Find the slope and y-intercept of each line:
a. (x+2)(x+3)=(x-2)(x-3)+y
b. x=my+b

Please show workings, and I won't accept nonsense answers! Don't answer the question if you don't know what it means!!​

Answers

Answer 1

Answer:

See below

Step-by-step explanation:

Part A:

[tex](x+2)(x+3) = (x+2)(x-3) + y[/tex]

Resolving Parenthesis

[tex]x^2+3x+2x+6=x^2-3x-2x+6+y\\x^2+5x+6 = x^2-5x+6+y[/tex]

Subtracting [tex]x^2[/tex] and 6 to both sides

[tex]5x= -5x+y[/tex]

Adding 5x to both sides

[tex]y = 5x+5x\\y = 10x[/tex]

Comparing it with [tex]y = mx+b[/tex] where m is the slope while b is the y-intercept

So,

Slope = m = 10

Y-intercept = b = 0

Part B:

[tex]x = my+b[/tex]

Subtracting b to both sides

[tex]my = x-b[/tex]

Dividing both sides by m

[tex]y = \frac{x-b}{m}\\ y = \frac{x}{m} - \frac{b}{m}[/tex]

Comparing it with [tex]y = mx+b[/tex] where m is the slope while b is the y-intercept

So,

Slope = m = [tex]\frac{1}{m}[/tex]

Y-intercept = b = [tex]-\frac{b}{m}[/tex]


Related Questions

The table below represents an exponential function, g, that has been vertically shifted from the parent function, f(x)= 2^x. Determine the size of shift from function f to function g. Then plot the points of a function that is shifted only half as much as g from the parent function, f. Use the same x- values as used in the table for function g. Table x 0 1 2 3 4 g(x) -11 -10 -8 -4 4

Answers

Answer:

1. The size of shift from function f to function g is -12

2. The plot of the points of a function that is shifted only half as much as g from the parent function f is in the attached file in blue color.

Step-by-step explanation:

Parent function: f(x)=2^x

x=0→f(0)=2^0→f(0)=1

x=1→f(1)=2^1→f(1)=2

x=2→f(2)=2^2→f(2)=4

x=3→f(3)=2^3→f(3)=8

x=4→f(4)=2^4→f(4)=16

Size of the shift from function f to function g: s

s=g(0)-f(0)=-11-1→s=-12

s=g(1)-f(1)=-10-2→s=-12

s=g(2)-f(2)=-8-4→s=-12

s=g(3)-f(3)=-4-8→s=-12

s=g(4)-f(4)=4-16→s=-12

Points of a function h that is shifted only half as much as g from the parent function, f. Use the same x- values as used in the table for function:

s2=s/2→s2=(-12)/2→s2=-6

x   h(x)

0   1+(-6)=1-6=-5  

1    2+(-6)=2-6=-4

2   4+(-6)=4-6=-2

3    8+(-6)=8-6=2

4    16+(-6)=16-6=10

Find the amount and present value of 10 quarterly payments of $ 1500, if the interest rate is 25% compounded each month.

Answers

Given Information:

Monthly payment = MP = $1500/4 = $375

Monthly interest rate = r = 25/12 = 2.083%

Required Information:

Present Value = ?

Answer:

[tex]PV = \$10,110[/tex]

Explanation:

n = 10*4

n = 40 monthly payments

The present value is found by

[tex]$ PV = MP \times \frac{ (1 - \frac{1}{(1+r)^n} )}{r} $[/tex]

Where r is monthly interest rate.

MP is the monthly payment.

[tex]$ PV = 375 \times \frac{ (1 - \frac{1}{(1+0.02083)^{40}} )}{0.02083} $[/tex]

[tex]PV = 375 \times (26.96)[/tex]

[tex]PV = \$10,110[/tex]

Therefore, $10,110 is the present value of 10 quarterly payments of $1500 each at 25% interest rate compounded each month.

Solve by the quadratic formula: x^2= 6x-4

Answers

Answer:

3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex].

Step-by-step explanation:

x^2 = 6x - 4

x^2 - 6x + 4 = 0

Now, we can use the quadratic formula to solve.

[tex]\frac{-b\pm\sqrt{b^2 - 4ac} }{2a}[/tex], where a = 1, b = -6, and c = 4.

[tex]\frac{-(-6)\pm\sqrt{(-6)^2 - 4 * 1 * 4} }{2 * 1}[/tex]

= [tex]\frac{6\pm\sqrt{36 - 4 * 4} }{2}[/tex]

= [tex]\frac{6\pm\sqrt{36 - 16} }{2}[/tex]

= [tex]\frac{6\pm\sqrt{20} }{2}[/tex]

= [tex]\frac{6\pm2\sqrt{5} }{2}[/tex]

= 3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex]

x = 3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex].

Hope this helps!

a system of linear equations is given by the tables. One of the tables is represented by the equation y= -1/3x + 7

the equation that represents the other equation y= x +

the solution of the system is ( , )​

Answers

Answer:

Other equation: y = 1/3x + 5

Solution: (3, 6)

Step-by-step explanation:

Slope-Intercept Form: y = mx + b

Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Step 1: Identify tables

1st table is the unknown equation

2nd table is the known equation (found using y-intercept 7)

Step 2: Find missing equation

m = (6 - 5)/(3 - 0)

m = 1/3

y = 1/3x + b

5 = 1/3(0) + b

5 = b

y = 1/3x + 5

Step 3: Find solution set using substitution

1/3x + 5 = -1/3x + 7

2/3x + 5 = 7

2/3x = 2

x = 3

y = 1/3(3) + 5

y = 1 + 5

y = 6

Jane exchanged £100 for 216 Swiss francs. After buying a meal and a present to take home,she had 70 francs left.How much is this in £?​

Answers

Answer:

£32.4

Step-by-step explanation:

£100 = 216 Swiss francs

x        =  70 francs

70 x 100=7000/216=32.4

I NEED HELP WITH THIS! I need to pass...

Answers

Answer:  A) The log parent function has negative values in the range.

Step-by-step explanation:

The domain of y = ln (x)  is D: x > 0

The domain of y = [tex]\sqrtx[/tex][tex]\sqrt x[/tex]  is  D: x ≥ 0

The range of y = ln (x)  is: R: -∞ < y < ∞

So the only valid option is A because the range of a log function contains negative y-values when 0 < x < 1.

The Patel, Lopez, and Russo families all had parties recently. There were 152 adults at the Lopez party. The ratio of adults to children at the Russo party was 5 to 4. What was the ratio of adults to children at the Patel party

Answers

Answer:

[tex]\frac{4}{5}[/tex]

Step-by-step explanation:

The Patel, Lopez, and Russo families all had parties recently. There were 152 adults at the Lopez party. The ratio of adults to children at the Russo party was 5 to 4. What was the ratio of adults to children at the Patel party?

(1) The Russo party had 31 more adults than children, and 47 more adults than did the Patel party.

(2) The Patel party had 40 more children, though 4 fewer people in total, than did the Lopez party, where the ratio of adults to children was 8 to 5.

Answer: Let the number of children in Russo party be x, The Russo party had 31 more adults than children, therefore the number of adults at the Russo party = x + 31. The ratio of adults to children at the Russo party was 5 to 4, we can find the number of children using:

[tex]\frac{5}{4}=\frac{x+31}{x}\\ 5x=4x+124\\x=124[/tex]

The number of children at the Russo party is 124 and the number of adult is 155 (124 + 31).

They  are 47 more adults at the Russo party than the Patel party, the number of adult at the Patel party = 155 - 47 = 108

the ratio of adults to children was 8 to 5 at the Lopez party, There were 152 adults at the party. Let x be the number of children at the Lopez party therefore:

[tex]\frac{8}{5}=\frac{152}{x}\\ 8x=760\\x=95[/tex]

The Patel party had 40 more children than the Lopez, the number of children at the Patel party = 135 (95 + 40).

The ratio of adults to children at the Patel party is [tex]\frac{108}{135} =\frac{4}{5}[/tex]

The real numbers $x$ and $y$ are such that \begin{align*} x + y &= 4, \\ x^2 + y^2 &= 22, \\ x^4 &= y^4 - 176 \sqrt{7}. \end{align*}Compute $x - y.$

Answers

You get everything you need from factoring the last expression:

[tex]x^4-y^4=-176\sqrt7[/tex]

The left side is a difference of squares, and we get another difference of squares upon factoring. We end up with

[tex]x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)[/tex]

Plug in everything you know and solve for [tex]x-y[/tex]:

[tex]-176\sqrt7=(x-y)\cdot4\cdot22\implies x-y=\boxed{-2\sqrt7}[/tex]

Answer:

-2sqrt(7)

Step-by-step explanation:

Solution:

From the third equation, $x^4 - y^4 = -176 \sqrt{7}.$

By difference of squares, we can write

\[x^4 - y^4 = (x^2 + y^2)(x^2 - y^2) = (x^2 + y^2)(x + y)(x - y).\]Then $-176 \sqrt{7} = (22)(4)(x - y),$ so $x - y = \boxed{-2 \sqrt{7}}.$

What is the equation of the line that passes through (1, 2) and is parallel to the line whose equation is 4x + y + 1 = 0?

4 x + y + 6 = 0
4 x + y - 6 = 0
4 x - y - 6 = 0

Answers

Answer:

The answer is

4x + y - 6 = 0

Step-by-step explanation:

Equation of a line is y = mx + c

where m is the slope

c is the y intercept

4x + y + 1 = 0

y = - 4x - 1

Comparing with the above formula

Slope / m = - 4

Since the lines are parallel their slope are also the same

That's

Slope of the parallel line is also - 4

Equation of the line using point ( 1 , 2) is

y - 2 = -4(x - 1)

y - 2 = - 4x + 4

4x + y - 2 - 4

We have the final answer as

4x + y - 6 = 0

Hope this helps you

Help urgently please❤️

Answers

Answer:

1. 677 inches = 18.056 yards

677 inches  = 56.416 feet

677 inches = 677 inches

2. QP = 23.5 cm

3. The perimeter = 53.5 cm

Step-by-step explanation:

1. To convert, 677 inches to yards, we have;

1 inch = 0.0277778 yards

677 inches = 677*0.0277778 = 18.056 yards

To convert, 677 inches to feet, we have;

1 inch = 0.083333 feet

677 inches = 677*0.083333  = 56.416 feet

To convert, 677 inches to inches, we have;

1 inch = 1 inch

677 inches = 677*1  = 677 inches

2. We have that ∠PRQ and ∠PRS are supplementary angles (angles on a straight line

Given that ∠PRS = 90°, ∠PRQ = 180° - 90° = 90°;

∠PRQ + ∠PQR + ∠RPQ = 180°, sum of angles in a triangle

∠PQR = 24° given

∠PRQ = 90°

∴  ∠RPQ = 180° - 90° - 24° = 66°

∴∠SPQ = ∠SPR + ∠RPQ = 36° + 66° = 102°

∠QSP + ∠SPQ + ∠PQS = 180° (sum of angles in a triangle)

∠QSP = 180° -∠SPQ - ∠PQS = 180° -102° - 24 = 54°

By sine rule, we have;

a/(sin(A)) = b/(sin(B))

Therefore, we have;

11.8/(sin(24)) = QP/(sin(54°))

QP = (11.8/(sin(24))) × (sin(54°)) = 23.5 cm

3. From trigonometric ratios, we have;

tan(43°) = BC/CA = BC/(16.2 cm)

BC = 16.2 cm × tan(43°) = 15.1

By Pythagoras theorem, we have;

AB = √(15.1² + 16.2²) = 22.2

The perimeter = 15.1 + 16.2 + 22.2 = 53.5 cm

Which quadrilaterals have diagonals that are always
perpendicular to each other?

Answers

Answer:

rhombus and square

Answer:

Rhombus and square

Step-by-step explanation:

The quadrilaterals that satisfy this condition are rhombi and squares.

Please help me with atleast some of them❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️

Answers

Answer:

1. 24 x

Step-by-step explanation:

Area = (6x +1)(6x-1)

which means

length = 6x+1

width = 6x -1

as perimeter = 2 (length + width)

                     = 2 (6x +1+6x -1)

                     = 2(12x)

                    =24x

Combine like terms.

-2x4+16+2x4+9-3x5

Answers

Answer:

25 - 3x^5

Step-by-step explanation:

-2x^4+16+2x^4+9-3x^5

Combine like terms

-2x^4+2x^4+9+16-3x^5

0                 + 25 -3x^5

Answer:

3x^5-25

Step-by-step explanation:

you but the terms with the same power together and don't forget to add the signs that are in front of each terms when combining.

From the top of a vertical cliff 75.0m high, forming one bank of a river, the angles of depression of the top and bottom of a vertical cliff which forms the opposite bank are 22° and 58° respectively. Determine the height of the second cliff and width of the river

Answers

Answer:

a. 46.9 m b. 56.1 m

Step-by-step explanation:

a. Width of the river

The angle of depression of the bottom of the second vertical cliff from the first vertical cliff = angle of elevation of the top of the first vertical cliff from the bottom of the second vertical cliff = 58°.

Since the height of the vertical cliff = 75.0 m, its distance from the other cliff which is the width of the river, d is gotten from

tan58° = 75.0 m/d

d = 75.0/tan58° = 46.87 m ≅ 46.9 m

b. Height of the second cliff

Now, the difference in height of the two cliffs is gotten from

tan22° = h/d, since the angle of depression of the top of second cliff from the first cliff is the angle of elevation of the top of the first cliff from the second cliff = 22°

h = dtan22° = 18.94 m

So, the height of the second cliff is h' = 75.0 - h = 75.0 m - 18.94 m = 56.06 m ≅ 56.1 m

Solve the following 2 + 8 ÷ 2 x 3

Answers

Answer:

14

Step-by-step explanation:

Solution,

Use the BODMAS Rule:

B = Bracket

O = Of

D = Division

M= Multiplication

A = Addition

S = Subtraction

Now,

Let's solve,

[tex]2 + 8 \div 2 \times 3[/tex]

First we have to divide 8 by 2

[tex] = 2 + 4 \times 3[/tex]

Calculate the product

[tex] = 2 + 12[/tex]

Calculate the sum

[tex] = 14[/tex]

Hope this helps...

Good luck on your assignment..

Answer:

14

Step-by-step explanation:

2 + 8 ÷ 2 x 3 =

There is an addition, a division, and a multiplication. According to the correct order of operations, we do first the multiplications and divisions in the order they appear from left to right.

= 2 + 4 x 3

= 2 + 12

Now we do the addition.

= 14

30 POINTS!!!

Suppose f(x) = x2 and
g(x) = (1/3)^2. Which statement best compares the graph of g(x) with the graph of f(x)?

Image attached

Please help!!!

Answers

Answer:

A. The graph of g(x) is vertically compressed by a factor of 3.

Step-by-step explanation:

When there is a fraction, that means that there is a veritcal dilation.

Hope this helps! Good luck!

PLEASSE HELP
If a line crosses the y-axis at (0, 1) and has a slope of 4/5, what is the equation of the line?
A 4y - 5x=5
B.y - 4x = 5
C. 5y + 4x = 5
D. 5y - 4x = 5

Answers

Answer:

The answer is option D.

Step-by-step explanation:

Equation of the line using point (0, 1) and slope 4/5 is

[tex]y - 1 = \frac{4}{5} (x - 0) \\ \\ 5y - 5 = 4x \\ \\ 5y - 4x = 5[/tex]

Hope this helps you

Answer:

D. [tex]\boxed{5y-4x=5}[/tex]

Step-by-step explanation:

Slope = m = 4/5

y - intercept = b = 1 (As from the point (0,1) , y-intercept is when x = 0)

So, the equation becomes

=> [tex]y = mx+b[/tex]

=> [tex]y = \frac{4}{5} x +1[/tex]

=> [tex]y - \frac{4}{5} x = 1[/tex]

Multiplying both sides by 5

=> [tex]5y-4x = 5[/tex]

If 18% of q is 27 , what is 27% of 2q

Answers

In this problem, there are two parts. We will need to find what q is if 18% of q is 27, and what 27% of 2q is.

First, let's set up and solve the equation for 18% of q is 27.

18 / 100 = 27 / q

100q = 486

q = 4.86

Next, we'll find the value of 2q.

2(4.86) = 9.72

Finally, we'll set up a proportion and solve for 27% of 2q.

27 / 100 = x / 9.72

100x = 262.44

x = 2.6244

If 18% of q is 27, then 27% of 2q is 2.6244 (round to tenths/hundredths place as needed).

Hope this helps!! :)

Answer:

81

Step-by-step explanation: Let's first find the value of q

[tex]18/100 \times q = 27\\\frac{18q}{100} = \frac{27}{1}\\18q = 2700\\\frac{18q}{18} = \frac{2700}{18} \\q= 150.\\[/tex]

Now we can find 27% of 2q

[tex]27 \% \times 2q = \\27 \% \times 2(150)\\\frac{27}{100} \times 300\\\\= \frac{8100}{100} \\= 81[/tex]

Please help fast! 25 points and brainliest!!

Let f(x) = 36x5 − 44x4 − 28x3 and g(x) = 4x2. Find f of x over g of x

Answers

Answer:

The answer is

9x³ - 11x² - 7x

Step-by-step explanation:

f(x) = 36x^5 − 44x⁴ − 28x³

g(x) = 4x²

To find f(x) / g(x) Divide each term of f(x) by g(x)

That's

[tex] \frac{f(x)}{g(x)} = \frac{ {36x}^{5} - {44x}^{4} - {28x}^{3} }{ {4x}^{2} } \\ \\ = \frac{ {36x}^{5} }{ {4x}^{2} } - \frac{ {44x}^{4} }{ {4x}^{2} } - \frac{ {28x}^{3} }{ {4x}^{2} } \\ \\ = {9x}^{3} - {11x}^{2} - 7x[/tex]

Hope this helps you

Answer:

9x³ - 11x² - 7x

Step-by-step explanation:

guy abpove is right or bwlowe

In a game, one player throws two fair, six-sided die at the same time. If the player receives a five or a one on either die, that player wins. What is the probability that a player wins after playing the game once

Answers

Answer:

probability that a player wins after playing the game once = 5/9

Step-by-step explanation:

To solve this, we will find the probability of the opposite event which in this case, it's probability of not winning and subtract it from 1.

Since, we are told that there are 2 fair six sided die thrown at the same time and that he receives a five or a one on either die ;

Probability of not winning, P(not win) = 4/6.

Thus;

P(winning) = 1 - ((4/6) × (4/6))

P(winning) = 1 - 4/9 = 5/9

6. Find d.


Please help

Answers

Answer:

Step-by-step explanation:

The first thing we are going to do is to fill in the other angles that we need to solve this problem. You could find ALL of them but all of them isn't necessary. So looking at the obtuse angle next to the 35 degree angle...we know that those are supplementary so 180 - 35 = the obtuse angle in the small triangle. 180 - 35 = 145. Within the smaller triangle we have now the 145 and the 10, and since, by the Triangle Angle-Sum Theorem all the angles have to add up to equal 180, then 180 - (10 + 145) = the 3rd angle, so the third angle is 180 - 155 = 25. Now let's get to the problem. If I were you, I'd draw that out like I did to keep track of these angles cuz I'm going to name them by their degree. In order to find d, we need to first find the distance between d and the right angle. We'll call that x. The reference angle is 35, the side opposite that angle is 12 and the side we are looking for, x, is adjacent to that angle. So we will use the tan ratio to find x:

[tex]tan(35)=\frac{12}{x}[/tex] Isolating x:

[tex]x=\frac{12}{tan(35)}[/tex] so

x = 17.1377 m

Now we have everything we need to find d. We will use 25 degrees as our reference angle, and the side opposite it is 12 and the side adjacent to it is

d + 17.1377, so that is the tan ratio as well:

[tex]tan(25)=\frac{12}{d+17.1377}[/tex] and simplifying a bit:

[tex]d+17.1377=\frac{12}{tan(25)}[/tex] and a bit more:

d + 17.1377 = 25.73408 so

d = 8.59, rounded

At the shop near the beach, ice cream is offered in a cone or in a cylindrical cup as shown
below. The ice cream fills the entire cone and has a hemisphere on top. The ice cream
levelly fills the cylindrical cup.
radius of cone= 3 cm
radius of cylinder= 4.5 cm
height of cone = 10 cm
height of cylinder = 5 cm
Determine how much more ice cream the larger option has. Show your work. ( 19)

Answers

Answer:

B

Step-by-step explanation:

Identifying relationships from diagrams

Answers

Answer: <CED is the right angle, which measures 90 degrees. Since the measure of a straight angle is 180 degrees. <CEA must also be 90 degrees by the Definition of Right Angle. A bisector cuts the angle measure in half. m<AEB is 45 degrees.

Solve for $x$, where $x > 0$ and $0 = -21x^2 - 11x + 40.$ Express your answer as a simplified common fraction.[tex]Solve for $x$, where $x \ \textgreater \ 0$ and $0 = -21x^2 - 11x + 40.$ Express your answer as a simplified common fraction.[/tex]

Answers

Answer:

[tex]\large \boxed{\sf \ \ \dfrac{8}{7} \ \ }[/tex]

Step-by-step explanation:

Hello, please consider the following.

The solutions are, for a positive discriminant:

   [tex]\dfrac{-b\pm\sqrt{\Delta}}{2a} \ \text{ where } \Delta=b^2-4ac[/tex]

Here, we have a = -21, b = -11, c = 40, so it gives:

[tex]\Delta =b^2-4ac=11^2+4*21*40=121+3360=3481=59^2[/tex]

So, we have two solutions:

[tex]x_1=\dfrac{11-59}{-42}=\dfrac{48}{42}=\dfrac{6*8}{6*7}=\dfrac{8}{7} \\\\x_2=\dfrac{11+59}{-42}=\dfrac{70}{-42}=-\dfrac{14*5}{14*3}=-\dfrac{5}{3}[/tex]

We only want x > 0 so the solution is

   [tex]\dfrac{8}{7}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

The side lengths of a triangle are 9, 12, and 15. Is this a right triangle?

Answers

Answer:

Yes, this is a right triangle.

Step-by-step explanation:

Hypotenuse always have the highest number than base and perpendicular.

Hypotenuse ( h ) = 15

Base ( b ) = 9

Perpendicular ( p ) = 12

Let's see whether the given triangle is a right triangle or not

Using Pythagoras theorem:

[tex] {h}^{2} = {p}^{2} + {b}^{2} [/tex]

Plugging the values,

[tex] {15}^{2} = {12}^{2} + {9}^{2} [/tex]

Evaluate the power

[tex]225 = 144 + 81[/tex]

Calculate the sum

[tex]225 = 225[/tex]

Hypotenuse is equal to the sum of perpendicular and base.

So , we can say that the given lengths of the triangle makes a right triangle.

Hope this helps..

Best regards!!

Answer:

[tex]\boxed{Yes.}[/tex]

Step-by-step explanation:

To solve this equation, we can use the Pythagorean Theorem: [tex]a^2 + b^2 = c^2[/tex], where [tex]a[/tex] and [tex]b[/tex] are regular side lengths and [tex]c[/tex] is the hypotenuse.

The hypotenuse is the longest side of a triangle and is assigned to the [tex]c[/tex]-variable.The other two side lengths can be assigned to either [tex]a[/tex] or [tex]b[/tex] because of the commutative property: [tex]a + b = b + a[/tex].

Now, just substitute the side lengths into the formula and solve!

[tex]9^2 + 12^2 = 15^2[/tex]    Simplify the equation by taking each value to its power.

[tex]81 + 144 = 225[/tex]    Simplify by adding like terms.

[tex]225 = 255[/tex]

Therefore, this is indeed a right triangle.

Can somebody plz help me 15-[7+(-6)+1]^3

Answers

Answer:

7.

Step-by-step explanation:

15 - [7 + (-6)+ 1]^3

Using PEMDAS:

= 15 - [ 7-6+1]^3

Next work out what is in the parentheses:

= 15  - 2*3

Now the exponential:

= 15 - 8

= 7.

Step-by-step explanation:

Hi,

I hope you are searching this, right.

=15[7+(-6)+1]^3

=15[7-6+1]^3

=15[2]^3

=15-8

=7...is answer.

Hope it helps..

Find the area ratio of a regular octahedron and a tetrahedron regular, knowing that the diagonal of the octahedron is equal to height of the tetrahedron.

Answers

Answer:

[tex]\frac{4}{3}[/tex]

Step-by-step explanation:

The area of a regular octahedron is given by:

area = [tex]2\sqrt{3}\ *edge^2[/tex]. Let a is the length of the edge (diagonal).

area = [tex]2\sqrt{3}\ *a^2[/tex]

Given that the diagonal of the octahedron is equal to height (h) of the tetrahedron i.e.

a = h, where h is the height of the tetrahedron and a is the diagonal of the octahedron. Let the edge of the tetrrahedron be e. To find the edge of the tetrahedron, we use:

[tex]h=\sqrt{\frac{2}{3} } e\\but\ h=a\\a=\sqrt{\frac{2}{3} } e\\e=\sqrt{\frac{3}{2} }a[/tex]

The area of a tetrahedron is given by:

area = [tex]\sqrt{3}\ *edge^2[/tex] = [tex]\sqrt{3} *(\sqrt{\frac{3}{2} }a)^2=\frac{3}{2}\sqrt{3} *a^2[/tex]

The ratio of area of regular octahedron to area tetrahedron regular is given as:

Ratio = [tex]\frac{2\sqrt{3}\ *a^2}{\frac{3}{2} \sqrt{3}*a^2} =\frac{4}{3}[/tex]

Please answer the question in the image below ASAP

Answers

Answer:

B

Step-by-step explanation:

Here, we have a grain silo having 2 shapes fused together to make it.

A cylinder and then a hemisphere ( half sphere)

Now, we want to calculate the volume of grain that could completely fill the silo.

Mathematically, to do that, we will need to add the volume of the cylinder to the volume of the hemisphere.

Mathematically,

Volume of cylinder is;

pi * r^2 * h

From the question, r = 6 ft and h = 168 with pi = 22/7

Substituting these values, we have

Volume of cylinder= pi * 6^2 * 168 = 6,048 pi

The volume of the sphere will be;

4/3* pi * r^3= 4/3 * pi * 6^3 = 288 pi

So the total volume of the silo will be;

288 pi + 6,048 pi = 6336 pi

So to have the final result, let’s multiply by value of pi

6336 * 22/7 = 19,193 ft^3

The closest answer here probably due to previous approximations is 19,008 ft^3

The following sphere has a diameter of 11 inches.

What is the volume of the sphere? Use 3.14 for it and round your answer to the nearest tenth.
O 5,572.5 in.3
O 696.6 in.)
O 174.1 in."
O 126.6 in.3

Answers

Answer:

[tex]\boxed{Volume = 696.9 \ in.^3}[/tex]

Step-by-step explanation:

Diameter = 11 inches

Radius = 11/2 = 5.5 inches

[tex]Volume \ of \ a \ sphere = \frac{4}{3} \pi r^3[/tex]

Where r = 5.5

V = [tex]\frac{4}{3} (3.14)(5.5)^3[/tex]

V = [tex]\frac{4}{3} (3.14)(166.375)[/tex]

V = [tex]\frac{2090.7}{3}[/tex]

V = 696.9 in.³

What the answer now

Answers

Answer:

  57°

Step-by-step explanation:

There is a right angle at the point of tangency, so the angle of interest is the complement of the one given:

  m∠K = 90° -m∠J = 90° -33°

  m∠K = 57°

Other Questions
How did westward expansion divide Democrats and Whigs? 1)Democrats favored expansion in order to increase their power in Congress and expand slavery; Whigs opposed expansion because they feared losing power in Congress. 2)Whigs favored expansion in order to reach California and trade in the Pacific; 3)Democrats opposed expansion because they only wanted to sell cotton on the Atlantic. 4)Democrats favored expansion in order to make an alliance with Mexico; Whigs opposed expansion and a Mexican alliance because they believed they were too different culturally. Whigs favored expansion because they wanted to build a railroad from the East to the West; Democrats opposed expansion because they believed sea trade was most beneficial. The half-life of a radioactive isotope is the time it takes for a quantity of the Isotope to be reduced to half its initial mass. Starting with 210 grams of aradioactive isotope, how much will be left after 6 half-lives?Round your answer to the nearest gram which of the following statements is not true Negatively charged objects attract other negatively charged objects. Positively charged objects attract negatively charged objects. Positively charged objects attract neutral objects. Negatively chargers objects attract neutral objects. The smaller of two numbers is one-half the larger, and their sum is 27. Find the numbers. Answer: The numbers are ___ ___ ___ When did the Atomic bomb first make an appearance? When was it made? Ayuda! 1. Mtodo del Tringulo: Una embarcacin navega a una distancia de 800 km hacia el Oeste y despus avanza 1400 km a 135 . Cul es la magnitud, direccin y sentido del desplazamiento resultante? R /. 2,080 km, 155 NO. Sarah used the Hide command on her Excel worksheet. What would be the most likely reason to use this command?O Sarah hid the cells to delete them from the worksheet.O Sarah hid the cells to erase the formula they were part ofO Sarah hid the cells because the information they contained wasn't relevant to her task.O Sarah hid the cells to highlight their importance. Plz help urgently i dont know how to do it In Spanish does mi mean Idoes Ella mean sheand what is the corresponding pronoun for they what is an example of codominaces Determine the parent function. Find the midline for f(x)=2cos(3x56)2 Which of the following was a result of the Japanese attack on the U.S. navalbase at Pearl Harbor? Write an equation of the line that satisfies the given conditions. Give the equation (a) in slope-intercept form and (b) in standard form.Through (-2,4): perpendicular to x=8(a) The equation of the line in slope-intercept form is_____. DNA is very small, one complete turn of a DNA helix is about _______. The formula for the simple deposit multiplier is :______a. Simple Deposit Multiplier = 1/RRb. Simple Deposit Multiplier = 1/1-RRc. Simple Deposit Multiplier = -RR/1-RRd. Simple Deposit Multiplier = (1-RR)/RRIf the required reserve ratio is 0.15, the maximum increase in checking account deposits that will result from an increase in bank reserves of $5,000 is $________ Lloyds of London was one of the first institutions to offer insurance to merchants and joint-trade companies. A major part of the insurance system involved people who agreed to take responsibility for the insured losses in return for a fee. What were these risk-takers known as? A. joint-stock companies B. investors C. underwriters D. merchants E. capitalists A car is travelling at a speed of 90 km/h. Brakes are applied so as to produce a uniform acceleration of -0.5 m/s2(metre per sec.Square). Find how far the car will go before it is brought to rest? Ted failed to disaffirm a contract during his minority or within a reasonable time after reaching majority. The contract was automatically: A result of Japans attack on Pearl Harbor was the US formed a pact with Indochina against Japan. the US formed a pact with Germany against Japan. thousands of Americans died, and the US declared war. thousands of Japanese people died, and Japan declared war.