Answer:
2^(1/6) (cos(-pi/12)+i sin(-pi/12))
2^(1/6) (cos(3pi/12)+i sin(3pi/12))
2^(1/6) (cos(7pi/12)+i sin(7pi/12))
2^(1/6) (cos(11pi/12)+i sin(11pi/12))
2^(1/6) (cos(5pi/4)+i sin(5pi/4))
2^(1/6) (cos(19pi/12)+i sin(19pi/12))
Step-by-step explanation:
Let's convert to polar form.
-2i=2(cos(A)+i sin(A) )
There is no real part so cos(A) has to be zero and since we want -2 and we already have 2 then we need sin(A)=-1 so let's choose A=-pi/2.
So z=2(cos(-pi/2)+i sin(-pi/2)).
There are actually infinitely many ways we can write this polar form which we will need.
z=2(cos(-pi/2+2pi k)+i sin(-pi/2+2pi k))
where k is an integer
Now let's find the 6 6th roots or z.
2^(1/6) (cos(-pi/12+2pi k/6)+i sin(-pi/12+2pi k/6))
Reducing
2^(1/6) (cos(-pi/12+pi k/3)+i sin(-pi/12+pi k/3))
Plug in k=0,1,2,3,4,5 to find the 6 6th roots.
k=0:
2^(1/6) (cos(-pi/12+pi (0)/3)+i sin(-pi/12+pi (0)/3))
=2^(1/6) (cos(-pi/12)+i sin(-pi/12))
k=1:
2^(1/6) (cos(-pi/12+pi/3)+i sin(-pi/12+pi/3))
2^(1/6) (cos(3pi/12)+i sin(3pi/12))
k=2:
2^(1/6) (cos(-pi/12+2pi/3)+i sin(-pi/12+2pi/3))
2^(1/6) (cos(7pi/12)+i sin(7pi/12))
k=3:
2^(1/6) (cos(-pi/12+3pi/3)+i sin(-pi/12+3pi/3))
2^(1/6) (cos(11pi/12)+i sin(11pi/12))
k=4:
2^(1/6) (cos(-pi/12+4pi/3)+i sin(-pi/12+4pi/3))
2^(1/6) (cos(15pi/12)+i sin(15pi/12))
2^(1/6) (cos(5pi/4)+i sin(5pi/4))
k=5:
2^(1/6) (cos(-pi/12+5pi/3)+i sin(-pi/12+5pi/3))
2^(1/6) (cos(19pi/12)+i sin(19pi/12))
Caleb made 6 quarts of trail mix for his camping trip. Each week,he ate 4 pints of the trail mix. How many weeks did Caleb have trail mix?
Sry if this is too much
Answer:
3 weeks
Step-by-step explanation:
6 quarts = 12 pints
12 divided by 3 = 4
Step-by-step explanation:
1 quart = 2 pints
6 quarts = 2 x 6 = 12 pints
12 ÷ 4 = 3
He can have 3 weeks
Consider the following theorem. Theorem If f is integrable on [a, b], then b a f(x) dx = lim n→[infinity] n i = 1 f(xi)Δx where Δx = b − a n and xi = a + iΔx. Use the given theorem to evaluate the definite integral. 9 (x2 − 4x + 6) dx 1
Split up the interval [1, 9] into n subintervals of equal length (9 - 1)/n = 8/n :
[1, 1 + 8/n], [1 + 8/n, 1 + 16/n], [1 + 16/n, 1 + 24/n], …, [1 + 8 (n - 1)/n, 9]
It should be clear that the left endpoint of each subinterval make up an arithmetic sequence, so that the i-th subinterval has left endpoint
1 + 8/n (i - 1)
Then we approximate the definite integral by the sum of the areas of n rectangles with length 8/n and height [tex]f(x_i)[/tex] :
[tex]\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx \approx \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right)[/tex]
Take the limit as n approaches infinity and the approximation becomes exact. So we have
[tex]\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx = \lim_{n\to\infty} \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right) \\\\ = \lim_{n\to\infty} \frac8n \sum_{i=1}^n \left(1+\frac{16}n(i-1)+\frac{64}{n^2}(i-1)^2-4-\frac{32}n(i-1)+6\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=1}^n \left(64(i-1)^2-16n(i-1)+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=0}^{n-1} \left(64i^2-16ni+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(64\sum_{i=0}^{n-1}i^2 - 16n\sum_{i=0}^{n-1}i + 3n^2\sum{i=0}^{n-1}1\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{64(2n-1)n(n-1)}{6} - \frac{16n^2(n-1)}{2} + 3n^3\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{49n^3}3-24n^2+\frac{32n}3\right) \\\\= \lim_{n\to\infty} \frac{8\left(49n^2-72n+32\right)}{3n^2} = \boxed{\frac{392}3}[/tex]
12. 12 ounces is roughly the same as
O A. 340 grams.
B. 356 grams.
O C. 400 grams.
O D. 120 grams.
Mark for review (Will be highlighted on the movin
Answer:
A. 340 grams
Step-by-step explanation:
My brain
please help solving.
Answer:
right machine first, then left.6 into left machine, then rightStep-by-step explanation:
a) Putting 6 into the first (left) machine will give an output of ...
y = √(6 -5) = √1 = 1
Putting 1 into the second (right) machine will give an output of ...
y = 1² -6 = -5
This answers the second question, but not the first question.
__
If we put 6 into the right machine first, we get an output of ...
y = 6² -6 = 30
Putting 30 into the left machine, we get an output of ...
y = √(30 -5) = √25 = 5 . . . . . the desired output.
The input must go into the right machine first, then its output goes into the left machine to get a final output of 5 from an input of 6.
__
b) The left machine cannot produce negative outputs, so achieving an output of -5 with the arrangement used in part A is not possible. (green curves in the attached graph)
However, as we have shown above, inputting 6 to the left machine first, following that by processing with the right machine, can produce an output of -5. (purple curve in the attached graph)
Can I have help with 43 and 44 I need to see how to do them thanks.
Answer:
see explanation
Step-by-step explanation:
(43)
3[tex]x^{5}[/tex] - 75x³ ← factor out 3x³ from each term
= 3x³(x² - 25) ← this is a difference of squares and factors in general as
a² - b² = (a - b)(a + b) , thus
x² - 25 = x² - 5² = (x - 5)(x + 5)
Thus
3[tex]x^{5}[/tex] - 75x³ = 3x³(x - 5)(x + 5)
(44)
81c² + 72c + 16 ← is a perfect square of the form
(ac + b)² = a²c² + 2abc + b²
Compare coefficients of like terms
a² = 81 ⇒ a = [tex]\sqrt{81}[/tex] = 9
b² = 16 ⇒ b = [tex]\sqrt{16}[/tex] = 4
and 2ab = 2 × 9 × 4 = 72
Thus
81c² + 72c + 16 = (9c + 4)²
1. 3x^5 -75x³
=3x³(x²-25)
=3x³(x²-5²)
=3x³(x-5)(x+5)
2. 81c²+72c+16
=81c²+36c+36c+16
=9c(9c+4)+4(9c+4)
=(9c+4)(9c+4)
=(9c+4)²
Determine whether the samples are independent or dependent. A data set included the daily number of words spoken by 210 randomly selected women and 210 randomly selected men.a. The samples are independent because there is a natural pairing between the two samples. b. The samples are dependent because there is a natural pairing between the two samples. c. The samples are dependent because there is not a natural pairing between the two samples. d. The samples are independent because there is not a natural pairing between the two samples.
Answer:
The correct answer is:
The samples are independent because there is not a natural pairing between the two samples. (d.)
Step-by-step explanation:
Paired samples or dependent samples are samples in which natural matching or coupling occur, thus creating a data set where data from one sample is uniquely paired to another sample because they are from related groups. Examples are: pre-test/post-test data gotten before and after an intervention, samples from siblings, twins, couples etc.
On the other hand, independent or unpaired samples are those data sets that are gotten from unrelated groups, these type of samples are gotten by matching randomly sampling two unrelated groups without first matching the subjects. In our example, the sample from randomly selected women and men are not paired and unrelated, hence they are independent samples.
The samples are independent because there is not a natural pairing between the two samples. Hence, option (D) is correct.
Let us understand both the events in a systematic manner to answer this question.
Independent Events:
The simple way to understand the events, If the events are not related to each other, then the events are independent of each other. If one event is dependent on another then it is not an independent event.
Example:
Event 1: Toss a coin.
Event 2: Roll a die.
Both the events are independent of each other.
Dependent Events:
The simple way to understand the events, If the events are related to each other, then the events are independent of each other. If one event is dependent on another then it is not an independent event.
Example:
Event 1: Toss a coin.
Event 2: If head appears then roll a die.
Both the events are dependent on each other.
Thus, the samples are independent because there is not a natural pairing between the two samples.
To know more about it, please refer to the link:
https://brainly.com/question/12138721
Eight gardeners equally share 1/2 of a pile of pine needles. What fraction of the pile does each gardener receive?
Answer:
Each gardner will get 1/16 of a pile of pine needles.
Step-by-step explanation:
1/2 ÷ 8
*Switch the division to multiplication and flip the 8 (or 8/1) upside-down.
= 1/2 · 1/8
= 1/16
PLS HELP ASAP:Find all the missing elements:
Answer:
b ≈ 9.5, c ≈ 14.7
Step-by-step explanation:
Using the Sine rule in Δ ABC, that is
[tex]\frac{a}{sinA}[/tex] = [tex]\frac{b}{sinB}[/tex] , substitute values
[tex]\frac{7}{sin23}[/tex] = [tex]\frac{b}{sin32}[/tex] ( cross- multiply )
b × sin23° = 7 × sin32° ( divide both sides by sin23° )
b = [tex]\frac{7sin32}{sin23}[/tex] ≈ 9.5 ( to the nearest tenth )
Also
[tex]\frac{a}{sinA}[/tex] = [tex]\frac{c}{sinC}[/tex]
[tex]\frac{7}{sin23}[/tex] = [tex]\frac{c}{sin125}[/tex] ( cross- multiply )
c × sin23° = 7 × sin125° ( divide both sides by sin23° )
c = [tex]\frac{7sin125}{sin23}[/tex] ≈ 14.7 ( to the nearest tenth )
Juan starts a bacteria culture and records the number of bacteria in the Petri dish for the first couple of hours.
Hours Bacteria
0
160
1
320
2
640
If the pattern continues, how many bacteria can he expect to find after 17 h?
Enter your answer in the box.
9514 1404 393
Answer:
20,971,520
Step-by-step explanation:
The population is doubling every hour, so after 17 hours it will be the initial population (160) multiplied by 2^17 = 131,072.
After 17 hours, he can expect to find 160×131072 = 20,971,520 bacteria.
Can someone please help me with this question?
Answer:
B
Step-by-step explanation:
11q + 5 ≤ 49
Subtract 5 from each side
11q + 5-5 ≤ 49-5
11q ≤44
Divide each side by 11
q ≤44/11
q≤4
There is a close circle at 4 because of the equals sign and the lines goes to the left
Answer:
B
Step 1:
To solve this, we need to isolate the variable q. To do so, we will subtract 5 from both sides of the inequality.
[tex]11q+5(-5)\leq 49(-5)\\11q\leq 44[/tex]
Step 2:
We divide both sides by 11 to get our q.
[tex]\frac{11q}{11}\leq \frac{44}{11} \\q\leq 4[/tex]
q ≤ 4
Step 3:
To find the correct graph, we need to know that a close circle means a ≤ or ≥ and an open one means a < or >. Here, we are using a ≤ so C and D are not our answers. Also remember that if the "arrow" is pointing left (<), then the arrow on the graph should be facing the left side. If the arrow is facing the right side, then that means we are using > or ≥. Here, we are using ≤ (left), so that means the arrow on the graph should be on a 4, facing left, with a closed circle.
Our answer is B.
Four randomly chosen Nevada students were asked how many times they drove to Arizona last year. Their replies were 4,5,6,7. The geometric mean is
Group of answer choices
5.31
5.38
4.98
3.95
The geometric mean of the numbers is 5.38
Given the values a, b, c and d
The geometric mean of the values will be expressed as:
[tex]GM = (abcd)^{1/4}[/tex]
Given the values 4, 5, 6, and 7, the geometric mean will be expressed as:
[tex]GM = (4\times5\times6\times7)^{1/4}\\[/tex]
[tex]GM = (840)^{1/4}\\GM=\sqrt[4]{840} \\GM = 5.38[/tex]
Hence the geometric mean of the numbers is 5.38.
Learn more: https://brainly.com/question/23875011
What is the value of x for the given equation?
4 – 2(x + 7) = 3(x + 5)
X=
Answer:
-5
Step-by-step explanation:
If you rent a car for one day and drive it for 100 miles the cost is 40 dollars if you drive it 220 miles the cost is 46 dollars what is the linear equation for this
Answer:
[tex] y = \dfrac{1}{20}x + 35 [/tex]
Step-by-step explanation:
Let y = cost.
Let x = number of miles.
We have two (x, y) points: (100, 40) and (220, 46).
Now we find the equation of the line that passes through those two points using the two-point form of the equation of a line.
[tex] y - y_1 = \dfrac{y_2 - y_1}{x_2 - x_1}(x - x_1) [/tex]
[tex] y - 40 = \dfrac{46 - 40}{220 - 100}(x - 100) [/tex]
[tex] y - 40 = \dfrac{6}{120}(x - 100) [/tex]
[tex] y - 40 = \dfrac{1}{20}(x - 100) [/tex]
[tex] y - 40 = \dfrac{1}{20}x - 5 [/tex]
[tex] y = \dfrac{1}{20}x + 35 [/tex]
whats the perimeter of a squre with a side measurement of 6 in.?
Answer:
The Perimeter is 24 inches
Step-by-step explanation:
Perimeter is all the sides of something added up. All sides on a square are equal so each side is 6 inches
6+6+6+6=24
Math 120 - 01 Summer 2021
Consuelo Butler
08/07
Homework: Practice
Exam 3
Question 1, 12.1.13
HW Score: 10%, 3 of 30 points
Score: 1 of 1
A professor had students keep track of their social interactions for a week. The
number of social interactions over the week is shown in the following grouped
frequency distribution. How many students had at least 60 social interactions for
the week?
12
Number of Social
Interactions
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
Frequency
9
14
11
15
16
8
7
3
1
1
Step-by-step explanation:
Consuelo Butler
08/07
Homework: Practice
Exam 3
Question 1, 12.1.13
HW Score: 10%, 3 of 30 points
Score: 1 of 1
A professor had students keep track of their social interactions for a week. The
number of social interactions over the week is shown in the following grouped
frequency distribution. How many students had at least 60 social interactions for
the week?
12
Number of Social
Interactions
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
Frequency
9
14
11
15
16
8
7
By calculating the greater than cumulative frequency using the given frequency table, 12 students had at least 60 social interactions for the week.
What is greater than cumulative frequency?The greater than cumulative frequency is also known as the more than type cumulative frequency. Here, the greater than cumulative frequency distribution is obtained by determining the cumulative total frequencies starting from the highest class to the lowest class.
Class interval Frequency Cumulative frequency
30-34 9 85
35-39 14 76
40-44 11 62
45-49 15 51
50-54 16 36
55-59 8 20
60-64 7 12
65-69 3 5
70-74 1 2
75-79 1 1
[We read the cumulative frequencies with respect to the corresponding lower class limits. For example, 85 students had 'more than 30' social interactions, 76 students had 'more than 35 social interactions and so on.]
By reading the greater than cumulative frequency, we find that 12 students had at least 60 social interactions for the week.
Learn more about greater than cumulative frequency here
https://brainly.com/question/5102661
#SPJ2
Two friends compete with each other and five other, equally good, violinists for first and second chair in an orchestra, in a blind competition What is the probability that the two friends end up as first and second chair together?
Answer: 0.0476
Step-by-step explanation:
Given : Two friends and 5 other people compete with each other for first and second chair in an orchestra.
Total people in this competition= 2+5=7
By permutation , Number of ways to arrange 7 people= 7!
Also, number of ways for two friends end up as first and second chair together= 2 × 5! [ 2 ways to arrange friends on first and second chair and 5! ways to arrange others]
I.e. Required probability = [tex]\dfrac{2\times5!}{7!}[/tex]
[tex]=\dfrac{2!\times5!}{7\times6\times5!}\\\\=\dfrac{1}{7\times3}\\\\=\dfrac{1}{21}\\\\=0.0476[/tex]
Hence, the probability that the two friends end up as first and second chair together = 0.0476
If the statement is true, type true in the space provided. If it is false, replace the underlined
word(s) with the word(s) that will make the statement true.
* The associative (associative is underlined) property is used on the following expression: 2 + 3 = 3 + 2.
The average age of a college is 21.8 years. The average age of students of college is 24.2 years and average age of lecturers of college is 20.6 years. Find the ratio of the number of students to that of lecturers?
Answer:
22,2
Step-by-step explanation:
average also known as mean
so you find it by adding all the numbers together and dividing them by how many there are
so 21,8 + 24,2 + 20.6 = 66,6 divided by 3 equals 22,2
Suppose ACT Science scores are normally distributed with a mean of 20.8 and a standard deviation of 5.2. A university plans to send letters of recognition to students whose scores are in the top 12%. What is the minimum score required for a letter of recognition? Round your answer to the nearest tenth, if necessary.
Answer:
Hello,
Answer 26.9
Step-by-step explanation:
[tex]z=\dfrac{x-m}{\sigma} \\m=20.8\\\sigma=5.2\\\\p(z>?)\geq 0.12\ \longrightarrow 1-p(z\leq ?)=(1-0.12))\\\\Using\ table\ of\ normal\ reduce\ with\ 4 \decimals : ?=1.175\\\\x=1.175*5.2+20.8=26.91\approx{26.9}[/tex]
Solve
0.9(7x + 14) = 1.5 - (x + 2)
[tex]\\ \sf\longmapsto 0.9(7x+14)=1.5-(x+2)[/tex]
[tex]\\ \sf\longmapsto 6.3x+12.6=1.5-x-2[/tex]
[tex]\\ \sf\longmapsto 63x+12.6=-x-0.5[/tex]
[tex]\\ \sf\longmapsto 63x+x=-0.5-12.6[/tex]
[tex]\\ \sf\longmapsto 64x=-13.1[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{-13.1}{64}[/tex]
[tex]\\ \sf\longmapsto x=0.2[/tex]
If you’re good at statistics please help
Answer:
Step-by-step explanation:
probabilty distribution= interval of x/total area of the distribution
OR P(x)= frequency of x/total frequency(N)*the interval of x(w)
x f probabilty f/N*w
16 10 0.2
17 16 0.32
18 20 0.4
19 4 0.08
w is the width of the bar( interval) 17-16=1
N=10+16+20+4=50
( only need to draw histogram)
What is the volume of a rectangular prism with a length, width,
2
1
5
and height of
cm, -
cm, and
cm, respectively?
3
4
6
Step-by-step explanation:
Hey, there!!
It's so simple,
Given,
length (l)= 2/3cm
Breadth (b) = 1/4cm
and height (h)=5/6cm
now, we use the formula for volume of rectangular prism is,
v = l× b× h
or, v= (2/3 × 1/4 × 5/6)^3
By simplifying it we get,
The volume is 5/36cm^3.
Hope it helps...
A probability experiment is conducted in which the sample space of the experiment is S={1,2,3,4,5,6,7,8,9,10,11,12}. Let event E={3,4,5,6,7,8}. Assume each outcome is equally likely. List the outcomes in Ec. Find P(Ec).The outcomes of Ec are {_____}P(Ec)=
Answer:
This list of all the outcome of [tex]E^c[/tex] is [tex]E^c = \{ 1,2,9,10,11,12,\}[/tex]
[tex]P(E^c ) = 0.5[/tex]
Step-by-step explanation:
From the question we are told that
The sample sample space is [tex]S = \{ 1,2,3,4,5,6,7,8,9,10,11,12 \}[/tex]
The number of elements in the sample space is [tex]n = 12[/tex]
The event is [tex]E = \{ 3,4,5,6,7,8 \}[/tex]
The number of outcomes in the Event is [tex]n_e = 6[/tex]
The objective in to obtain [tex]P(E^c)[/tex]
Now [tex]E^c[/tex] is the compliment of E and number of elements in [tex]E^c[/tex] ican be mathematically evaluated as
[tex]nE^c = n - n_e[/tex]
substituting values
[tex]E^c = 12-6[/tex]
[tex]E^c = 6[/tex]
This list of all the outcomes of [tex]E^c[/tex] is
[tex]E^c = \{ 1,2,9,10,11,12,\}[/tex]
Generally [tex]P(E^c )[/tex] which is the probability of [tex]E^c[/tex] is mathematically evaluated as
[tex]P(E^c ) = \frac{nE^c}{n}[/tex]
substituting values
[tex]P(E^c ) = \frac{6}{12}[/tex]
[tex]P(E^c ) = 0.5[/tex]
Plzzz help me on this question
This is Additional mathematics IGCSE
Answer:
[tex] \alpha = 7[/tex]
Step-by-step explanation:
[tex]a(vector) = 4i - 2j[/tex]
[tex]b(vector) = \alpha i + 2j[/tex]
[tex]ab(vector) = ( \alpha - 4)i \: + 4j[/tex]
Now,
Let K * ab (unit vector) = ab (vector)
(0.4 * k) j = 4 j Thus, K = 10[tex](0.3 \times k)i = ( \alpha - 4)i[/tex]Solving further :
[tex] \alpha = 7[/tex]
Find 2
x
y у
30°
4√3
OA. 4/2
OB.22
0.8
D.4
Answer:
8
Step-by-step explanation:
The given is a special right triangle with angle measures
90-60-30 and side lengths represented by
2a-a[tex]\sqrt{3}[/tex]-a
x is the side length that sees angle measure 90 degrees so it's represented by 2a
and 4[tex]\sqrt{3}[/tex] is the side length that sees angle measure that sees 60 degrees so the value of a is 4
therefore x = 2*4 = 8
f(x)=1/3x+7 find inverse
Answer:
Step-by-step explanation:
WILL GIVE BRAINLEST PLEASE!!!!!!!! Jenny has some tiles in a bag. The tiles are of three different colors: purple, pink, and orange. Jenny randomly pulls a tile out of the bag, records the color, and replaces the tile in the bag. She does this 50 times. The results are recorded in the given table: Color of Tile Purple Pink Orange Number of times the tile is drawn 6 18 26 What is the experimental probability that Jenny will pull out a purple tile? fraction 6 over 50 fraction 44 over 50 fraction 6 over 44 fraction 18 over 44
Answer:
6/50
Step-by-step explanation:
There are 50 tiles
6 purple
18 pink
26 orange
P( purple) = purple/ total
= 6/50
Find two numbers nearest to 8888888 which are exactly divisible by 2915 explain step by step
a
A solid metal cone of base radius a cm and height 2a cm is melted and solid
spheres of radius are made without wastage. How many such spheres can be
made?
volume of a cone
.
.
.
volume of sphere
.
.
number of spheres that can be made......
.
.
hence a hemisphere can be formed
144 is the same as 379 less than c
How can this be wrote in a equation
Answer:
144 = c - 379
Step-by-step explanation:
"144 is the same as 379 less than c"
144 = c - 379
Answer and Step-by-step explanation:
This can be written in an equation like this:
144 = c - 379
The question is saying that 144 is the same answer as the result of 379 less than c (or c minus 379). This is why we equal 144 to the result of c minus 379.
#teamtrees #PAW (Plant And Water)