Find the magnitude of the resultant of forces 6N and 8N acting at 240° to each other

Answers

Answer 1

Answer:

magnitude of the resultant of forces is 11.45 N

Explanation:

given data

force F1 = 6N

force F2 = 8N

angle = 240°

solution

we get here resultant force that is express as

F(r) = [tex]\sqrt{F_1^2+F_2^2+2F_1F_2cos\ \theta}[/tex]    ..............1

put here value and we get

F(r) = [tex]\sqrt{6^2+8^2+2\times 6\times 8 \times cos240}[/tex]

F(r) =  11.45 N

so magnitude of the resultant of forces is 11.45 N


Related Questions

What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3

Answers

Answer:

3) Transmitted intensity of light if unpolarized light passes through a single polarizing filter = 40 W/m²

- Transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described = 7.5 W/m²

Explanation:

Complete Question

3) What is the transmitted intensity of light if unpolarized light passes through a single polarizing filter and the initial intensity is 80 W/m²?

- What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3 (the setup)? Show all work in your answer.

The image of this setup attached to this question as obtained from online is attached to this solution.

Solution

3) When unpolarized light passes through a single polarizer, the intensity of the light is cut in half.

Hence, if the initial intensity of unpolarized light is I₀ = 80 W/m²

The intensity of the light rays thay pass through the first single polarizer = I₁ = (I₀/2) = (80/2) = 40 W/m²

- According to Malus' law, the intensity of transmitted light through a polarizer is related to the intensity of the incident light and the angle at which the polarizer is placed with respect to the major axis of the polarizer before the current polarizer of concern.

I₂ = I₁ cos² θ

where

I₂ = intensity of light that passes through the second polarizer = ?

I₁ = Intensity of light from the first polarizer that is incident upon the second polarizer = 40 W/m²

θ = angle between the major axis of the first and second polarizer = 30°

I₂ = 40 (cos² 30°) = 40 (0.8660)² = 30 W/m²

In the same vein, the intensity of light that passes through the third/additional polarizer is related to the intensity of light that passes through the second polarizer and is incident upon this third/additional polarizer through

I₃ = I₂ cos² θ

I₃ = intensity of light that passes through the third/additional polarizer = ?

I₂ = Intensity of light from the second polarizer that is incident upon the third/additional polarizer = 30 W/m²

θ = angle between the major axis of the second and third/additional polarizer = 60° (although, it is 90° with respect to the first polarizer, it is the angle it makes with the major axis of the second polarizer, 60°, that matters)

I₃ = 30 (cos² 60°) = 30 (0.5)² = 7.5 W/m²

Hope this Helps!!!

A force of 44 N will stretch a rubber band 88 cm ​(0.080.08 ​m). Assuming that​ Hooke's law​ applies, how far will aa 11​-N force stretch the rubber​ band? How much work does it take to stretch the rubber band this​ far?

Answers

Answer:

The rubber band will be stretched 0.02 m.

The work done in stretching is 0.11 J.

Explanation:

Force 1 = 44 N

extension of rubber band = 0.080 m

Force 2 = 11 N

extension = ?

According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.

F = ke

where k = constant of elasticity

e = extension of the material

F = force applied.

For the first case,

44 = 0.080K

K = 44/0.080 = 550 N/m

For the second situation involving the same rubber band

Force = 11 N

e = 550 N/m

11 = 550e

extension e = 11/550 = 0.02 m

The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch. This is in line with energy conservation.

potential energy stored = [tex]\frac{1}{2}ke^{2}[/tex]

==> [tex]\frac{1}{2}* 550* 0.02^{2}[/tex] = 0.11 J

A commercial diffraction grating has 500 lines per mm. Part A When a student shines a 480 nm laser through this grating, how many bright spots could be seen on a screen behind the grating

Answers

Answer:

The number of bright spot is  m =4

Explanation:

From the question we are told that

    The number of lines is  [tex]s = 500 \ lines / mm = 500 \ lines / 10^{-3} m[/tex]

     The wavelength of the laser is  [tex]\lambda = 480 nm = 480 *10^{-9} \ m[/tex]

Now the the slit is mathematically evaluated as

        [tex]d = \frac{1}{s} = \frac{1}{500} * 10^{-3} \ m[/tex]

Generally the diffraction grating is mathematically represented as

        [tex]dsin\theta = m \lambda[/tex]

Here m is the order of fringes (bright fringes) and at maximum m  [tex]\theta = 90^o[/tex]

    So

          [tex]\frac{1}{500} * sin (90) = m * (480 *10^{-3})[/tex]

=>        [tex]m = 4[/tex]

This  implies that the number of bright spot is  m =4

An ice skater is in a fast spin with her arms held tightly to her body. When she extends her arms, which of the following statements in NOT true?
A. Het total angular momentum has decreased
B. She increases her moment of inertia
C. She decreases her angular speed
D. Her moment of inertia changes

Answers

Answer:

A. Her total angular momentum has decreased

Explanation:

Total angular momentum is the product of her moment of inertia and angular velocity. In this scenario it doesn’t decrease but rather remains constant as the movement of the arms doesn’t have any effect on the total angular momentum.

The movement of the arm under certain conditions however has varying effects and changes on parameters such as the moment of inertia and the angular speed.

A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \rhorho.
(a) Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder in terms of the charge density \rhorho.
(b) What is the electric field at a point outside the volume in terms of the charge per unit length \lambdaλ in the cylinder?
(c) Compare the answers to parts (a) and (b) for r = R.
(d) Graph the electric-field magnitude as a function of r from r = 0 to r = 3R.

Answers

Answer:

the answers are provided in the attachments below

Explanation:

Gauss law state that the net electric field coming out of a closed surface is directly proportional to the charge enclosed inside the closed surface

Applying Gauss law to the long solid cylinder

A) E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]

B) E = 2K λ / r

C) Answers from parts a and b are the same

D) attached below

Applying Gauss's law which states that the net electric field in an enclosed surface is directly ∝ to the charge found in the enclosed surface.

A ) The expression for the electric field inside the volume at a distance r

Gauss law :  E. A = [tex]\frac{q}{e_{0} }[/tex]  ----- ( 1 )

where : A = surface area = 2πrL ,  q = p(πr²L)

back to equation ( 1 )

E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]

B) Electric field at point Outside the volume in terms of charge per unit length  λ

Given that:  linear charge density = area * volume charge density

                                            λ    =  πR²P

from Gauss's law : E ( 2πrL) = [tex]\frac{q}{e_{0} }[/tex]

∴ E = [tex]\frac{\pi R^{2}P }{2e_{0}r\pi }[/tex]    ----- ( 2 )

where : πR²P = λ

Back to equation ( 2 )

E = λ  / 2e₀π*r              where : k = 1 / 4πe₀

∴ The electric field ( E ) at point outside the volume in terms of charge per unit Length λ

E = 2K λ / r

C) Comparing answers A and B

Answers to part A and B are similar

Hence we can conclude that Applying Gauss law to the long solid cylinder

E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex], E = 2K λ / r also Answers from parts a and b are the same.

Learn more about Gauss's Law : https://brainly.com/question/15175106

Two objects attract each other with a gravitational force of magnitude 1.02 10-8 N when separated by 19.7 cm. If the total mass of the two objects is 5.14 kg, what is the mass of each

Answers

Answer:

The two masses are 3.39 Kg and 1.75 Kg

Explanation:

The gravitational force of attraction between two bodies is given by the formula;

F = Gm₁m₂/d²

where G is the gravitational force constant = 6.67 * 10⁻¹¹ Nm²Kg⁻²

m₁ = mass of first object; m₂ = mass of second object; d = distance of separation between the objects

Further calculations are provided in the attachment below

the density of gold is 19 300kg/m^3. what is the mass of gold cube with the length 0.2015m?

Answers

Answer:

The mass is [tex]157.87m^3[/tex]

Explanation:

Given data

length of cube= 0.2015 m

density = 19300 kg/m^3.

But the volume of cube is given as [tex]l*l*l= l^3[/tex]

[tex]volume -of- cube= 0.2015*0.2015*0.2015= 0.00818 m^3[/tex]

The density is expressed as = mass/volume

[tex]mass=19300*0.00818= 157.87m^3[/tex]

A dipole moment is placed in a uniform electric field oriented along an unknown direction. The maximum torque applied to the dipole is equal to 0.1 N.m. When the dipole reaches equilibrium its potential energy is equal to -0.2 J. What was the initial angle between the direction of the dipole moment and the direction of the electric field?

Answers

Answer:

 θ  = 180

Explanation:

When an electric dipole is placed in an electric field, there is a torque due to the electric force

           τ = p x E

by rotating the dipole there is a change in potential energy

        ΔU = ∫ τ dθ

        ΔU = p E (cos θ₂ - cos θ₁)

         

when the dipole starts from an angle to the equilibrium position for θ = 0

          ΔU = pE (cos θ  - cos 0)

           cos θ  = 1 + DU / pE)

       

let's apply this expression to our case, the change in potential energy is ΔU = -0.2J

           

let's calculate

          cos θ  = 1 -0.2 / 0.1

          cos θ  = -1

           θ  = 180

A 3-liter container has a pressure of 4 atmospheres. The container is sent underground, with resulting compression into 2 L. Applying Boyle's Law, what will the new pressure be? choices: 2.3 atm 8 atm 6 atm 1.5 atm

Answers

Answer:

6 atm

Explanation:

PV = PV

(4 atm) (3 L) = P (2 L)

P = 6 atm


When looking at the chemical symbol, the charge of the ion is displayed as the
-superscript
-subscript
-coefficient
-product

Answers

Answer:

superscript

Explanation:

When looking at the chemical symbol, the charge of the ion is displayed as the Superscript. This is because the charge of ions is usually written up on the chemical symbol while the atom/molecule is usually written down the chemical symbol. The superscript refers to what is written up on the formula while the subscript is written down on the formula.

An example is H2O . The 2 present represents two molecule of oxygen and its written as the subscript while Fe2+ in which the 2+ is written up is known as the superscript.

Answer:

superscript

Explanation:

Monochromatic coherent light shines through a pair of slits. If the wavelength of the light is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)
a. The distance between the maxima decreases.
b. The distance between the minima decreases.
c. The distance between the maxima stays the same.
d. The distance between the minima increases.
e. The distance between the minima stays the same.

Answers

Answer:

he correct answers are a, b

Explanation:

In the two-slit interference phenomenon, the expression for interference is

          d sin θ= m λ                       constructive interference

          d sin θ = (m + ½) λ             destructive interference

in general this phenomenon occurs for small angles, for which we can write

           tanθ = y / L

           tan te = sin tea / cos tea = sin tea

           sin θ = y / La

un

derestimate the first two equations.

Let's do the calculation for constructive interference

         d y / L = m λ

the distance between maximum clos is and

         y = (me / d) λ

this is the position of each maximum, the distance between two consecutive maximums

         y₂-y₁ = (L   2/d) λ - (L 1 / d) λ₁          y₂ -y₁ = L / d λ

examining this equation if the wavelength decreases the value of y also decreases

the same calculation for destructive interference

         d y / L = (m + ½) κ

         y = [(m + ½) L / d] λ

again when it decreases the decrease the distance

the correct answers are a, b

A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What will be the wavelength if the tension is decreased to 600 N and the frequency is kept constant

Answers

Answer:

The wavelength will be 33.9 cm

Explanation:

Given;

frequency of the wave, F = 1200 Hz

Tension on the wire, T = 800 N

wavelength, λ = 39.1 cm

[tex]F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}[/tex]

Where;

F is the frequency of the wave

T is tension on the string

μ is mass per unit length of the string

λ is wavelength

[tex]\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu = \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\[/tex]

when the tension is decreased to 600 N, that is T₂ = 600 N

[tex]T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2 = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2 = \sqrt{0.11466} \\\\\lambda _2 =0.339 \ m\\\\\lambda _2 =33.9 \ cm[/tex]

Therefore, the wavelength will be 33.9 cm

The interference of two sound waves of similar amplitude but slightly different frequencies produces a loud-soft-loud oscillation we call __________.
a. the Doppler effect
b. vibrato
c. constructive and destructive interference
d. beats

Answers

Answer:

the correct answer is d Beats

Explanation:

when two sound waves interfere time has different frequencies, the result is the sum of the waves is

       y = 2A cos 2π (f₁-f₂)/2    cos 2π (f₁ + f₂)/2

where in this expression the first part represents the envelope and the second part represents the pulse or beatings of the wave.

When examining the correct answer is d Beats

An ice skater spinning with outstretched arms has an angular speed of 5.0 rad/s . She tucks in her arms, decreasing her moment of inertia by 11 % . By what factor does the skater's kinetic energy change? (Neglect any frictional effects.)

Answers

Answer:

  K_{f} / K₀ =1.12

Explanation:

This problem must work using the conservation of angular momentum (L), so that the moment is conserved in the system all the forces must be internal and therefore the torque is internal and the moment is conserved.

Initial moment. With arms outstretched

         L₀ = I₀ w₀

the wo value is 5.0 rad / s

final moment. After he shrugs his arms

         [tex]L_{f}[/tex] = I_{f}  w_{f}

indicate that the moment of inertia decreases by 11%

        I_{f} = I₀ - 0.11 I₀ = 0.89 I₀

        L_{f} = L₀

        I_{f} w_{f}  = I₀ w₀

        w_{f} = I₀ /I_{f}    w₀

let's calculate

        w_{f} = I₀ / 0.89 I₀   5.0

        w_{f} = 5.62 rad / s

Having these values ​​we can calculate the change in kinetic energy

         [tex]K_{f}[/tex] / K₀ = ½ I_{f} w_{f}² (½ I₀ w₀²)

         K_{f} / K₀ = 0.89 I₀ / I₀ (5.62 / 5)²

         K_{f} / K₀ =1.12

The magnitude of the magnetic flux through the surface of a circular plate is 6.80 10-5 T · m2 when it is placed in a region of uniform magnetic field that is oriented at 43.0° to the vertical. The radius of the plate is 8.50 cm. Determine the strength of the magnetic field. mT A circular plate of radius r is lying flat. A field of arrows labeled vector B rising up and to the right pass through the plate.

Answers

Answer:

B = 4.1*10^-3 T = 4.1mT

Explanation:

In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:

[tex]\Phi_B=S\cdot B=SBcos\alpha[/tex]        (1)

ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2

S: surface area of the circular plate = π.r^2

r: radius of the circular plate = 8.50cm = 0.085m

B: magnitude of the magnetic field = ?

α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°

You solve the equation (1) for B, and replace the values of the other parameters:

[tex]B=\frac{\Phi_B}{Scos\alpha}=\frac{6.80*10^{-5}T.m^2}{(\pi (0.085m)^2)cos(43.0\°)}\\\\B=4.1*10^{-3}T=4.1mT[/tex]

The strength of the magntetic field is 4.1mT

When a particular wire is vibrating with a frequency of 6.3 Hz, a transverse wave of wavelength 53.3 cm is produced. Determine the speed of wave pulses along the wire.

Answers

Answer:

335.79cm/s

Explanation:

When a transverse wave of wavelength λ is produced during the vibration of a wire, the frequency(f), and the speed(v) of the wave pulses are related to the wavelength as follows;

v = fλ        ------------------(ii)

From the question;

f = 6.3Hz

λ = 53.3cm

Substitute these values into equation (i) as follows;

v = 6.3 x 53.3

v = 335.79cm/s

Therefore, the speed of the wave pulses along the wire is 335.79cm/s

mention two similarities of citizen and aliens​

Answers

Answer:

The main points of difference between a citizen and alien are: (a) A citizen is a permanent resident of a state, while an alien is a temporary resident, who comes for a specific duration of time as a tourist or on diplomatic assignment. ... Aliens do not possess such rights in the state where they reside temporarily

Explanation:

A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I1 is the moment of inertia of this object with respect to an axis passing through the center of the rod and perpendicular to it and I2 is the moment of inertia with respect to an axis passing through one of the masses, it follows that:

a. I1 > I2
b. I2 > I1.
c. I1 = I2.

Answers

Answer:

B: I2>I1

Explanation:

See attached file

How does an atom of rubidium-85 become a rubidium ion with a +1 charge?

Answers

Answer:

C. The atom loses 1 electron to have a total of 36.

Explanation:

Cations have a positive charge. Cations lose electrons.

The number of electrons in a Rubidium atom is 37. If the atom loses 1 electron, then it has 36 left.

1. In a Millikan type experiment, two horizontal plates are 2.5 cm apart. A latex sphere of
mass 1.5 x 10-15 kg remains stationary when the potential difference between the
plates is 460 V, with the upper plate positive. [2+2+2+2 = 8 marks]
a. Is the sphere charged negatively or positively?
b. What is the magnitude of the electric field intensity between the plates?
C. Calculate the magnitude of the charge on the latex sphere.
d. How many excess or deficit electrons does the sphere have?

Answers

Answer:

Explanation:

a. Is the sphere charged negatively or positively?

The sphere us negatively charged. In a Millikan type experiment, there will be two forces that will be acting on the sphere which are the electric force which acts upward and also the gravity which acts downward.

Because the upper plate is positively charged, there'll what an attractive curve with an upward direction which will be felt by the negatively charged sphere.

b. What is the magnitude of the electric field intensity between the plates?

The magnitude of the electric field intensity between the plates is 18400v/m.

C. Calculate the magnitude of the charge on the latex sphere.

The magnitude of the charge on the latex sphere hae been solved and attached

d. How many excess or deficit electrons does the sphere have?

There are 5 excess electrons that the sphere has.

Check the attachment for further explanation.

An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about _____ years.

Answers

Answer:

An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about  2 years.

Explanation:

Given;

orbital period of 3 years, P = 3 years

To calculate the years of an orbital with a semi-major axis, we apply Kepler's third law.

Kepler's third law;

P² = a³

where;

P is the orbital period

a is the orbital semi-major axis

(3)² = a³

9 = a³

a = [tex]a = \sqrt[3]{9} \\\\a = 2.08 \ years[/tex]

Therefore, An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about  2 years.

A 5.0-Ω resistor and a 9.0-Ω resistor are connected in parallel. A 4.0-Ω resistor is then connected in series with this parallel combination. An ideal 6.0-V battery is then connected across the series-parallel combination of the three resistors. What is the current through (a) the 4.0-Ω resistor? (b) the 5.0-Ω resistor? (c) the 9.0-Ω resistor?

Answers

Answer:

Explanation:

The current through the  resistor is 0.83 A

.

Part b

The current through  resistor is 0.53 A

.

Part c

The current through  resistor is 0.30 A

An asteroid that has an orbit with a semi-major axis of 4 AU will have an orbital period of about ______ years.

Answers

Answer:

16 years.

Explanation:

Using Kepler's third Law.

P2=D^3

P=√d^3

Where P is the orbital period and d is the distance from the sun.

From the question the semi major axis of the asteroid is 4 AU= distance. The distance is always express in astronomical units.

P=?

P= √4^3

P= √256

P= 16 years.

Orbital period is 16 years.

how do a proton and neutron compare?

Answers

Answer:

c.they have opposite charges.

Explanation:

because the protons have a positive charge and the neutrons have no charge.

Use Coulomb’s law to derive the dimension for the permittivity of free space.



Answers

Answer:

Coulomb's law is:

[tex]F = \frac{1}{4*pi*e0} *(q1*q2)/r^2[/tex]

First, force has units of Newtons, the charges have units of Coulombs, and r, the distance, has units of meters, then, working only with the units we have:

N = (1/{e0})*C^2/m^2

then we have:

{e0} = C^2/(m^2*N)

And we know that N = kg*m/s^2

then the dimensions of e0 are:

{e0} = C^2*s^2/(m^3)

(current square per time square over cubed distance)

And knowing that a Faraday is:

F = C^2*S^2/m^2

The units of e0 are:

{e0} = F/m.

A 30 L electrical radiator containing heating oil is placed in a 50 m3room. Both the roomand the oil in the radiator are initially at 10◦C. The radiator with a rating of 1.8 kW is nowturned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s.After some time, the average temperature is measured to be 20◦C for the air in the room,and 50◦C for the oil in the radiator. Taking the density and the specific heat of the oil to be950 kg/m3and 2.2 kJ/kg◦C, respectively, determine how long the heater is kept on. Assumethe room is well sealed so that there are no air leaks.

Answers

Answer:

Explanation:

Heat absorbed by oil

= mass x specific heat x rise in temperature

= 30 x 10⁻³ x 950 x 2.2 x 10³ x ( 50-10 )

= 25.08 x 10⁵ J  

Heat absorbed by air

= 50 x 1.2 x 1.0054 x 10³ x ( 20-10 )

= 6.03 x 10⁵ J

Total heat absorbed = 31.11 x 10⁵ J

If time required = t

heat lost from room

= .35 x 10³ t

Total heat generated in time t

= 1.8 x 10³ t

Heat generated = heat used

1.8 x 10³ t =  .35 x 10³ t  + 31.11 x 10⁵

1.45 x 10³ t = 31.11 x 10⁵

t = 31.11 x 10⁵ / 1.45 x 10³

t = 2145.5 s

Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!

Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern. Do this using three different methods.

The angle to the eighth maximum is 1.12°.

The distance from the slits to the screen is 302.0 cm.

The distance from the central maximum to the fifth minimum is 3.33 cm.

The distance between the slits is 0.000250 m.



The 3 equations I used were 1). d sin θ_m =(m)λ 2). delta x =λL/d and 3.) d(x_n)/L=(n-1/2)λ
but all my answers are different.
DID I DO SOMETHING WRONG!!!!!!!

Answers

Given info

d = 0.000250 meters = distance between slits

L = 302 cm = 0.302 meters = distance from slits to screen

[tex]\theta_8 = 1.12^{\circ}[/tex] = angle to 8th max (note how m = 8 since we're comparing this to the form [tex]\theta_m[/tex])

[tex]x_n = x_5 = 3.33 \text{ cm} = 0.0333 \text{ meters}[/tex] (n = 5 as we're dealing with the 5th minimum )

---------------

Method 1

[tex]d\sin(\theta_m) = m\lambda\\\\0.000250\sin(\theta_8) = 8\lambda\\\\8\lambda = 0.000250\sin(1.12^{\circ})\\\\\lambda = \frac{0.000250\sin(1.12^{\circ})}{8}\\\\\lambda \approx 0.000 000 61082633\\\\\lambda \approx 6.1082633 \times 10^{-7} \text{meters}\\\\ \lambda \approx 6.11 \times 10^{-7} \text{ meters}\\\\ \lambda \approx 611 \text{ nm}[/tex]

Make sure your calculator is in degree mode.

-----------------

Method 2

[tex]\Delta x = \frac{\lambda*L*m}{d}\\\\L*\tan(\theta_m) = \frac{\lambda*L*m}{d}\\\\\tan(\theta_m) = \frac{\lambda*m}{d}\\\\\tan(\theta_8) = \frac{\lambda*8}{0.000250}\\\\\tan(1.12^{\circ}) = \frac{\lambda*8}{0.000250}\\\\\lambda = \frac{1}{8}*0.000250*\tan(1.12^{\circ})\\\\\lambda \approx 0.00000061094306 \text{ meters}\\\\\lambda \approx 6.1094306 \times 10^{-7} \text{ meters}\\\\\lambda \approx 611 \text{ nm}\\\\[/tex]

-----------------

Method 3

[tex]\frac{d*x_n}{L} = \left(n-\frac{1}{2}\right)\lambda\\\\\frac{0.000250*3.33}{302.0} = \left(5-\frac{1}{2}\right)\lambda\\\\0.00000275662251 \approx \frac{9}{2}\lambda\\\\\frac{9}{2}\lambda \approx 0.00000275662251\\\\\lambda \approx \frac{2}{9}*0.00000275662251\\\\\lambda \approx 0.00000061258279 \text{ meters}\\\\\lambda \approx 6.1258279 \times 10^{-7} \text{ meters}\\\\\lambda \approx 6.13 \times 10^{-7} \text{ meters}\\\\\lambda \approx 613 \text{ nm}\\\\[/tex]

There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.

An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?

Answers

Answer:

The astronaut and the satellite are 53.718 m apart.

Explanation:

Given;

mass of spacewalking astronaut, = 88 kg

mass of satellite, = 645 kg

force exerts by the satellite, F = 110N

time for this action, t = 0.45 s

Determine the acceleration of the satellite after the push

F = ma

a = F / m

a = 110 / 645

a = 0.171 m/s²

Determine the final velocity of the satellite;

v = u + at

where;

u is the initial velocity of the satellite = 0

v = 0 + 0.171 x 0.45

v = 0.077 m/s

Determine the displacement of the satellite after 1.4 m

d₁ = vt

d₁ = 0.077 x (1.4 x 60)

d₁ = 6.468 m

According to Newton's third law of motion, action and reaction are equal and opposite;

Determine the backward acceleration of the astronaut after the push;

F = ma

a = F / m

a = 110 / 88

a = 1.25 m/s²

Determine the final velocity of the astronaut

v = u + at

The initial velocity of the astronaut = 0

v = 1.25 x 0.45

v = 0.5625 m/s

Determine the displacement of the astronaut after 1.4 min

d₂ = vt

d₂ = 0.5625 x (1.4 x 60)

d₂ = 47.25 m

Finally, determine the total separation between the astronaut and the satellite;

total separation = d₁ + d₂

total separation = 6.468 m + 47.25 m

total separation = 53.718 m

Therefore, the astronaut and the satellite are 53.718 m apart.

Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. When each of the spheres has lost half its initial charge, the magnitude of the electrostatic force will be

Answers

Answer:

F' = F/4

Thus, the magnitude of electrostatic force will become one-fourth.

Explanation:

The magnitude of force applied by each charge on one another can be given by Coulomb's Law:

F = kq₁q₂/r²   -------------- equation 1

where,

F = Force applied by charges

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of 2nd charge

r = distance between the charges

Now, in the final state the charges on both spheres are halved. Therefore,

q₁' = q₁/2

q₂' = q₂/2

Hence, the new force will be:

F' = kq₁'q₂'/r²

F' = k(q₁/2)(q₂/2)/r²

F' = (kq₁q₂/r²)(1/4)

using equation 1:

F' = F/4

Thus, the magnitude of electrostatic force will become one-fourth.

The magnitude of the electrostatic force will be F' = F/4

The magnitude of the electrostatic force:

Here we used Coulomb's Law:

F = kq₁q₂/r²   -------------- equation 1

Here

F = Force applied by charges

k = Coulomb's Constant

q₁ = magnitude of first charge

q₂ = magnitude of 2nd charge

r = distance between the charges

Now

q₁' = q₁/2

q₂' = q₂/2

So, the new force should be

F' = kq₁'q₂'/r²

F' = k(q₁/2)(q₂/2)/r²

F' = (kq₁q₂/r²)(1/4)

So,

F' = F/4

Learn more about force here: https://brainly.com/question/14282312

Five identical cylinders are each acted on by forces of equal magnitude. Which force exerts the biggest torque about the central axes of the cylinders

Answers

Answer:

From the image, the force as shown in option A will exert the biggest torque on the cylinder about its central axes.

Explanation:

The image is shown below.

Torque is the product of a force about the center of rotation of a body, and the radius through which the force acts. For a given case such as this, in which the cylinders are identical, and the forces are of equal magnitude, the torque at the maximum radius away from the center will exert the maximum torque. Also, the direction of the force also matters. To generate the maximum torque, the force must be directed tangentially away from the circle formed by the radius through which the force acts away from the center. Option A satisfies both condition and hence will exert the most torque on the cylinder.

Other Questions
And for the support of this Declaration, with a firm relianceon the protection of divine Providence, we mutually pledgeto each other our Lives, our Fortunes and our sacredHonorHow does the author appeal to ethos here?O A. By showing that the declaration's signers are serious because theypledge their lives to the contents of the documentB. By presenting premises that lead to a logical conclusionC. By appealing to emotion with serious concepts such as loss anddeathD. By using a repetitive structure to emphasize the importance ofcertain words I am stuck on this question. It would really help if you could help me. Which of these was not a reason why the Allied delegates rejected President Woodrow Wilson's Fourteen Points? A. The Allied delegates wanted Germany to pay reparations for the war. B. The Allied delegates wanted a provision to restore democracy in Russia. C. The Allied delegates felt the Fourteen Points were too easy on Germany. D. The Allied delegates felt the Fourteen Points would restrict their expansion goals. Can someone help me out with these math questions? You can pick one to answer or chose to answer both! Id appreciate the help thank you! According to Thomas Friedman in his book The World is Flat, we have progressed from the globalization of countries to the globalization of multinational corporations to the globalization of ______. Check that your solutions to part (a) and (b) are consistent by substituting the expression for y into your solution for part (a). 9x^2 - y^2 = 1 he most abundant element in the atmosphere can also be found in Given the information below, which is more favorable energetically, the oxidation of succinate to fumarate by NAD+ or by FAD? Fumarate + 2H+ + 2e- Succinate E = 0.031 V NAD+ + 2H+ + 2e- NADH + H+ E = -0.320 FAD + 2H+ + 2e- FADH2 E = -0.219 Mis amigos y yo ___a clase todos los das. 1. A fruitseller bought 200 apples for Rs 300.40 of them were rotten and thrown away.She sold the rest at Rs 2.25 each. Find its gain or loss percent.253A Book of Mathematics-8 a bonus of 4200 is shared by 10 people who works for a company.40% of the bonus is shared equally between 3 managers the rest of the bonus is shared equally between 7 sales people.Peter, one of the sales people says," if the bonus is shared equally between 10 people i will get 25% more money. Janet a manager, says," no you wont get that much extra. show that Janet is correct by working out how much peter thinks he would get and how much he would actually get. You have a 20-bit network part and a 4-bit subnet part. How many hosts can you have per subnet? A) 14 B) 16 C) 254 D) none of the above how many atoms are in 2.10 g of K? molar mass of K=39.10g/mole. A light, rigid rod is 51.4 cm long. Its top end is pivoted on a frictionless horizontal axle. The rod hangs straight down at rest with a small, massive ball attached to its bottom end. You strike the ball, suddenly giving it a horizontal velocity so that it swings around in a full circle. What minimum speed at the bottom is required to make the ball go over the top of the circle? Read this passage from The Sound and the Fury: She dumped the wood into the box behind the stove. Then she removed the overcoat and hat and took a soiled apron down from the wall and put it on and built a fire in the stove. While she was doing so, rattling the grate bars and clattering the lids, Mrs Compson began to call her from the head of the stairs. What is the most likely profession of the character being described? A. Baker B. Housekeeper C. Nanny D. Metal smith Please answer this correctly Use the graph to complete the statement. O is the origin. Ryaxis Ry=x: (2,3) A. (-2, -3) B. (3, -2) C. (2, -3) D. (-3, 2) What multiplication expression is equal to 3/51/4 out of 3/51/4 or 5/31/4 or 3/51/4 or 3/54/1 Write the fraction in simplest form. (3/6) x (7/10) Complete the solution of the equation. Find thvalue of y when x equals -4.- 8x + y = 37Enter the correct answer.