company would like to know if the proportion of houses that have home security is different than 45%, what are the null and alternative hypotheses

Answers

Answer:

Step-by-step explanation:

The null hypothesis is described as the default hypothesis while the alternative hypothesis us always tested against this null ie the opposite of the null hypothesis.

In this case study, Let the proportion of houses that have home security be p

Thus, the null hypothesis is proportion of houses that have home security is 45% : p = 45%

The alternative hypothesis is proportion of houses that have home security is different than 45%: p =/ 45%

please help all i need is the slope in case the points are hard to see here they are problem 1. (-2,2) (3,-3) problem 2. (-5,1) (4,-2) problem 3. (-1,5) (2,-4)

Answers

Answer: 1. [tex]-\dfrac{5}{6}[/tex]  2. [tex]-\dfrac{1}{3}[/tex] . 3. [tex]-3[/tex]

Step-by-step explanation:

Formula: Slope[tex]=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

1. (-2,2) (3,-3)

Slope [tex]=\dfrac{-3-2}{3-(-2)}[/tex]

[tex]=\dfrac{-5}{3+2}\\\\=\dfrac{-5}{6}[/tex]

Hence, slope of line passing through  (-2,2) (3,-3) is [tex]-\dfrac{5}{6}[/tex] .

2. (-5,1) (4,-2)

Slope [tex]=\dfrac{-2-1}{4-(-5)}[/tex]

[tex]=\dfrac{-3}{4+5}\\\\=\dfrac{-3}{9}\\\\=-\dfrac{1}{3}[/tex]

Hence, slope of line passing through  (-2,2) and (3,-3) is [tex]-\dfrac{1}{3}[/tex] .

3. (-1,5) (2,-4)

Slope [tex]=\dfrac{-4-5}{2-(-1)}[/tex]

[tex]=\dfrac{-9}{2+1}\\\\=\dfrac{-9}{3}\\\\=-3[/tex]

Hence, slope of line passing through (-1,5) and (2,-4) is -3.

A survey found that 39% of all gamers play video games on their smartphones. Ten frequent gamers are randomly selected. The random variable represents the number of frequent games who play video games on their smartphones. What is the value of n

Answers

Answer:

61% i think

Step-by-step explanation:

if you have 39% and it 10 out of a 100 well you have a 39/100 and then n would be 61/100 so 61%

0.39  is the value of n for the video games on their smartphones. Thus option A is correct.

What is probability?

The mathematical discipline known as probability specializes in determining the possibility of an event occurring. Probability, which expresses the probability of a risk, is calculated by dividing the total possible combinations by the frequency of favorable events. Composite reliabilities vary from 0 to 1, with 1 representing certainty and 0 representing hesitation.

In a binomial distribution, p stands for the success probability. It refers to the likelihood that a certain number of experiments will result in favorable results. For all binomial attempts, the probability of winning stays constant.

This suggests that there will be a distribution of 39/100. The result after the calculation will be 0.39. Therefore, option A is the correct option.

Learn more about probability, Here:

https://brainly.com/question/11234923

#SPJ2

The question is incomplete, the complete question will be :

A survey found that  39 % of all gamers play video games on their smartphones. Ten frequent gamers are randomly selected. The random variable represents the number of frequent games who play video games on their smartphones. What is the value of n ?

A) 0.39

B) 0.10

C) 10

D) x

You will note the wheel has 38 slots. There are two green slots (labeled
0,00) and 36 slots which alternate red/black and are numbered 01-36. A
player participates by tossing a small ball around the wheel as the wheel
spins, and the ball lands in one of the 38 slots. The goal is for the ball to
land in a slot that the player predicted it would, and bet money on
happening. Define the following events:
E = The ball lands in an even numbered slot
M = The ball lands in a slot that is numbered a multiple of three (3,6,9,
12, etc...)
Use the given information to calculate the conditional probability M|E.
Round your answer to four decimal places.

Answers

Answer:

~0.3158

Step-by-step explanation:

Number of even numbers in the range of 1 - 38 is 38/2 = 19

=> P(E) = 19/38 = 1/2

Having: 38 = 3 x 12 + 2, then the number of numbers that is a multiple of 3 in the range of 1 - 38 is 12

=> P(M) = 12/38 = 6/19

Having: 38 = 6 x 6 + 2, then the number of numbers that is a multiple of 6 (or multiple of 2 and 3) is 6

=> P(E and M) = 6/38 = 3/19

Applying the conditional probability formula:

P(M|E) = P(E and M)/P(E) = (3/19)/(1/2) = 6/19 = ~0.3158

Please help asap.
A pizza is cut into six unequal slices (each cut starts at the center). The largest slice measures $90$ degrees If Larry eats the slices in order from the largest to the smallest, then the number of degrees spanned by a slice decreases at a constant rate. (So the second slice is smaller than the first by a certain number of degrees, then the third slice is smaller than the second slice by that same number of degrees, and so on.) What is the degree measure of the fifth slice Larry eats?

Answers

Answer:

The answer is 5th angle = [tex]\bold{42^\circ}[/tex]

Step-by-step explanation:

Given that pizza is divided into six unequal slices.

Largest slice has an angle of [tex]90^\circ[/tex].

He eats the pizza from largest to smallest.

Let the difference in angles in each slice = [tex]d^\circ[/tex]

1st angle = [tex]90^\circ[/tex]

2nd angle = 90-d

3rd angle = 90-d-d = 90 - 2d

4th angle = 90-2d-d = 90 - 3d

5th angle = 90-3d-d = 90 - 4d

6th angle = 90-4d -d = 90 - 5d

We know that the sum of all the angles will be equal to [tex]360^\circ[/tex] (The sum of all the angles subtended at the center).

i.e.

[tex]90+90-d+90-2d+90-3d+90-4d+90-5d=360\\\Rightarrow 540 - 15d = 360\\\Rightarrow 15d = 540 -360\\\Rightarrow 15d = 180\\\Rightarrow d = 12^\circ[/tex]

So, the angles will be:

1st angle = [tex]90^\circ[/tex]

2nd angle = 90- 12 = 78

3rd angle = 78-12 = 66

4th angle = 66-12 = 54

5th angle = 54-12 = 42

6th angle = 42 -12 = 30

So, the answer is 5th angle = [tex]\bold{42^\circ}[/tex]

Scores turned in by an amateur golfer at the Bonita Fairways Golf Course in Bonita Springs, Florida, during and are as follows: Season: 7377787674727476 Season: 7069747684797078a. Calculate the mean (to the nearest whole number) and the standard deviation (to decimals) of the golfer's scores, for both years.MeanStandard deviationMeanStandard deviationb. What is the primary difference in performance between and

Answers

Complete question is;

Scores turned in by an amateur golfer at the Bonita Fairways Golf Course in Bonita Springs, Florida, during 2005 and 2006 are as follows:

2005 Season: 73 77 78 76 74 72 74 76

2006 Season: 70 69 74 76 84 79 70 78

​A) Calculate the mean (to the nearest whole number) and the standard deviation (to decimals) of the golfer's scores, for both years.

B) What is the primary difference in performance between 2005 and 2006? What improvement,

if any, can be seen in the 2006 scores?

Answer:

A) 2006 mean = 75

2005 mean = 75

2006 standard deviation = 5.2644

2005 standard deviation = 2.0702

B)The primary difference is that variation is higher in the 2006 season than the 2005 season.

Step-by-step explanation:

A) Mean is the sum of all scores divided by the number of scores.

Thus;

μ_2005 = (73 + 77 + 78 + 76 + 74 + 72 +74 + 76)/8 = 75

Similarly;

μ_2006 = (70 + 69 + 74 + 76 + 84 + 79 + 70 + 78)/8 = 75

Now, variance is calculated by the sum of the square of mean deviations divided by (n - 1)

Thus;

2005 Variance = ((73-75)² + (77-75)² + (78-75)² + (76-75)² + (74-75)² + (72-75)² + (74-75)² + (76-75)²)/(8-1) = 4.2857

2006 Variance = ((70-75)² + (69-75)² + (74-75)² + (76-75)² + (84-75)² + (79-75)² + (70-75)² + (78-75)²)/(8 - 1) = 27.7143

Now, standard deviation is the square root of variance.

Thus;

2005 standard deviation = √4.2857 = 2.0702

2006 standard deviation = √27.7143 = 5.2644

B) The primary difference is that variation is higher in the 2006 season than the 2005 season.

Also,

In the search to determine if car 1 is slower to accelerate than car 2, the mean time it takes to accelerate to 30 miles per hour is recorded (Note: a car is slower to accelerate if it takes more time to accelerate). Twenty trials of the acceleration time for each car are recorded, and both populations have normal distributions with known standard deviations. What are the hypotheses used in this test

Answers

Answer:

Step-by-step explanation:

The happiest used in a test in statistics are the null and the alternative hypothesis. The null hypothesis is usually the default statement while the alternative hypothesis is thevopposite of the null hypothesis.

In this case study, the null hypothesis is u1 = u2: the average mean time it takes to accelerate to 30 miles per hour for car 1 is the same as that for car 2.

The alternative hypothesis is u1 > u2: the mean time it takes to accelerate to 30 miles per hour is greater than that for car 2 thus car 1 is slower to accelerate as it takes more time.

Compute the following values when the log is defined by its principal value on the open set U equal to the plane with the positive real axis deleted.

a. log i
b. log(-1)
c. log(-1 + i)
d. i^i
e. (-i)^i

Answers

Answer:

Following are the answer to this question:

Step-by-step explanation:

The principle vale of Arg(3)

[tex]Arg(3)=-\pi+\tan^{-1} (\frac{|Y|}{|x|})[/tex]

The principle value of the [tex]\logi= \log(0+i)\ \ \ \ \ _{where} \ \ \ x=0 \ \ y=1> 0[/tex]

So, the principle value:

a)

[tex]\to \log(i)=\log |i|+i Arg(i)\\\\[/tex]

             [tex]=\log \sqrt{0+1}+i \tan^{-1}(\frac{1}{0})\\\=\log 1 +i \tan^{-1}(\infty)\\\=0+i\frac{\pi}{2}\\\=i\frac{\pi}{2}[/tex]

b)

[tex]\to \log(-i)= \log(0-i ) \ \ \ x=0 \ \ \ y= -1<0\\[/tex]

Principle value:

[tex]\to \log(-i)= \log|-i|+iArg(-i) \\\\[/tex]

                 [tex]=\log \sqrt{0+1}+i(-\pi+\tan^{-1}(\infty))\\\\=\log1 + i(-\pi+\frac{\pi}{2})\\\\=-i\frac{\pi}{2}[/tex]

c)

[tex]\to \log(-1+i) \ \ \ \ x=-1, _{and} y=1 \ \ \ x<0 and y>0[/tex]

The principle value:

[tex]\to \log(-1+i)=\log |-1+i| + i Arg(-1+i)[/tex]

                     [tex]=\log \sqrt{1+1}+i(\pi+\tan^{-1}(\frac{1}{1}))\\\\=\log \sqrt{2} + i(\pi-\tan^{-1}\frac{\pi}{4})\\\\=\log \sqrt{2} + i\tan^{-1}\frac{3\pi}{4}\\\\[/tex]

d)

[tex]\to i^i=w\\\\w=e^{i\log i}[/tex]

The principle value:

[tex]\to \log i=i\frac{\pi}{2}\\\\\to w=e^{i(i \frac{\pi}{2})}\\\\=e^{-\frac{\pi}{2}}[/tex]

e)

[tex]\to (-i)^i\\\to w=(-i)^i\\\\w=e^{i \log (-i)}[/tex]

In this we calculate the principle value from b:

so, the final value is [tex]e^{\frac{\pi}{2}}[/tex]

f)

[tex]\to -1^i\\\\\to w=e^{i log(-1)}\\\\\ principle \ value: \\\\\to \log(-1)= \log |-1|+iArg(-i)[/tex]

                [tex]=\log \sqrt{1} + i(\pi-\tan^{-1}\frac{0}{-1})\\\\=\log \sqrt{1} + i(\pi-0)\\\\=\log \sqrt{1} + i\pi\\\\=0+i\pi\\=i\pi[/tex]

and the principle value of w is = [tex]e^{\pi}[/tex]

g)

[tex]\to -1^{-i}\\\\\to w=e^(-i \log (-1))\\\\[/tex]

from the point f the principle value is:

[tex]\to \log(-1)= i\pi\\\to w= e^{-i(i\pi)}\\\\\to w=e^{\pi}[/tex]

h)

[tex]\to \log(-1-i)\\\\\ Here x=-1 ,<0 \ \ y=-1<0\\\\ \ principle \ value \ is:\\\\ \to \log(-1-i)=\log\sqrt{1+1}+i(-\pi+\tan^{-1}(1))[/tex]

                    [tex]=\log\sqrt{2}+i(-\pi+\frac{\pi}{4})\\\\=\log\sqrt{2}+i(-\frac{3\pi}{4})\\\\=\log\sqrt{2}-i\frac{3\pi}{4})\\[/tex]

A subcommittee is randomly selected from a committee of eight men and seven women. What is the probability that all three people on the subcommittee are men

Answers

Answer:

The probability that all three people on the subcommittee are men

= 20%

Step-by-step explanation:

Number of members in the committee = 15

= 8 men + 7 women

The probability of selecting a man in the committee

= 8/15

= 53%

The probability of selecting three men from eight men

= 3/8

= 37.5%

The probability that all three people on the subcommittee are men

= probability of selecting a man multiplied by the probability of selecting three men from eight men

= 53% x 37.5%

= 19.875%

= 20% approx.

This is the same as:

The probability of selecting 3 men from the 15 member-committee

= 3/15

= 20%

The radius of circle C is 7 cm. ∠BCA (the non shaded region) has a measure of 1.36 radians. Find the length of arc BEA. Show your setup and your work for full credit. Round your answer to two decimal places.

Answers

Answer: 9.52cm

Step-by-step explanation:

The data we have is:

Radius = 7cm

Angle of the arc = 1.36 rads

Now, the perimeter of a full circle is equal to:

P = 2*pi*r

Where 2*pi = 6.28 rads

Then the length of an arc of angle A is

P = A*r

then in our case:

P = 1.36*7cm = 9.52cm

the value of 4^-1+8^-1÷1/2/3^3​

Answers

Answer:

1.9375.

Step-by-step explanation:

To solve this, we must use PEMDAS.

The first things we take care of are parentheses and exponents.

Since there are no parentheses, we do exponents.

4^-1+8^-1÷1/2/3^3​

= [tex]\frac{1}{4} +\frac{1}{8} / 1/ 2/ 27[/tex]

= 1/4 + (1/8) / 1 * (27 / 2)

= 1/4 + (27 / 8) / 2

= 1/4 + (27 / 8) * (1 / 2)

= 1/4 + (27 / 16)

= 4 / 16 + 27 / 16

= 31 / 16

= 1.9375.

Hope this helps!

Find the perimeter and total area of the polygon shape shown below. All measurements are given in inches. Helps please !!!!

Answers

Answer:

perimeter = 56 in

area = 192 sq. in.

Step-by-step explanation:

area of a triangle = 0.5 * b * h

b = 12

h = 8

At = (0.5 * 12 * 8)  = 48

Area of a square

As = 12 * 12 = 144

total area = At + As

total area = 48 + 144

total area = 192 sq. in.

perimeter = add all sides

12 + 12 + 12 + 10 + 10 = 56 in

hope it helps

Simplify 12/ |-4| x3 + |5|

Answers

Answer: 14

Step-by-step explanation:

12/4 times 3 +5

= 3 times 3 + 5

= 9 + 5

= 14

need answers (ASAP!!!) with equations, please!!

Answers

Answer:

a=6, b=5.5

Step-by-step explanation:

By looking at the sides of the triangles it can easily be seen that some of the sides match up. Side b is similar to the side of 11 and same with side a and the side of 3. Since one side is 16 and the other side on the smaller triangle is 8, the bigger triangle is twice as large than the smaller one. So 3 x 2 = 6 and 11 / 2 = 5.5

Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value

Answers

Answer:

z(c)  = - 1,64

We reject the null hypothesis

Step-by-step explanation:

We need to solve a proportion test ( one tail-test ) left test

Normal distribution

p₀ = 63 %

proportion size  p = 51 %

sample size  n = 114

At 5% level of significance   α = 0,05, and with this value we find in z- table z score of z(c) = 1,64  ( critical value )

Test of proportion:

H₀     Null Hypothesis                        p = p₀

Hₐ    Alternate Hypothesis                p < p₀

We now compute z(s) as:

z(s) =  ( p - p₀ ) / √ p₀q₀/n

z(s) =( 0,51 - 0,63) / √0,63*0,37/114

z(s) =  - 0,12 / 0,045

z(s) = - 2,66

We compare z(s) and z(c)

z(s) < z(c)      - 2,66 < -1,64

Therefore as z(s) < z(c)  z(s) is in the rejection zone we reject the null hypothesis

let x = the amoun of raw sugar in tons a procesing plant is a sugar refinery process in one day . suppose x can be model as exponetial distribution with mean of 4 ton per day . The amount of raw sugar (x) has

Answers

Answer:

The answer is below

Step-by-step explanation:

A sugar refinery has three processing plants, all receiving raw sugar in bulk. The amount of raw sugar (in tons) that one plant can process in one day can be modelled using an exponential distribution with mean of 4 tons for each of three plants. If each plant operates independently,a.Find the probability that any given plant processes more than 5 tons of raw sugar on a given day.b.Find the probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day.c.How much raw sugar should be stocked for the plant each day so that the chance of running out of the raw sugar is only 0.05?

Answer: The mean (μ) of the plants is 4 tons. The probability density function of an exponential distribution is given by:

[tex]f(x)=\lambda e^{-\lambda x}\\But\ \lambda= 1/\mu=1/4 = 0.25\\Therefore:\\f(x)=0.25e^{-0.25x}\\[/tex]

a) P(x > 5) = [tex]\int\limits^\infty_5 {f(x)} \, dx =\int\limits^\infty_5 {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_5=e^{-1.25}=0.2865[/tex]

b) Probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day can be solved when considered as a binomial.

That is P(2 of the three plant use more than five tons) = C(3,2) × [P(x > 5)]² × (1-P(x > 5)) = 3(0.2865²)(1-0.2865) = 0.1757

c) Let b be the amount of raw sugar should be stocked for the plant each day.

P(x > a) = [tex]\int\limits^\infty_a {f(x)} \, dx =\int\limits^\infty_a {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_a=e^{-0.25a}[/tex]

But P(x > a) = 0.05

Therefore:

[tex]e^{-0.25a}=0.05\\ln[e^{-0.25a}]=ln(0.05)\\-0.25a=-2.9957\\a=11.98[/tex]

a  ≅ 12

For a certain bathtub, the cold water faucet can fill the tub in 9 minutes. The hot water faucet can fill the tub in 11 minutes. If both faucets
are used together, how long will it take to fill the tub?
Do not do any rounding.​

Answers

Answer:

2 minutes

Step-by-step explanation:

You need to first subtract 9 from 11 and you get 2 minutes.

11 minutes will it take to fill the tub by both hot and cold water faucets.

What is Time?

Time as the progression of events from the past to the present into the future.

Given that,

the cold water faucet can fill the tub in 9 minutes

The hot water faucet can fill the tub in 11 minutes.

If both the faucets are used together then it takes 11 minutes to fill the tub because it takes longer time for hot water faucet to fill the tub.

Therefore it takes 11 min to fill the tub together.

To learn more on Time click:

https://brainly.com/question/28050940

#SPJ5

Other Questions
someone please help!! Which example is most clearly a work of Postmodern literature? - A. A history book that has unintentional factual errors - B. A biography that discusses the subject's family - C. A memoir that suddenly veers into science fiction - D. A how-to guide that presents many illustrations You have 4 lollipops in your hand and this is 1/4 of the packet. How many lollipops were in the whole packet? Parliament voted tunnage and poundage as a means of income for only one year because.Charles disliked the PuritansCharles believed in the divine right of kingsParliament distrusted Charles A block of mass m is suspended by a vertically oriented spring. If the mass of a block is increased to 4m, how does the frequency of oscillation change, if at all The following is information for Palmer Co.:2017 2016 2015Cost of goods sold $643,825 $426,650 $391,300Ending inventory 97,400 87,750 92,500Required:(a) Use the above information to compute inventory turnover for 2016, and its days' sales in inventory at December 31, 2016.Numerator / Denominator = RatioInventory turnover $426,650 / $90,125 = 4.7 timesDays' sales in inventory ?(b) Use the above information to compute inventory turnover for 2017, and its days' sales in inventory at December 31, 2017.Numerator / Denominator = RatioInventory turnover $643,825 / $92,575 = 7.0timesDays' sales in inventory ? A tiling company completes two jobs. The first job has $1200 in labor expenses for 40 hours worked, while the second job has $1560 in labor expenses for 52 hours worked. The relationship between the labor expenses and the hours worked is linear. Which equation can be used to calculate the y-intercept of the linear equation? 1200 = 40 (40) + b 1560 = 30 (40) + b 1560 = 30 (52) + b 1200 = 52 (30) + b What is the solution of this system of linear equations?A. (1, 0)B. (0,0)C. (0, 1)D. X=0Graph is attached , help quick please Amanda just bought a skirt at the GAP that is usually $40 but was marked 20% off.how much did Amanda pay for the skirt? In the 1980s, the term picowave was used to describe food irradiation in order to overcome public resistance by playing on the well-known safety of microwave radiation. Find the energy in MeV of a photon having a wavelength of a picometer. Need Assistance With This*Please Show Work* Why did President Truman relieve General MacArthur of his command? MacArthur wanted to retreat to the 38th parallel. MacArthur wanted to take the entire Korean peninsula. MacArthur wanted to use nuclear weapons on China. MacArthur wanted to use nuclear weapons on Russia. Solve the system of equations using substitution. Write your answer as an ordered triple in the form (x, y, z).X+ y + z = 24x + 5y + z = 122x = -4 Research the immigration of the Polish, the Irish, and the Chinese to the United States. Complete the chart with information about when the majority of this group immigrated, where they settled, what challenges they encountered, and what contributions they made to American society. Polish Irish Chinese Year of major immigration Location of settlement Challenges they faced Contributions made to American society What are the solutions to the system of equations graphed below? Suppose that a consumer has a health insurance program with co-payments of $10 per doctor visit. If the consumer purchases 6 doctor visits and the bill charged by the doctor for 6 visits is $360, the portion of this cost covered by a third-party payer is: Which statement best describes the Roman language of Latin? Latin is understood today by doctors and scientists. Latin is the basis for many modern languages. Latin is an older form of modern-day English. Latin is considered to be a forgotten language. Summarize your thoughts, in a minimum of 2 sentences, on why is it important for healthcare workers to be aware of various cultures grief and death observances? Which social change did the American revolution bring about regarding gender roles write and equation to represent the following statement 28 is 12 less thank K. solve for K K =