Answer:
[tex]AG=22[/tex]
Step-by-step explanation:
Follow the next steps:
[tex]\frac{A-B}{A-E} =\frac{B-C}{E-F} =\frac{C-D}{F-G} =\frac{A-C}{A-F} =\frac{B-D}{E-G} =\frac{A-D}{A-G}[/tex]
Let:
[tex]\frac{A-B}{A-E} =\frac{B-C}{E-F}\\ \\\frac{4}{A-E} =\frac{5}{10x}\\ \\Solving\hspace{3}for\hspace{3}A-E\\\\A-E=8x[/tex]
Now:
[tex]\frac{C-D}{F-G} =\frac{A-C}{A-F} \\\\\frac{2}{F-G} =\frac{9}{18x} \\\\Solving\hspace{3}for\hspace{3}F-G\\\\F-G=4x[/tex]
Hence:
[tex]A-G=(A-E)+(E-F)+(F-G)=22x[/tex]
Finally:
[tex]\frac{B-D}{E-G} =\frac{A-D}{A-G}\\\\\frac{A-D}{B-D} =\frac{A-G}{E-G}\\[/tex]
[tex]\frac{11}{7} =\frac{22x}{14x} \\\\\frac{11x^{2} }{7} -\frac{11}{7} =0\\\\[/tex]
Hence:
[tex]x=1\\x=-1[/tex]
Since it would be absurd for [tex]x=-1[/tex], the real solution is [tex]x=1[/tex]
Therefore:
[tex]AG=22[/tex]
PLEASE ANSWER FAST PLEASE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! The point (1, −1) is on the terminal side of angle θ, in standard position. What are the values of sine, cosine, and tangent of θ? Make sure to show all work.
Answer:
sin = -√2 / 2
cos = √2 / 2
tan = -1
Step-by-step explanation:
Θ is in quad IV
sin = -√2 / 2
cos = √2 / 2
tan = -1
A deep-sea diver is in search of coral reefs.he finds a beautiful one at an elevation of -120 4/7feet. While taking pictures of the reef he catches sight of a manta ray. He swims up 25 3/7feet to check it out.what is the diver's new elevation?
Answer:-95 1/7 feet
Step-by-step explanation:
-120 4/7+25 3/7=-95 1/7 feet
A rectangular waterbed is 7 ft long 5 ft wide and 1 ft tall
How many gallons of water are needed to fill the waterbed?
Assume i gallon is 013 cu ft. Round to the nearest whole galon
Hey there! I'm happy to help!
We want to find the volume of this rectangular waterbed. This means the amount of space it takes up. To find the volume of a rectangular prism, you just multiply together the three side lengths.
7×5×1=35 cubic feet
Now, we need to see how many gallons fit into 35 cubic feet. We see that one gallon is equal to 0.13 cubic feet. So, we can set up a proportion to find how many gallons are needed. We will use g to represent our missing number of gallons.
[tex]\frac{gallons}{cubic feet} = \frac{1}{0.13} =\frac{g}{35}[/tex]
In a proportion, the products of the diagonal numbers are equal. This means that 35, which is 1 multiplied by 35, is equal to 0.13g, which is from multiplying 0.13 by the g.
0.13g=35
We divide both sides by 0.13/
g≈269.23
When rounded to the nearest whole gallon, we will need 269 gallons of water to fill the waterbed.
I hope that this helps! Have a wonderful day! :D
Answer:
Step-by-step explanation:
Since the waterbed is rectangular, its volume would be determined by applying the formula for determining the volume of a cuboid which is expressed as
Volume = length × width × height
Therefore,
Volume of waterbed = 7 × 5 × 1 = 35 cubic feet
1 US gallon = 0.133680556 cubic feet
Therefore, converting 35cubic feet to gallons, it becomes
35/0.133680556 = 261.81818094772 gallons
Rounding up to whole gallon, it becomes 262 gallons
What is 25÷5what is 25 / 5
Answer:
5
Step-by-step explanation:
25/5
=5✖️5=25
=5/1
Answer:
25÷5 = 5 and 25/5 = 125
Step-by-step explanation:
hope this helps!
magazine provided results from a poll of adults who were asked to identify their favorite pie. Among the respondents, % chose chocolate pie, and the margin of error was given as percentage points. What values do , , n, E, and p represent? If the confidence level is %, what is the value of ?
Complete Question
A magazine provided results from a poll of 500 adults who were asked to identify their favorite pie. Among the 500 respondents, 12 % chose chocolate pie, and the margin of error was given as plus or minus 5 percentage points.What values do [tex]\r p , \ \r q[/tex], n, E, and p represent? If the confidence level is 90%, what is the value of [tex]\alpha[/tex] ?
Answer:
a
[tex]\r p[/tex] is the sample proportion [tex]\r p = 0.12[/tex]
[tex]n[/tex] is the sample size is [tex]n = 500[/tex]
[tex]E[/tex] is the margin of error is [tex]E = 0.05[/tex]
[tex]\r q[/tex] represents the proportion of those that did not chose chocolate pie i.e [tex]\r q = 1- \r p[/tex]
b
[tex]\alpha = 10\%[/tex]
Step-by-step explanation:
Here
[tex]\r p[/tex] is the sample proportion [tex]\r p = 0.12[/tex]
[tex]n[/tex] is the sample size is [tex]n = 500[/tex]
[tex]\r q[/tex] represents the proportion of those that did not chose chocolate pie i.e
[tex]\r q = 1- \r p[/tex]
[tex]\r q = 1- 0.12[/tex]
[tex]\r q = 0.88[/tex]
[tex]E[/tex] is the margin of error is [tex]E = 0.05[/tex]
Generally [tex]\alpha[/tex] is the level of significance and it value is mathematically evaluated as
[tex]\alpha = ( 100 - C )\%[/tex]
Where [tex]C[/tex] is the confidence level which is given in this question as [tex]C = 90 \%[/tex]
So
[tex]\alpha = ( 100 - 90 )\%[/tex]
[tex]\alpha = 10\%[/tex]
A table of values of a linear function is shown below. Find the output when the input is N. Type your answer in the space provide
Answer:
[tex] -3n - 7 [/tex]
Step-by-step explanation:
Considering the linear function represented in the table above, to find what output an input "n" would give, we need to first find an equation that defines the linear function.
Using the slope-intercept formula, y = mx + b, let's find the equation.
Where,
m = the increase in output ÷ increase in input = [tex] \frac{-13 - (-10)}{2 - 1} [/tex]
[tex] m = \frac{-13 + 10}{1} [/tex]
[tex] m = \frac{-3}{1} [/tex]
[tex] m = -3 [/tex]
Using any if the given pairs, i.e., (1, -10), plug in the values as x and y in the equation formula to solve for b, which is the y-intercept
[tex] y = mx + b [/tex]
[tex] -10 = -3(1) + b [/tex]
[tex] -10 = -3 + b [/tex]
Add 3 to both sides:
[tex] -10 + 3 = -3 + b + 3 [/tex]
[tex] -7 = b [/tex]
[tex] b = -7 [/tex]
The equation of the given linear function can be written as:
[tex] y = -3x - 7 [/tex]
Or
[tex] f(x) = -3x - 7 [/tex]
Therefore, if the input is n, the output would be:
[tex] f(n) = -3n - 7 [/tex]
Find the value of a A.130 B.86 C.58 D.65
Answer:
Option (B)
Step-by-step explanation:
If two chords intersect inside a circle, measure of angle formed is one half the sum of the arcs intercepted by the vertical angles.
Therefore, 86° = [tex]\frac{1}{2}(a+c)[/tex]
a + c = 172°
Since the chords intercepting arcs a and c are of the same length, measures of the intercepted arcs by these chords will be same.
Therefore, a = c
⇒ a = c = 86°
Therefore, a = 86°
Option (B) will be the answer.
help plsssssssssssss
Answer:
[tex]z = \frac{x}{y} [/tex]
Step-by-step explanation:
Let x be the price of carton of ice cream
Let y be the number of grams in carton
Let z be price per gram.
[tex]z = \frac{x}{y} [/tex]
Which means price of carton of ice cream divided by the number of grams in carton equals price per gram.
Hope this helps ;) ❤❤❤
Explain how the interquartile range of a data set can be used to identify outliers. The interquartile range (IQR) of a data set can be used to identify outliers because data values that are ▼ less than equal to greater than ▼ IQR Upper Q 3 minus 1.5 (IQR )Upper Q 3 plus IQR Upper Q 3 plus 1.5 (IQR )or ▼ less than equal to greater than ▼ IQR Upper Q 1 plus 1.5 (IQR )Upper Q 1 minus IQR Upper Q 1 minus 1.5 (IQR )are considered outliers.
Answer:
- greater than Upper Q 3 plus 1.5 (IQR)
- less than Upper Q 1 minus 1.5 (IQR)
Step-by-step explanation:
To identify outliers the interquartile range of the dataset can be used
Outliers can be identified as data values that are
- greater than Upper Q 3 plus 1.5 (IQR)
- less than Upper Q 1 minus 1.5 (IQR)
Using the interquartile range concept, it is found that:
The interquartile range (IQR) of a data set can be used to identify outliers because data values that are 1.5IQR less than Q1 and 1.5IQR more than Q3 and considered outliers.
----------------------------
The interquartile range of a data-set is composed by values between the 25th percentile(Q1) and the 75th percentile(Q3).It's length is: [tex]IQR = Q3 - Q1[/tex]Values that are more than 1.5IQR from the quartiles are considered outliers, that is:[tex]v < Q1 - 1.5IQR[/tex] or [tex]v > Q3 + 1.5IQR[/tex]
Thus:
The interquartile range (IQR) of a data set can be used to identify outliers because data values that are 1.5IQR less than Q1 and 1.5IQR more than Q3 and considered outliers.
A similar problem is given at https://brainly.com/question/14683936
W varies inversely as the square root of x when x=4 w=4 find when x=25
Answer:
8/5
Step-by-step explanation:
w = k / √x
4 = k / √4
k = 8
w = 8 / √x
w = 8 / √25
w = 8/5
The side length of the cube is s. Find the domain of the volume of the cube.
Answer:
-∞<x<∞
Step-by-step explanation:
volume of a cube=s^3
the domain is (-∞,∞) the domain is all the real number of s
Zoey wants to use her iPad throughout a 6-hour flight. Upon takeoff, she uses the iPad for 2 hoursand notices that the battery dropped by 25%, from 100% to 75%. How many total hours can Zoeyexpect from the iPad on a full battery charge?
Answer:
8 hours
Step-by-step explanation:
25%= 2 hrs
100%=8 hrs
brainliest plsssssssssssssssssssss
-zylynn
In order to determine the average price of hotel rooms in Atlanta, a sample of 64 hotels was selected. It was determined that the average price of the rooms in the sample was $112 with a standard deviation of $16. Use a 0.05 level of significance and determine whether or not the average room price is significantly different from $108.50.
Which form of the hypotheses should be used to test whether or not the average room price is significantly different from $108.50?
H0:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50
c. mu is less than $108.50mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Ha:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50mu is less than $108.50
c. mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Answer:
H0 :
a. mu is greater than or equal to $108.50
Ha:
c. mu is less than or equal to $108.50
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence
In the given scenario the test is to identify whether the average room price significantly different from $108.50. We take null hypothesis as mu is greater or equal to $108.50.
According to the histogram below, how many people took the test? 39 9 16 23
The correct answer is D. 23
Explanation:
Histograms similar to other graphs represent numerical information, usually by using bars, as well as ranges. For example, in the case presented the information presented belongs to the scores obtained in a test, which are shown using ranges. Moreover, it is possible to know the total of people that took the test by adding each of the frequencies, as the frequency in the y-axis shows the number of times the range repeated and it is expected each grade registered belongs to 1 person. This means the total of people is equal to 2 (score from 60-69) + 9 (score from 70-79) + 7 (score from 80-89) + 5 (score from 90-99) = 23 people.
Answer:
the answer is 23
Step-by-step explanation:
hopes this helps:)
Evaluate the expression 23^0-15^1+18^0+(43-12)
Answer:
18
Step-by-step explanation:
23^0 - 15^1 + 18^0 + (43 - 12) =
= 1 - 15 + 1 + 31
= -14 + 1 + 31
= -13 + 31
= 18
Simplify the expression . 39*x / 13
Answer:
3x
Step-by-step explanation:
39*x / 13
39/13 * x
3*x
3x
Answer:
3x
Step-by-step explanation:
We are given the expression:
39*x /13
We want to simplify this expression. It can be simplified because both the numerator (top number) and denominator (bottom number) can be evenly divided by 13.
(39*x /13) / (13/13)
(39x/13) / 1
3x / 1
When the denominator is 1, we can simply eliminate the denominator and leave the numerator as our answer.
3x
The expression 39*x/13 can be simplified to 3x
If y varies directly as x, and y is 6 when x is 72, what is the value of y when x is 8?
NO
54
оо
96
Answer:
2/3
Step-by-step explanation:
The equation for direct variation is: y = kx, where k is a constant.
Here, we see that y varies directly with x when y = 6 and x = 72, so let's plug these values into the formula to find k:
y = kx
6 = k * 72
k = 6/72 = 1/12
So, k = 1/12. Now our formula is y = (1/12)x. Plug in 8 for x to find y:
y = (1/12)x
y = (1/12) * 8 = 8/12 = 2/3
Thus, y = 2/3.
~ an aesthetics lover
Answer:
Step-by-step explanation: I hope i'm right
[tex]y \alpha x\\y=kx....(1)\\6=72k\\\frac{6}{72} =\frac{72k}{72} \\\\1/12 =k\\y = 1/12x=relationship-between;x-and;y\\x =8 , y =?\\y = \frac{8}{12} \\Cross-Multiply\\12y =8\\12y/12 = 8/12\\\\y = 2/3[/tex]
Please answer this correctly without making mistakes
Answer:
3/11
Step-by-step explanation:
There are eleven equal parts.
So the denominator is 11.
He copies 8 parts on Sunday.
11-8=3.
He copied 3 parts on Saturday.
Hope this helps ;) ❤❤❤
The radius of a right circular cone is increasing at a rate of 1.1 in/s while its height is decreasing at a rate of 2.4 in/s. At what rate is the volume of the cone changing when the radius is 109 in. and the height is 198 in.
Answer:
[tex]79591.8872 in^3/s[/tex]
Step-by-step explanation:
we know that the volume of a right circular cone is give as
[tex]V(r,h)= \frac{1}{3} \pi r^2h\\\\[/tex]
Therefore differentiating partially with respect to r and h we have
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [2rh\frac{dr}{dt} +r^2\frac{dh}{dt}][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [218*198*1.1+109^2*2.4][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [47480.4+28514.4]\\\\\frac{dV}{dt} = \frac{\pi}{3} [75994.8]\\\\ \frac{dV}{dt} = 3.142 [25331.6]\\\\ \frac{dV}{dt} =79591.8872 in^3/s[/tex]
The same bedroom furniture set costs $1,500 in both Florida and Alabama. The table gives a breakdown of the taxes someone would pay when purchasing the furniture set in either state. Alabama Florida State of Alabama: 4.225% County Tax: 1.375% City Tax: 3.0% State of Florida: 6.5% County Tax: 1% City Tax: 1.625% Which statement is true? A. The furniture set is cheaper in Alabama, because the amount of sales tax will be lower by about $8. B. The furniture set is cheaper in Florida, because the amount of sales tax will be lower by about $10. C. The furniture set is cheaper in Alabama, because the amount of sales tax will be lower by $10. D. The furniture set costs the same in either state, because the amount of sales tax will be the same for the two locations.
Answer:
A: True
B, C and D: False
Step-by-step explanation:
We have a total sales tax for Alabama that is:
[tex]T_A=4.225+1.375+3=8.6[/tex]
The total sales tax for Florida is:
[tex]T_F=6.5+1+1.625=9.125[/tex]
The total sales tax is greater in Florida than in Alabama.
A. The furniture set is cheaper in Alabama, because the amount of sales tax will be lower by about $8. TRUE
The sales tax difference in this purchase can be calculated as:
[tex]1500(T_F-T_A)=1500\left(\dfrac{9.125-8.6}{100}\right)=1500\cdot 0.00525=7.875\approx 8[/tex]
B. The furniture set is cheaper in Florida, because the amount of sales tax will be lower by about $10. FALSE (it is cheaper in Alabama)
C. The furniture set is cheaper in Alabama, because the amount of sales tax will be lower by $10. FALSE (the sale tax in Alabama is $129)
The amount of sales tax in Alabama is:
[tex]ST_A=1500\cdot T_A=1500\cdot 0.086=129[/tex]
D. The furniture set costs the same in either state, because the amount of sales tax will be the same for the two locations. FALSE (it is not the same in both states).
Help!! It’s much appreciated in this time
Answer: D. y = (x - 3)² + 2
Step-by-step explanation:
Inverse is when you swap the x's and y's and solve for y.
y = [tex]\sqrt{x-2}[/tex] + 3
Swap: x = [tex]\sqrt{y-2}[/tex] + 3
Solve: x - 3 = [tex]\sqrt{y-2}[/tex]
(x - 3)² = [tex](\sqrt{y-2})^2[/tex]
(x - 3)² = y - 2
(x - 3)² + 2 = y
Construct the confidence interval for the population mean mu. c = 0.90, x = 16.9, s = 9.0, and n = 45. A 90% confidence interval for mu is:______.
Answer:
The 90% confidence interval for population mean is [tex]14.7 < \mu < 19.1[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean is [tex]\= x = 16.9[/tex]
The confidence level is [tex]C = 0.90[/tex]
The sample size is [tex]n = 45[/tex]
The standard deviation
Now given that the confidence level is 0.90 the level of significance is mathematically evaluated as
[tex]\alpha = 1-0.90[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the standardized normal distribution table. The values is [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
The reason we are obtaining critical values for [tex]\frac{\alpha }{2}[/tex] instead of that of [tex]\alpha[/tex] is because [tex]\alpha[/tex] represents the area under the normal curve where the confidence level 1 - [tex]\alpha[/tex] (90%) did not cover which include both the left and right tail while [tex]\frac{\alpha }{2}[/tex] is just considering the area of one tail which is what we required calculate the margin of error
Generally the margin of error is mathematically evaluated as
[tex]MOE = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]MOE = 1.645* \frac{ 9 }{\sqrt{45} }[/tex]
[tex]MOE = 2.207[/tex]
The 90% confidence level interval is mathematically represented as
[tex]\= x - MOE < \mu < \= x + MOE[/tex]
substituting values
[tex]16.9 - 2.207 < \mu < 16.9 + 2.207[/tex]
[tex]16.9 - 2.207 < \mu < 16.9 + 2.207[/tex]
[tex]14.7 < \mu < 19.1[/tex]
In Sparrowtown, the use of landlines has been declining at a rate of 5% every year. If there are 20,000 landlines this year, how many will there be in 15 years? If necessary, round your answer to the nearest whole number.
Answer:
5,000
Step-by-step explanation:
If it decreases by 5% a year, it'll decrease by 75% in 15 years
i.e 1 year = 5%
15 years = x
Cross multiply
x = 75%
Therefore, since it decreases by 75%
100 - 75 x 20,000 = 5,000
100
According to genetic theory, there is a very close to even chance that both children in a two child family will be of the same gender. Here are two possibilities.
(i). 24 couples have two children. In 16 or more of these families, it will turn out that both children are of the same gender.
(ii). 12 couples have two children. In 8 or more of these families, it will turn out that both children are of the same gender. Which possibility is more likely and why?
Answer:
Therefore scenario (ii) is more likely to occur than scenario (i), and by almost 3 times.
Step-by-step explanation:
(i) probability with 16 success out of 24 = 16/24 = 2/3
(ii) (i) probability with 8 success out of 12 = 8/12 = 2/3
Since the two experiments have the same probability, the observed probabilities are the same.
HOWEVER, since the theoretically probability is 1/2, 16.7% less than the experimental results, the number N of trials comes into play.
Using the binomial distribution,
(i)
p = 1/2
N = 24
x = 16 (number of successes)
P(16,24) = C(24,16) p^16* (1-p)^8
= 735471* (1/65536)*(1/256)
= 0.0438
(ii)
p = 1/2
N = 12
x = 8 (number of successes)
P(8,12) = C(12,8) p^8* (1-p)^4
= 495*1/256*1/16
= 0.1208
Therefore scenario (ii) is more likely to occur than scenario (i), and by almost 3 times.
Note: It would help to mention the topic you're on so answers will correspond to what is expected. Here we cover probability and binomial distribution.
A particle is moving with the given data. Find the position of the particle. a(t) = 2t + 5, s(0) = 6, v(0) = −5
Answer:
The position of the particle is described by [tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]
Step-by-step explanation:
The position function is obtained after integrating twice on acceleration function, which is:
[tex]a(t) = 2\cdot t + 5[/tex], [tex]\forall t \geq 0[/tex]
Velocity
[tex]v(t) = \int\limits^{t}_{0} {a(t)} \, dt[/tex]
[tex]v(t) = \int\limits^{t}_{0} {(2\cdot t + 5)} \, dt[/tex]
[tex]v(t) = 2\int\limits^{t}_{0} {t} \, dt + 5\int\limits^{t}_{0}\, dt[/tex]
[tex]v(t) = t^{2}+5\cdot t + v(0)[/tex]
Where [tex]v(0)[/tex] is the initial velocity.
If [tex]v(0) = -5[/tex], the particular solution of the velocity function is:
[tex]v(t) = t^{2} + 5\cdot t -5, \forall t \geq 0[/tex]
Position
[tex]s(t) = \int\limits^{t}_{0} {v(t)} \, dt[/tex]
[tex]s(t) = \int\limits^{t}_{0} {(t^{2}+5\cdot t -5)} \, dt[/tex]
[tex]s(t) = \int\limits^{t}_0 {t^{2}} \, dt + 5\int\limits^{t}_0 {t} \, dt - 5\int\limits^{t}_0\, dt[/tex]
[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + s(0)[/tex]
Where [tex]s(0)[/tex] is the initial position.
If [tex]s(0) = 6[/tex], the particular solution of the position function is:
[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]
Answer:
Position of the particle is :
[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex]
Step-by-step explanation:
Given information:
The particle is moving with an acceleration that is function of:
[tex]a(t)=2t+5[/tex]
To find the expression for the position of the particle first integrate for the velocity expression:
AS:
[tex]V(t)=\int\limits^0_t {a(t)} \, dt\\v(t)= \int\limits^0_t {(2.t+5)} \, dt\\\\v(t)=t^2+5.t+v(0)\\[/tex]
Where, [tex]v(0)[/tex] is the initial velocity.
Noe, if we tale the [tex]v(0) =-5[/tex] ,
So, the velocity equation can be written as:
[tex]v(t)=t^2+5.t-5[/tex]
Now , For the position of the particle we need to integrate the velocity equation :
As,
Position:
[tex]S(t)=\int\limits^0_t {v(t)} \, dt \\S(t)=\int\limits^0_t {(t^2+5.t-5)} \, dt\\S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+s(0)[/tex]
Where, [tex]S(0)[/tex] is the initial position of the particle.
So, we put the value [tex]s(0)=6[/tex] and get the position of the particle.
Hence, Position of the particle is :
[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex].
For more information visit:
https://brainly.com/question/22008756?referrer=searchResults
The tee for the sixth hole on a golf course is 400 yards from the tee. On that hole, Marsha hooked her ball to the left, as sketched below. Find the distance between Marsha’s ball and the hole to the nearest tenth of a yard. Answer any time! :D
Answer:
181.8 yd
Step-by-step explanation:
The law of cosines is good for this. It tells you for triangle sides 'a' and 'b' and included angle C, the length of 'c' is given by ...
c^2 = a^2 +b^2 -2ab·cos(C)
For the given geometry, this is ...
c^2 = 400^2 +240^2 -2(400)(240)cos(16°) ≈ 33,037.75
c ≈ √33037.75 ≈ 181.8 . . . yards
Marsha's ball is about 181.8 yards from the hole.
Answer:
181.8 yds
Step-by-step explanation:
I got it correct on founders edtell
What is a3 if an=64(12)n−1
Answer:
[tex]\huge\boxed{a_3=9,216}[/tex]
Step-by-step explanation:
[tex]a_n=64(12)^{n-1}\\\\\text{substitute}\ n=3:\\\\a_3=64(12)^{3-1}=64(12)^2=64(144)=9,216[/tex]
Which parent function is represented by the graph?
A. The quadratic parent function
B. The absolute value parent function
C. An exponential parent function
D. The linear parent function
Answer:
D. The linear parent function
Step-by-step explanation:
Linear functions are always characterized by a straight line graph with or without an intercept on the vertical or horizontal axis. A linear function usually has an independent variable and a dependent variable. The independent variable is commonly depicted as x while the dependent variable is y.
Thus a linear equation is an equation of the type y=ax where a is a constant term. The equation of a straight line graph his y=mx +c, where;
m= gradient of the straight line graph
x= the independent variable
y= the dependent variable
c= the vertical intercept
Answer:
The linear parent function :)
Step-by-step explanation:
A hotel rents 210 rooms at a rate of $ 60 per day. For each $ 2 increase in the rate, three fewer rooms are rented. Find the room rate that maximizes daily revenue.
Answer:
r=$14,400
The hotel should charge $120
Step-by-step explanation:
Revenue (r)= p * n
where,
p = price per item
n = number of items sold
A change in price leads to a change in number sold
A variable to measure the change in p and n needs to be introduced
Let the variable=x
Such that
p + x means a one dollar price increase
p - x means a one dollar price decrease
n + x means a one item number-sold increase
n - x means a one item number-sold decrease
for each $2 price increase (p + 2x) there are 3 fewer rooms are rented (n-3x)
know that at $60 per room, the hotel rents 210 rooms
r = (60 + 2x) * (210 - 3x)
=12,600-180x+420x-6x^2
=12,600+240x-6x^2
r=2100+40x-x^2
= -x^2 +40x+2100=0
Solve the quadratic equation
x= -b +or- √b^2-4ac / 2a
a= -1
b=40
c=2100
x= -b +or- √b^2-4ac / 2a
= -40 +or- √(40)^2 - (4)(-1)(2100) / (2)(-1)
= -40 +or- √1600-(-8400) / -2
= -40 +or- √ 1600+8400 / -2
= -40 +or- √10,000 / -2
= -40 +or- 100 / -2
x= -40+100/-2 OR -40-100/-2
=60/-2 OR -140/-2
= -30 OR 70
x=70
The quadratic equation has a maximum at x=70
p+2x
=60+2(30)
=60+60
=$120
r= (60 + 2x) * (210 - 3x)
={60+2(30)}*{(210-3(30)}
r=(60+60)*(210-90)
=120*120
=$14,400
Solve the equation for X. 2(2x-4)=3(x+4) A -4 B 4 C 20 D 6
Answer:
X=20
Step-by-step explanation:
The answer is C