Answer:
628 units³Step-by-step explanation:
Given,
Radius ( r ) = 10
Height ( h ) = 6
pi ( π ) = 3.14
now, let's find the volume of given cone:
[tex]\pi {r}^{2} \frac{h}{3} [/tex]
Plug the values
[tex] = 3.14 \times {10}^{2} \times \frac{6}{3} [/tex]
Evaluate the power
[tex] = 3.14 \times 100 \times \frac{6}{3} [/tex]
Calculate
[tex] = 628 \: {units}^{3} [/tex]
Hope this helps..
Best regards!!
Answer:
The answer is 200π units³ .
Step-by-step explanation:
Given that the formula of volume of cone is V = 1/3×π×r²×h where r represents radius and h is height. Then, you have to substitute the value of radius and height into the formula :
[tex]v = \frac{1}{3} \times \pi \times {r}^{2} \times h[/tex]
[tex]let \: r = 10 \: , \: h = 6[/tex]
[tex]v = \frac{1}{3} \times \pi \times {10}^{2} \times 6[/tex]
[tex]v = \frac{1}{3} \times \pi \times 600[/tex]
[tex]v = 200\pi \: {units}^{3} [/tex]
Find the length of BC
Answer:
The answer is option AStep-by-step explanation:
To find the length of BC we use tan
tan ∅ = opposite / adjacent
From the question
AC is the opposite
BC is the adjacent
So we have
tan 61 = AC / BC
tan 61 = 47/BC
BC = 47/tan 61
BC = 26.05Hope this helps you
what is 99/00+44(55)99
Answer:
undefined! one cannot divide by 0
Step-by-step explanation:
Answer:
undefined!
Step-by-step explanation:
Bernard works for a business that sells and repairs tires. He can repair 24 tires in an 8 hour work day. What is Bernard's unit rate for the number of tires repaired in one hour?
Step-by-step explanation:
Unit rate = 24 ÷ 8 = 3 tires
Answer:
Step-by-step explanation:
24 tires/8hours
Imagine working in a freelance developer earning 80 USD per hour how many weeks you will have to take a 12 hour flight on a weekday you can either book a flight for ticket for 11 AM for 900 USD or 11 PM flight or 11 USD there is no Internet boards if you take the day off like you will lose a day of work what would you do
Answer:
pay the 11 AM ticket
Step-by-step explanation:
Note that the flight last for 12 hours, and assuming the freelance developer can still work (have access to the internet) on the airplane throughout the flight, he stand to earn $960 ($80*12), which will still cover the cost of the flight with a profit of $60 ($960-900).
However, if he decides to pay the $11 flight ticket and there is no Internet on boards; there by losing a day of work, he stand to have lost working time which would earn with $900.
Therefore, the best choice is to pay the 11 AM ticket.
A land owner is planning to build a fenced-in, rectangular patio behind his garage, using his garage as one of the "walls." He wants to maximize the area using 80 feet of fencing. The quadratic function A(x)=x(80−2x) gives the area of the patio, where x is the width of one side. Find the maximum area of the patio.
Answer: 800 feet²
Step-by-step explanation:
Lets remove the brackets from the function's expression
A(x) = -2x²+80x
So we got the quadratic function and we have to find the x that corresponds to function's maximum. Let it be X max
As we know Xmax= (X1+X2)/2 , where X1 and X2 are the roots of the function A(x)
Lets find X1 and X2
x(80-2x)=0
x1=0 80-2*X2=0
x2=40
So Xmax= (0+40)/2=20
So Amax= A(20)= 20*(80-2*20)=20*40=800 feet²
Solve the oblique triangle where side a has length 10 cm, side c has length 12 cm, and angle beta has measure thirty degrees. Round all answers using one decimal place.
Answer:
The missing side is [tex]B = 6.0\ cm[/tex]
The missing angles are [tex]\alpha = 56.2[/tex] and [tex]\theta = 93.8[/tex]
Step-by-step explanation:
Given
[tex]A = 10\ cm[/tex]
[tex]C = 12\ cm[/tex]
[tex]\beta = 30[/tex]
The implication of this question is to solve for the missing side and the two missing angles
Represent
Angle A with [tex]\alpha[/tex]
Angle B with [tex]\beta[/tex]
Angle C with [tex]\theta[/tex]
Calculating B
This will be calculated using cosine formula as thus;
[tex]B^2 = A^2 + C^2 - 2ACCos\beta[/tex]
Substitute values for A, C and [tex]\beta[/tex]
[tex]B^2 = 10^2 + 12^2 - 2 * 10 * 12 * Cos30[/tex]
[tex]B^2 = 100 + 144 - 240 * 0.8660[/tex]
[tex]B^2 = 100 + 144 - 207.8[/tex]
[tex]B^2 = 36.2[/tex]
Take Square root of both sides
[tex]B = \sqrt{36.2}[/tex]
[tex]B = 6.0[/tex] (Approximated)
Calculating [tex]\alpha[/tex]
This will be calculated using cosine formula as thus;
[tex]A^2 = B^2 + C^2 - 2BCCos\alpha[/tex]
Substitute values for A, B and C
[tex]A^2 = B^2 + C^2 - 2BCCos\alpha[/tex]
[tex]10^2 = 6^2 + 12^2 - 2 * 6 * 12 * Cos\alpha[/tex]
[tex]100 = 36 + 144 - 144Cos\alpha[/tex]
Collect Like Terms
[tex]100 - 36 - 144 = -144Cos\alpha[/tex]
[tex]-80 = -144Cos\alpha[/tex]
Divide both sides by -144
[tex]\frac{-80}{-144} = Cos\alpha[/tex]
[tex]0.5556 = Cos\alpha[/tex]
[tex]\alpha = cos^{-1}(0.5556)[/tex]
[tex]\alpha = 56.2[/tex] (Approximated)
Calculating [tex]\theta[/tex]
This will be calculated using cosine formula as thus;
[tex]C^2 = B^2 + A^2 - 2BACos\theta[/tex]
Substitute values for A, B and C
[tex]12^2 = 6^2 + 10^2 - 2 * 6 * 10Cos\theta[/tex]
[tex]144 = 36 + 100 - 120Cos\theta[/tex]
Collect Like Terms
[tex]144 - 36 - 100 = -120Cos\theta[/tex]
[tex]8 = -120Cos\theta[/tex]
Divide both sides by -120
[tex]\frac{8}{-120} = Cos\theta[/tex]
[tex]-0.0667= Cos\theta[/tex]
[tex]\theta = cos^{-1}(-0.0667)[/tex]
[tex]\theta = 93.8[/tex] (Approximated)
An aquarium is to be built to hold 60 m3of volume. The base is to be made of slate and the sides aremade of glass, and it has no top. If stone costs $120/m2and glass costs $30/m2, find the dimensions which willminimize the cost of building the aquarium, and find the minimum cost.
Answer:
Aquarium dimensions:
x = 3,106 m
h = 6,22 m
C(min) = 1277,62 $
Step-by-step explanation: (INCOMPLETE QUESTION)
We have to assume:
The shape of the aquarium (square base)
Let´s call "x" the side of the base, then h ( the heigh)
V(a) = x²*h h = V(a)/x²
Cost of Aquarium C(a) = cost of the base (in stones) + 4* cost of one side (in glass)
C(a) = Area of the base *120 + 4*Area of one side*30
Area of the base is x²
Area of one side is x*h or x*V(a)/x²
Area of one side is V(a)/x
C(x) = 120*x² + 4*30*60/x
C(x) = 120*x² + 7200/x
Taking derivatives on both sides of the equation we get
C´(x) = 2*120*x - 7200/x²
C´(x) = 0 means 240 *x - 7200/x² = 0
240*x³ - 7200 = 0
x³ = 7200/240
x = 3,106 m and h = 60 /x² h = 6,22 m
and C (min) = 120*(3,106)³ - 7200 / 3,106
C(min) = 3595,72 - 2318,1
C(min) = 1277,62
Which expression is equivalent to 2m^2 - m^2(7-m)+6m^2?
Answer:
[tex]m^3+m^2[/tex]
Step-by-step explanation:
=> [tex]2m^2-m^2(7-m)+6m^2[/tex]
Collecting like terms and expanding the brackets
=> [tex]2m^2+6m^2-7m^2+m^3[/tex]
=> [tex]8m^2-7m^2+m^3[/tex]
=> [tex]m^2+m^3[/tex]
=> [tex]m^3+m^2[/tex]
Without actually solving the problem, choose the correct solution by deciding which choice satisfies the given conditions.
Kesha has a total of 100 coins, all of which are either dimes or quarters. The total value of the coins is $14.50. Find the number of each type of coin.
Which choice satisfies the given conditions?
O A. 70 dimes, 30 quarters
B. 20 dimes, 80 quarters
C. 40 dimes, 42 quarters
Answer:
A. 70 dimes, 30 quarters
Step-by-step explanation:
Only options A and B create a total of 100 coins. It cannot be option B because 80 quarters by itself, is already over $14.50.
Use Green's Theorem to evaluate F · dr. C (Check the orientation of the curve before applying the theorem.)F(x, y) = y cos(x) − xy sin(x), xy + x cos(x) , C is the triangle from (0, 0) to (0, 8) to (2, 0) to (0, 0)
Notice that C has a clockwise orientation. By Green's theorem, we have
[tex]\displaystyle\int_C\mathbf F(x,y)\cdot\mathrm d\mathbf r=-\iint_D\left(\frac{\partial(xy+x\cos x)}{\partial x}-\frac{\partial(y\cos x-xy)}{\partial y}\right)\,\mathrm dx\,\mathrm dy[/tex]
where D is the triangule region with C as its boundary, given by the set
[tex]D=\{(x,y)\mid0\le x\le2\land0\le y\le8-4x\}[/tex]
So we have
[tex]\displaystyle\int_C\mathbf F(x,y)\cdot\mathrm d\mathbf r=-\int_0^2\int_0^{8-4x}((y+\cos x-x\sin x)-(\cos x-x\sin x))\,\mathrm dy\,\mathrm dx[/tex]
[tex]\displaystyle\int_C\mathbf F(x,y)\cdot\mathrm d\mathbf r=-\int_0^2\int_0^{8-4x}y\,\mathrm dy\,\mathrm dx=\boxed{-\dfrac{64}3}[/tex]
what is the 20th term of the arithmetic sequence a(n)=-5+(n-1)3
Answer:
52
Step-by-step explanation:
a(n)=-5+(n-1)3
a(20)=-5+(20-1)3
a(20)=52
The 20th term of the arithmetic sequence is 52.
What is Arithmetic sequence?An arithmetic sequence is a list of numbers with a definite pattern. If you take any number in the sequence then subtract it by the previous one, and the result is always the same or constant then it is an arithmetic sequence.
For example,
In an arithmetic sequence, the difference between consecutive terms is always the same. For example, the sequence 3, 5, 7, 9 ... is arithmetic because the difference between consecutive terms is always two.
The nth term of an arithmetic sequence is given by an = a + (n – 1)d.
Given:
a(n)=-5+(n-1)3
First term,
a(1)= -5 + 0
a(1)= -5
second, a(2)= -5 + 1*3
a(2)= -2
Third, a(3)= -5+6
a(3)= 1
d= 3
So, the 20th term
a(20)= -5+ (20-1)3
a(20)= -5 + 57
a(20)= 52
Hence, the 20th term is 52.
Learn more about Arithmetic Sequence here:
https://brainly.com/question/10396151
#SPJ2
Which equation is the inverse of y = 16x2 + 1? y = plus-or-minus StartRoot StartFraction x Over 16 EndFraction minus 1 EndRoot y = StartFraction plus-or-minus StartRoot x minus 1 EndRoot Over 16 EndFraction y = StartFraction plus-or-minus StartRoot x EndRoot Over 4 EndFraction minus one-fourth y = StartFraction plus-or-minus StartRoot x minus 1 EndRoot Over 4 EndFraction
Answer:
The inverse is ±sqrt((x-1))/ 4
Step-by-step explanation:
y = 16x^2 + 1
To find the inverse, exchange x and y
x = 16 y^2 +1
Then solve for y
Subtract 1
x-1 = 16 y^2
Divide by 16
(x-1)/16 = y^2
Take the square root of each side
±sqrt((x-1)/16) = sqrt(y^2)
±sqrt((x-1))/ sqrt(16) = y
±sqrt((x-1))/ 4 = y
The inverse is ±sqrt((x-1))/ 4
Answer:
D
Step-by-step explanation:
Gena wants to estimate the quotient of –21.87 divided by 4.79. Which expression shows the best expression to estimate the quotient using front-end estimation? Negative 21 divided by 4 Negative 21 divided by 5 Negative 20 divided by 4 Negative 20 divided by 5
Answer:
-21/5 = -4.2
Step-by-step explanation:
-21.87 / 4.79 = -4.5657.....
So, the quotients is -4
Now, Let's see who's quotient is equal to think one:
-21/4 = -5.25
-21/5 = -4.2
-40/4 = -5
-20/5 = 4
Answer:
-21/5 = -4.2
Step-by-step explanation:
a lottery game has balls numbered 1 through 19. what is the probability selected ball is an even numbered ball or a 4 g
Answer:
Probability ball is an even numbered ball or a 4 [P(A or B)] = 9 / 19
Step-by-step explanation:
Given:
Number of balls = 1 to 19
Find:
Probability ball is an even numbered ball or a 4
Computation:
Total even number = 2, 4, 6, 8, 10, 12, 14, 16, 18
Probability to get even number P(A) = 9 / 19
Probability to get 4 number P(B) = 1 / 19
P(A and B) = 1 / 19 (4 common)
Probability ball is an even numbered ball or a 4 [P(A or B)]
P(A or B) = P(A) + P(B) -P(A and B)
P(A or B) = [9 / 19] + [1 / 19] - [1 / 19]
Probability ball is an even numbered ball or a 4 [P(A or B)] = 9 / 19
A car is being driven, in a straight line and at a uniform speed, towards the base of a vertical tower. The top of the tower is observed from the car and, in the process, it takes 10 min for the angle of elevation to change from 45° to 60°. After how much more time will this car reach the base of the tower? Options: a. 5( √3+ 1 ) b. 6 (√3 +√2) c. 7 (√3- 1) d. 8 (√3-2)
Answer:
The correct answer is option a.
a. 5( √3+ 1 )
Step-by-step explanation:
Given that the angle changes from 45° to 60° in 10 minutes.
This situation can be represented as right angled triangles [tex]\triangle[/tex]ABC (in the starting when angle is 45°)and [tex]\triangle[/tex]ABD (after 10 minutes when the angle is 60°).
AB is the tower (A be its top and B be its base).
Now, we need to find the time to be taken to cover the distance D to B.
First of all, let us consider [tex]\triangle[/tex]ABC.
Using tangent property:
[tex]tan\theta =\dfrac{Perpendicular}{Base}\\\Rightarrow tan 45=\dfrac{AB}{BC}\\\Rightarrow 1=\dfrac{h}{BC}\\\Rightarrow h = BC[/tex]
Using tangent property in [tex]\triangle[/tex]ABD:
[tex]\Rightarrow tan 60=\dfrac{AB}{BD}\\\Rightarrow \sqrt3=\dfrac{h}{BD}\\\Rightarrow BD = \dfrac{h}{ \sqrt3}\ units[/tex]
Now distance traveled in 10 minutes, CD = BC - BD
[tex]\Rightarrow h - \dfrac{h}{\sqrt3}\\\Rightarrow \dfrac{(\sqrt3-1)h}{\sqrt3}[/tex]
[tex]Speed =\dfrac{Distance }{Time}[/tex]
[tex]\Rightarrow \dfrac{(\sqrt3-1)h}{10\sqrt3}[/tex]
Now, we can say that more distance to be traveled to reach the base of tower is BD i.e. '[tex]\bold{\dfrac{h}{\sqrt3}}[/tex]'
So, more time required = Distance left divided by Speed
[tex]\Rightarrow \dfrac{\dfrac{h}{\sqrt3}}{\dfrac{(\sqrt3-1)h}{10\sqrt3}}\\\Rightarrow \dfrac{h\times 10\sqrt3}{\sqrt3(\sqrt3-1)h}\\\Rightarrow \dfrac{10 (\sqrt3+1)}{(\sqrt3-1)(\sqrt3+1)} (\text{Rationalizing the denominator})\\\Rightarrow \dfrac{10 (\sqrt3+1)}{3-1}\\\Rightarrow \dfrac{10 (\sqrt3+1)}{2}\\\Rightarrow 5(\sqrt3+1)}[/tex]
So, The correct answer is option a.
a. 5( √3+ 1 )
What is the equation of the line with a slope of 4 and a y-intercept of -5?
Answer:
y = 4x -5
Step-by-step explanation:
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
y = 4x -5
When a survey was conducted among 100 students to find their favorite pizza topping, 45 students voted for pepperoni, 25 for mushrooms, and 30 voted for cheese. If a pie chart were made showing the number of votes for each topping, the central angle for the cheese sector would be __________.
Answer:
The central angle for the cheese sector would be 108 degrees.
Step-by-step explanation:
We know that a pi chart takes the form of a circle so the total angle measure is 360 degrees.
Now we want to find out what ratio of the pie chart that cheese takes up and apply it to the total degree measure.
30 of 100 students voted for cheese:
so the ratio would be 30/100 or 3/10
Now apply that to the total angle measure:
3/10*360 degrees= 108 degrees.
What is an example of force causing a change in the size of the body (P.S. what is the difference between shape and size?)
Answer:
shape is how it looks like Square is a shape and size is how big something in like my size of my foot is 6 inches
Step-by-step explanation:
well idk your real question i think it is that your shape and size can change
CAN ANYONE HELP ME PLEASE? Jen Butler has been pricing Speed-Pass train fares for a group trip to New York. Three adults and four children must pay $106. Two adults and three children must pay $75. Find the price of the adult's ticket and the price of a child's ticket.
Answer:
adult=18$ and children=13$
Step-by-step explanation:
a= adult. and. c= children
first change the statement into linear equation
3a+4c=106
2a+3c=75
then it just solving for a and y
3a+4c=106. a= 75-3c.
2
3(75-3c)+ 4c=106. solve for c
2
c=13
then find c by substituting the value you got into a . you can you either 3a+4c=106
or 2a+3c=75 to find the answer but the value of a is the same.
2a+3c=75. c=13
2a+3(13)=75
2a=75 -39
2a= 36
a=18
Answer:
Adults Ticket = $18
Child's Ticket = $13
Step-by-step explanation:
Let A denote the price of an adult's ticket
Let C denote the price of a child's ticket
It is given that the three adults and four children must pay $106.
Mathematically,
[tex]3A + 4C = 106 \:\:\:\:\:\:\:\:\:\:\: eq. 1[/tex]
It is also given that the two adults and three children must pay $75.
Mathematically,
[tex]2A + 3C = 75 \\\\2A = 75 - 3C[/tex]
[tex]$ A = \frac{(75 - 3C)}{2} \:\:\:\:\:\:\: eq\:. 2 $[/tex]
Substitute eq. 2 into eq. 1
[tex]3A + 4C = 106[/tex]
[tex]$ \frac{3(75 - 3C)}{2} + 4C = 106 $[/tex]
Simplify,
[tex]$ \frac{3(75 - 3C)}{2} + 4C = 106 $[/tex]
[tex]$ \frac{225 - 9C}{2} + 4C = 106 $[/tex]
[tex]$ \frac{225 - 9C + 2(4C)}{2} = 106 $[/tex]
[tex]$ \frac{225 - 9C + 8C}{2} = 106 $[/tex]
[tex]$ 225 - 9C + 8C = 2(106) $[/tex]
[tex]$ 225 - C = 212 $[/tex]
[tex]C = 225 - 212[/tex]
[tex]C = \$13[/tex]
Substitute the value of C into eq. 2
[tex]$ A = \frac{75 - 3(13)}{2} $[/tex]
[tex]$ A = \frac{75 - 39}{2} $[/tex]
[tex]A = \$18[/tex]
Therefore, the price of the adult's ticket is $18 and the price of a child's ticket is $13
Which of the following is equivalent to4−(−5∗9−1)÷2+(5)2−7?
Answer:
-20
Step-by-step explanation:
Follow the PEDMAS order (from top to bottom):
Parentheses
Exponents
Division and Multiplication
Addition and Subtraction
(-5 × 9 - 1) ÷ 2 + (5)2 - 7
(-45 - 1) ÷ 2 + 10 - 7
-46 ÷ 2 + 10 - 7
-23 + 10 - 7
-13 - 7
-20
Answer:
-20
Step-by-step explanation:
=> [tex](-5 * 9-1)/2+(5)2-7[/tex]
Expanding parenthesis
=> [tex](-45-1)/2+10-7[/tex]
=> [tex]-46/2 + 3[/tex]
=> -23 + 3
=> -20
PLEASE HELP!! Write the proportion. 120 feet is to 150 feet as 8 feet is to 10 feet. (18 points!!)
Answer:
4 : 5
Step-by-step explanation:
you can divide 120 and 150 by 30 and 8 and 10 by 2.
120/30 = 4
150/30 = 5
8/2 = 4
10/2=5
Answer: 4:5
Step-by-step explanation:
Find the slope of the line that passes through (1, 14) and (4,9)
Which two numbers in the points represent y values? Select both in the
list
Answer:
14 and 9
Step-by-step explanation:
Y values are always the second number in the parenthesis. The X value is the first one. I like to think of Y being dependent on X, so X goes first, then Y.
Please do either 40 or 39
Answer:
y = 1.8
Step-by-step explanation:
Question 39).
Let the operation which defines the relation between a and b is O.
Relation between a and b has been given as,
a O b = [tex]\frac{(a+b)}{(a-b)}[/tex]
Following the same operation, relation between 3 and y will be,
3 O y = [tex]\frac{3+y}{3-y}[/tex]
Since 3 O y = 4,
[tex]\frac{3+y}{3-y}=4[/tex]
3 + y = 12 - 4y
3 + y + 4y = 12 - 4y + 4y
3 + 5y = 12
3 + 5y - 3 = 12 - 3
5y = 9
[tex]\frac{5y}{5}=\frac{9}{5}[/tex]
y = 1.8
Therefore, y = 1.8 will be the answer.
Listed below are the measured radiation absorption rates (in W/kg) corresponding to 11 cell phones. Use the given data to construct a boxplot and identify the 5-number summary.
1.26 0.98 1.07 0.97 1.28 0.89 1.14 0.58 1.42 0.59 0.96
Answer:
Five-number summary in ascending order: [tex] 0.58, 0.89, 0.98, 1.26, 1.42 [/tex]
Step-by-step Explanation:
The number summary, in ascending order, includes the minimum value, maximum value, median value, upper quartile and lower quartile.
To find each of the above values, first, order the data set in ascending order. Our values given, when ordered, would be:
0.58, 0.59, 0.89, 0.96, 0.97,| 0.98|, 1.07, 1.14, 1.26, 1.28, 1.42
1.The minimum value (the least value or lower value in the given data set).
From the ordered data set, minimum value = 0.58
2. The maximum value is the highest value in the data set = 1.42
3. Median value is the middle value of the data set. The middle value is the 6th value = 0.98.
The median value divides the data set into lower and upper region, as shown below.
0.58, 0.59, 0.89, 0.96, 0.97,|0.98|, 1.07, 1.14, 1.26, 1.28, 1.42
4. Lower Quartile (Q2) is the middle value of the lower region = 0.89, as shown below,
0.58, 0.59, [0.89], 0.96, 0.97,|0.98|, 1.07, 1.14, 1.26, 1.28, 1.42
5. Upper Quartile (Q3) is the middle value of the upper region = 1.26, as shown below.
0.58, 0.59, 0.89, 0.96, 0.97,|0.98|, 1.07, 1.14, [1.26], 1.28, 1.42
: this is the middle value of lower region, after our median divides the data set into two.
0.58, 0.59, 0.89, 0.96, 0.97,|0.98|, 1.07, 1.14, 1.26, 1.28, 1.42
Therefore, the five-number summary in ascending order is as follows: [tex] 0.58, 0.89, 0.98, 1.26, 1.42 [/tex]
Min = 0.58
Q1 = 0.89
Median = 0.98
Q3 = 1.26
Max = 1.42
A box plot has been constructed using the five-number summary. Check the attachment below.
The min value is represented by the whisker that starts from your left and connects to the rectangular box.
The max value is indicated at the extreme end of the other whisker that you have from the end of the rectangular box to your far right.
The median value is indicated by the vertical line that divides the rectangular box into 2.
The lower quartile is indicated at the beginning of the rectangular box, while the upper quartile is located at the end of the rectangular box.
Use identities to find values of the sine and cosine functions of the function for the angle measure
a. theta, given that cos2theta=28/53 and 0theta < theta < 90degrees
b. 2theta, given sin theta= - sqrt 7 over 5 and cos theta > 0
c. 2x, given tan x=2 and cos x<0
Answer:
Step-by-step explanation:
a) Given cos2theta=28/53 and 0degrees< theta < 90degrees
From cos2theta=28/53
[tex]2\theta = cos^{-1}\frac{28}{53}[/tex]
[tex]2\theta = cos^{-1}0.5283\\ \\2\theta = 58.12\\\\Dividing\ both \ sides\ by \ 2\\\\\frac{2\theta}{2} = \frac{58.12}{2}\\ \\\theta = 29.06^0[/tex]
b) Given
[tex]sin\theta = \frac{-\sqrt{7} }{5} \\\\\theta = sin^{-1} \frac{-\sqrt{7} }{5}\\\\\\\theta = sin^{-1} \frac{-2.6458}{5}\\\\\theta = sin^{-1} -0.5292\\\\\theta = -31.95^0[/tex]
If cos theta [tex]\gneq[/tex] 0, this means we need to look for the quadrant where sin is negative and cos is positive. That will be the fourth quadrant. In the fourth quadrant, theta = 360 - 31.95° = 328.05°
2theta = 2 * 328.05
2theta = 656.1°
c) Given tan x=2 and cos x<0, lets find the angle of x first.
If tan x = 2
x = tan^-1 2
x = 63.4°
Sine cos is less than 0, then we need to find the angle of x where tan is positive and cos is negative. That will be the third quadrant. In the third quadrant, ew value of x = 180+63.4
x = 243.4°
Since we are to find 2x,
2x = 2(243.4)
2x = 486.8°
Find the common difference of the arithmetic sequence. 4, 10, 16, 22, . . .
Answer:
6
Step-by-step explanation:
10 - 4 = 6
16 - 10 = 6
22 - 16 = 6
Answer:6
Step-by-step explanation:
1) 10-4=6
2) 16-10=6
3) 22-16=6
Six identical coins are tossed. How many possible arrangements of the coins include three heads and three tails?
Answer:
The possible arrangement= 18 ways
Step-by-step explanation:
Six identical coin are tossed.
Coin has only a tail and a head.
In how many possible ways can the arrangement be 3 head and 3 tail.
The possible arrangement= (3! * 3!)/2
The reason for dividing by two because coin has two face.
The possible arrangement= (3! * 3!)/2
The possible arrangement=( 6*6)/2
The possible arrangement= 36/2
The possible arrangement= 18 ways
Please help. I’ll mark you as brainliest if correct!
Answer:
Step-by-step explanation:
children=c
adults=a
c+a=359
a=359-c
2.75c+6a=1621
2.75 c+6(359-c)=1621
2.75 c+2154-6c=1621
-3.25 c=1621-2154
-3.25 c=-533
[tex]-\frac{325}{100} c=-533\\-\frac{13}{4} c=-533\\c=-533 \times \frac{-4}{13} =41 \times 4=164 \\children=164\\adults=359-164=195[/tex]
if a drawing of a tree is 5 inches tall and the radio is 1:7 (inches:feet) ,how tall is the tree?
If the drawing is 5 inches tall and the ratio is 1:7, that means that 1 inch will be equal to 7 feet.
Height = 5 x 7 = 35 feet
a sample of bacteria is growing at an hourly rate of 14% according to the exponential growth function.the sa
Answer:
pleasse elaborate more
Step-by-step explanation: