Answer:
169 [tex]cm^{2}[/tex]
Step-by-step explanation:
Surface area (SA) = 2B + PH
SA = 2 ([tex]\frac{1}{2}[/tex] x 9 x 6) + (7+7+9) 5
= 2 (27) + (23) 5
= 54 + 115
SA = 169 [tex]cm^{2}[/tex]
B(n)=2^n A binary code word of length n is a string of 0's and 1's with n digits. For example, 1001 is a binary code word of length 4. The number of binary code words, B(n), of length n, is shown above. If the length is increased from n to n+1, how many more binary code words will there be? The answer is 2^n, but I don't get how they got that answer. I would think 2^n+1 minus 2^n would be 2. Please help me! Thank you!
Answer:
More number of words that can be made: [tex]\bold{2^n}[/tex]
Please refer to below proof.
Step-by-step explanation:
Given that:
The number of binary code words that can be made:
[tex]B(n) =2^n[/tex]
where n is the length of binary numbers.
Binary numbers means 2 possibilities either 0 or 1.
Here, suppose if we have 5 as the length of binary number.
And there are 2 possibilities for each digit.
So, total number of possibilities will be [tex]2\times 2\times 2\times 2\times 2 = 2^5[/tex]
If the length of binary number is 2.
The total words possible are [tex]2^2[/tex].
These numbers are:
{00, 01, 10, 11}
If the length of binary number is 3. (increasing the 'n' by 1)
The total words possible are [tex]2^3[/tex].
These words are:
{000, 001, 010, 100, 011, 101, 110, 111}
So, number of More binary words = 8 - 4 = 4 or [tex]2^2[/tex] or [tex]2^n[/tex].
So, the answer is [tex]2^n[/tex].
Let us try to prove in generic terms:
[tex]B(n) = 2^n[/tex]
Increasing the n by 1:
[tex]B(n+1) = 2^{n+1}[/tex]
Number of more words made by increasing n by 1:
[tex]B(n+1) -B(n)= 2^{n+1} -2^n\\\Rightarrow 2\times 2^{n} -2^n\\\Rightarrow 2^n(2-1)\\\Rightarrow \bold{2^n}[/tex]
Hence, proved that:
More number of words that can be made: [tex]\bold{2^n}[/tex]
slope=-3, passing through (-9, -9)
Hey there! I'm happy to help!
We want to find the equation of a line in y-intercept form, which is y=mx+b, where x and y are a point on the line, m is the slope, and b is the y-intercept.
We already know that our slope is -3.
y=-3x+b
We want to solve for b now. We can plug in our point (-9,-9) to solve for it.
-9=-3(-9)+b
-9=27+b
b=-36
So, our equation is y=-3x-36.
I hope that this helps! Have a wonderful day! :D
Divide 500 in the ratio 4:5:1
Answer:
200 : 250 : 50
Step-by-step explanation:
Sum the parts of the ratio, 4 + 5 + 1 = 10 parts
Divide the amount by 10 to find the value of one part
500 ÷ 10 = 50 ← value of 1 part of ratio , then
4 parts = 4 × 50 = 200
5 parts = 5 × 50 = 250
500 = 200 : 250 : 50
Answer:
200, 250 and 50.
Step-by-step explanation:
First find the 'multiplier'.
4 + 5 + 1 = 10
500/10 = 50 = multiplier.
So the answer is
4*50 = 200
5 * 50 = 250
and 1 * 50 = 50.
The monthly cost (in dollars) of water use is a linear function of the amount of water used (in hundreds of cubic feet, HCF). The cost for using 15 HCF of water is 32.84, and the cost for using 43 HCF is 79.04. What is the cost for using 36 HCF of water?
Answer:
67.49
Step-by-step explanation:
Let the number of HCF be x.
Let the cost be y.
You are given 2 points of a line: (15, 32.84) and (43, 79.04).
Now we find the equation of the line that passes through those points.
y - y1 = m(x - x1)
y - 32.84 = [(79.04 - 32.84)/(43 - 15)](x - 15)
y - 32.84 = (46.2/28)(x - 15)
y - 32.84 = 1.65(x - 15)
y = 1.65x - 24.75 + 32.84
y = 1.65x + 8.09
Now we let x = 36 and solve for y.
y = 1.65(36) + 8.09
y = 67.49
Jeff is playing a racing game. The game awards him an initial of virtual money. In addition, he gets of virtual money for each race he wins. In the end, he calculates average earnings of for each race he won. If represents the number of races he won, which equation can be used to find the number of wins? A. B. C. D.
Identify the slope and y-intercept of the function y = –2x+1.
Answer:
Below
Step-by-step explanation:
The function is y= -2x +1
● the slope is -2
● the y-intercept is 1
A large population has a bell-shaped distribution with a mean of 200 and a standard deviation of 40. Which one of the following intervals would contain approximately 95% of the measurements?
a. (160, 240)
b. (140, 260)
c. (120, 280)
d. (200, 320)
The intervals would contain approximately 95% of the measurements will be (120, 280). Then the correct option is C.
What is a normal distribution?The Gaussian Distribution is another name for it. The most significant continuous probability distribution is this one. Because the curve resembles a bell, it is also known as a bell curve.
In numerical documentation, these realities can be communicated as follows, where Pr(X) is the likelihood capability, Χ is a perception from an ordinarily circulated irregular variable, μ (mu) is the mean of the dispersion, and σ (sigma) is its standard deviation:
The interval for 95% will be given as,
Pr(X) = μ ± 2σ
Pr(X) = 200 ± 2(40)
Pr(X) = 200 ± 80
Pr(X) = (200 - 80, 200 + 80)
Pr(X) = (120, 280)
The intervals would contain approximately 95% of the measurements will be (120, 280). Then the correct option is C.
More about the normal distribution link is given below.
https://brainly.com/question/12421652
#SPJ5
is 9 bigger than -10
Answer:
9 is a positive number and -10 is negative. Positive numbers are bigger than negative numbers so yes 9 is bigger than -10
Step-by-step explanation:
Answer:
Yes it is
Step-by-step explanation:
here is how the numbers appear numerically
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
How many 4 digit palidromes are there?
1. Which word best describes how you feel when working on a math assessment? ( point)
bored
excited
anxious
confident
Answer:
math is really a difficult subject for me. sometimes i feel confident when i get my answers correct, but sometimes i feel bored when i dnt get my answer. Sometimes i feel anxious , sometimes i feel excited to solve the problems.
Learn more:
brainly.com/question/13061296
The average person lives for about 78 years. Does the average person live for at least 1,000,000, minutes? (Hint: There are 365 days in each year, hours in 24 each day, and 6o minutes in each hour.)
Answer:
YES
Step-by-step explanation:
1 million minutes = 1.9 years
An average man can live upto 78 years.
So, an average man can easily live upto 1,000,000.
Answer:
There will be (365 x 24 x 60) minutes each year.
and that is 525600.
and 525600 x 78 is 40,996,800.
so, It is definitely more than 1 million minutes.
Hop it helps!
Bye!
HELP ASAP PLEASE I WILL MARK BRAINLEST
Show all work to identify the asymptotes and zero of the function f of x equals 6 x over quantity x squared minus 36.
Answer:
vertical asymptotes
x=6, x=-6
horizontal asymptotes
y=0
zeros (0,0)
Step-by-step explanation:
f(x) = 6x / ( x^2 - 36)
First factor
f(x) = 6x / ( x-6)(x+6)
Since nothing cancels
The vertical asymptotes are when the denominator goes to zero
x-6 = 0 x+6=0
x=6 x= -6
Since the numerator has a smaller power than the denominator (1 < 2), there is an asymptote at y = 0
To find the zeros, we find where the numerator = 0
6x=0
x=0
[tex]\\ \rm\Rrightarrow y=\dfrac{6x}{x^2-36}[/tex]
The h orizontal asymptote
As x has less degree than x²
y=0 is a asymptoteVertical asymptote
x²-36=0x²=36x=±6A man earns RS.95 in a day how much does we earn in 18 days
Answer:
RS 17.10
Step-by-step explanation:
If they earn 0.95 a day, you can multiply that income by the number of days, which is 18.
RS 17.10
if a point is chosen inside the large circle what is the probability that it will also be inside the small circle?
Answer:
1/4
Step-by-step explanation:
The probability will be equal to 1 - (probability that it will not be inside the small circle) = 1 - (pi*4-pi)/(pi*4)=1/4
What is the product of the polynomials below?
(8x2 - 4x-8)(2x +3x+2)
A. 16x4 +16x° - 12x2 - 16x-6
B. 16x4 +16x? - 12x2 - 16x-16
C. 16x4 +16x° - 12x2 – 32x-16
D. 16x4 +16 x° - 12x2 - 32x-6
Answer:
16x⁴+16x³-12x²-32x-16
Step-by-step explanation:
(8x²-4x-8)(2x²+3x+2)
= 16x⁴+24x³+16x²-8x³-12x²-8x-16x²-24x-16
= 16x⁴+16x³-12x²-32x-16
Find the missing probability. P(A)=7/20,P(A∪B)=191/400,P(A∩B)=49/400 ,P(B)=? A. 7/8 B. 1/4 C. 117/400 D. 19/40
Answer:
B
Step-by-step explanation:
P(AUB)=P(A)+P(B)-P(A∩B)
191/400=7/20+P(B)-49/400
P(B)=191/400+49/400-7/20=240/400-7/20=12/20-7/20=5/20=1/4
The value of P(B) is 1/4.
What is probability?The probability is defined as the possibility of an event is equal to the ratio of the number of favorable outcomes and the total number of outcomes.
For an experiment having q number of outcomes, the number of favorable outcomes can be denoted by p. The formula to calculate the probability of an event is as follows:
Probability(Event) = Favorable Outcomes/Total Outcomes = p/q
Given data as :
P(A) = 7/20,
P(A∪B) = 191/400,
P(A∩B) = 49/400 ,
P(AUB) = P(A) + P(B) - P(A∩B)
Substitute the values of P(A), P(A∪B) and P(A∩B) in formula,
191/400 = 7/20 + P(B) - 49/400
Rearrange the terms in the equation,
P(B) = 191/400 + 49/400 - 7/20
P(B) = 240/400 - 7/20
P(B) = 12/20 - 7/20
P(B) = 5/20
P(B) = 1/4
Hence, the value of P(B) is 1/4.
Learn more about probability here :
brainly.com/question/11234923
#SPJ5
The radius of a sphere is measured as 7 centimeters, with a possible error of 0.025 centimeter.
Required:
a. Use differentials to approximate the possible propagated error, in cm3, in computing the volume of the sphere.
b. Use differentials to approximate the possible propagated error in computing the surface area of the sphere.
c. Approximate the percent errors in parts (a) and (b).
Answer:
a) dV(s) = 15,386 cm³
b) dS(s) = 4,396 cm²
c) dV(s)/V(s) = 1,07 % and dS(s)/ S(s) = 0,71 %
Step-by-step explanation:
a) The volume of the sphere is
V(s) = (4/3)*π*x³ where x is the radius
Taking derivatives on both sides of the equation we get:
dV(s)/ dr = 4*π*x² or
dV(s) = 4*π*x² *dr
the possible propagated error in cm³ in computing the volume of the sphere is:
dV(s) = 4*3,14*(7)²*(0,025)
dV(s) = 15,386 cm³
b) Surface area of the sphere is:
V(s) = (4/3)*π*x³
dV(s) /dx = S(s) = 4*π*x³
And
dS(s) /dx = 8*π*x
dS(s) = 8*π*x*dx
dS(s) = 8*3,14*7*(0,025)
dS(s) = 4,396 cm²
c) The approximates errors in a and b are:
V(s) = (4/3)*π*x³ then
V(s) = (4/3)*3,14*(7)³
V(s) = 1436,03 cm³
And the possible propagated error in volume is from a) is
dV(s) = 15,386 cm³
dV(s)/V(s) = [15,386 cm³/1436,03 cm³]* 100
dV(s)/V(s) = 1,07 %
And for case b)
dS(s) = 4,396 cm²
And the surface area of the sphere is:
S(s) = 4*π*x³ ⇒ S(s) = 4*3,14*(7)² ⇒ S(s) = 615,44 cm²
dS(s) = 4,396 cm²
dS(s)/ S(s) = [ 4,396 cm²/615,44 cm² ] * 100
dS(s)/ S(s) = 0,71
reflect the x axis A B C D
Answer:
see explanation
Step-by-step explanation:
Under a reflection in the x- axis
a point (x, y ) → (x, - y ) , then
A (- 1, - 17 ) → A' (- 1, 17 )
B (0, - 12 ) → B' (0, 12 )
C (- 5, - 11 ) → C' (- 5, 11 )
D (- 6, - 16 ) → D' (- 6, 16 )
Suppose 55 percent of the customers at Pizza Palooza order a square pizza, 72 percent order a soft drink, and 48 percent order both a square pizza and a soft drink. Is ordering a soft drink independent of ordering a square pizza?
Answer: No, the orders are not independent.
Step-by-step explanation:
If event 1 has some possible outcomes, suppose that we choose a given outcome 1 with a probability P1, and event 2, also with different possible outcomes, we can select an outcome 2, that has a probability P2, and the two events are independent (meaning that the outcome in event 1 does not affect the outcome in event 2, and vice versa)
Then the probability of outcome 1 and outcome 2 happening at the same time is equal to the product of their individual probabilities.
P = P1*P2.
In this case, event 1 is the selection of the pizza, and outcome 1 is the selection of the square pizza, with a probability of 55%.
Event 2 is the selection of the drink, outcome 2 is the order of a soft drink, with a probability of 72%.
If those two events were independent, then the probability that a customer orders a square pizza and a soft drink would be:
P = 0.55*0.72 = 0.396 (or 39.6%)
But we know that the actual probability is 48%.
So this is larger, which means that the outcomes are not independent.
How is multiplying 3 - 2i by ia represented on the complex plane?
Drag a term or measure into each box to correctly complete the statements
The complex number 3 - 2i lies in quadrant IV
of the complex plane. When any complex number is multiplied by the
imaginary unit, the complex number undergoes a
90°
rotation in a counterclockwise direction This means that
the complex product of 3 - 2i and 22 lies in
quadrant I
of the complex plane.
The equation is represented 3 units to the left of the complex plane and 2 units up.
What is complex equation?A complex equation is an equation that involves complex numbers when solving it. A complex number is a number that has both a real part and an imaginary part.
Well to see how this is represented, we first need to multiply it out so we can see how it looks when it is simplified!
[tex]=(3-2i)(i^2)\\\\\\i^2=-1\\\\\\=(3-2i)(-1)\\\\\\=(-3+2i)[/tex]
We know that on a complex plane, our imaginary numbers are represented on the vertical axis.
So the original expression, (3-2i) would have been 3 units to the right on a complex graph and 2 units downward!
The equation I input above should be pretty straightforward, but one thing I didn't mention was that i^2 should = -1 when dealing with complex numbers!
Therefore, the equation 3-2i * i^2 is equal to -3 + 2i, this is graphed 3 units to the left and to units upward!
To know more about complex numbers follow
https://brainly.com/question/10662770
#SPJ2
A couple has a total household income of $84,000. The husband earns $18,000 less than twice what the wife earns. How much does the wife earn? Select the correct answer below:
Answer:
$34000
Step-by-step explanation:
We can set up a systems of equations, assuming [tex]h[/tex] is the husbands income and [tex]w[/tex] is the wife's income.
h + w = 84000
h = 2w - 18000
We can substitute h into the equation as 2w - 18000:
(2w - 18000) + w = 84000
Combine like terms:
3w - 18000 = 84000
Add 18000 to both sides
3w = 102000
And divide both sides by 3
w = 34000
Now that we know how much the wife earns, we can also find out how much the husband earns by substituting into the equation.
h + 34000 = 84000
h = 50000
Hope this helped!
A number is multiplied by 8, and that product is added to 2. The sum is equal to the product of 2 and 25. Find the number.
Answer: the number = 6
Step-by-step explanation:
Let x be the number.
Set equation according to the information given
2 + 8x = 2 × 25
Simplify by multiplication
2 + 8x = 50
Subtract 2 on both sides
2 + 8x - 2 = 50 - 2
8x = 48
Divide 8 on both sides
8x / 8 = 48 / 8
[tex]\boxed {x=6}[/tex]
Hope this helps!! :)
Please let me know if you have any questions
Can anyone help me please??
Answer:
-20x / (x-12) = y
Step-by-step explanation:
3/x - 5/y = 1/4
Multiply each side by 4xy to clear the fractions
4xy ( 3/x - 5/y = 1/4)
Distribute
12y - 20x = xy
Subtract 12y from each side
-20x = xy -12y
Factor out y
-20x = y(x-12)
Divide each side by (x-12)
-20x / (x-12) = y
helppppppppppppppppp pllllzzzzz
a
b
c
Answer:
b rectángulo de la referencia de los números que están por debajo de la construcción de un triángulo obtusangulo
Find the center, vertices, and foci of the ellipse with equation 4x2 + 9y2 = 36. Center: (0, 0); Vertices: (-3, 0), (3, 0); Foci: Ordered pair negative square root 5 comma 0 and ordered pair square root 5 comma 0 Center: (0, 0); Vertices: (-9, 0), (9, 0); Foci: Ordered pair negative square root 65 comma 0 and ordered pair square root 65 comma 0 Center: (0, 0); Vertices: (0, -3), (0, -3); Foci: Ordered pair 0 comma negative square root 5 and ordered pair 0 comma square root 5 Center: (0, 0); Vertices: (0, -9), (0, 9); Foci: Ordered pair 0 comma negative square root 65 and ordered pair 0 comma square root 65
Answer:
Option A.
Step-by-step explanation:
The given equation of ellipse is
[tex]4x^2+9y^2=36[/tex]
Divide both sides by 36.
[tex]\dfrac{4x^2}{36}+\dfrac{9y^2}{36}=1[/tex]
[tex]\dfrac{x^2}{9}+\dfrac{y^2}{4}=1[/tex]
[tex]\dfrac{x^2}{3^2}+\dfrac{y^2}{2^2}=1[/tex] ...(1)
The standard form of an ellipse is
[tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex] ...(2)
where, (h,k) is center, (h±a,k) are vertices and (h±c,k) are foci.
On comparing (1) and (2), we get
[tex]h=0,k=0,a=3,b=2[/tex]
Now,
Center [tex]=(h,k)=(0,0)[/tex]
Vertices [tex]=(h\pm a,k)=(0\pm 3,0)=(3,0),(-3,0)[/tex]
We know that
[tex]c=\sqrt{a^2-b^2}=\sqrt{3^2-2^2}=\sqrt{5}[/tex]
Foci [tex]=(h\pm c,k)=(0\pm \sqrt{5},0)=(\sqrt{5},0),(-\sqrt{5},0)[/tex]
Therefore, the correct option is A.
The sum of 8 times a number and 7 equals 9!
Answer:
0.25*8+7=9
Step-by-step explanation:
8x+7=9
2/8=x
0.25=x
Name the property of real numbers illustrated by the equation
Answer:
A. Commutative property
Step-by-step explanation:
The commutative property states that multiplication can be performed in any order. This means that a*b=b*a. Therefore, it does not matter whether [tex]\sqrt{2}[/tex] or 3 is first in the multiplication problem. So, the first answer is correct.
Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the
correct position in the answer box. Release your mouse button when the item is place. If you change your mind, drag
the item to the trashcan. Click the trashcan to clear all your answers.
Perform the following computation with radicals. Simplify the answer.
V6 18
311
123 45
6
7
8
+
x
Question: Perform the following computation with radicals. Simplify the answer. √6 • √8
Answer:
[tex] 4\sqrt{3} [/tex]
Step-by-step explanation:
Given, √6 • √8, to perform the computation, we would simply evaluate the radicals and try as much as possible to leave the answer in the simplest form in radicals.
Thus,
[tex] \sqrt{6}*\sqrt{8} = \sqrt{6*8} [/tex]
[tex] = \sqrt{48} [/tex]
[tex] = \sqrt{16*3} = \sqrt{16}*\sqrt{3}[/tex]
[tex] = 4\sqrt{3} [/tex]
In this diagram, bac~edf. if the area of bac= 6 in.², what is the area of edf? PLZ HELP PLZ PLZ PLZ PLZ
Answer:
Area of ΔEDF = 2.7 in²
Step-by-step explanation:
It's given in the question,
ΔBAC ~ ΔEDF
In these similar triangles,
Scale factor of the sides = [tex]\frac{\text{Measure of one side of triangle BAC}}{\text{Measure of one side of triangle EDF}}[/tex]
[tex]=\frac{\text{BC}}{\text{EF}}[/tex]
[tex]=\frac{3}{2}[/tex]
Area scale factor = (Scale factor of the sides)²
[tex]\frac{\text{Area of triangle BAC}}{\text{Area of triangle EDF}}=(\frac{3}{2})^2[/tex]
[tex]\frac{6}{\text{Area of triangle EDF}}=(\frac{9}{4})[/tex]
Area of ΔEDF = [tex]\frac{6\times 4}{9}[/tex]
= 2.67
≈ 2.7 in²
Therefore, area of the ΔEDF is 2.7 in²
find the domain of the graphed function.