Find (x) and approximato (to four decimal places) the value(s) of x where the graph off has a horizontal tangent Ine. **)0.40 -0.2-4.2x5.1x + 2 BE

Answers

Answer 1

The value(s) of x where the graph of f has a horizontal tangent line can be found by setting the derivative of f equal to zero and solving for x.

To find the value(s) of x where the graph of f has a horizontal tangent line:

1. Take the derivative of f with respect to x. Let's denote it as f'(x).

  f'(x) = -4.2x^4 + 5.1x + 2.

2. Set f'(x) equal to zero and solve for x.

  -4.2x^4 + 5.1x + 2 = 0.

3. This is a polynomial equation. To find the approximate values of x, you can use numerical methods such as the Newton-Raphson method or a graphing calculator.

4. Using a numerical method or a graphing calculator, you can find that the approximate values of x where the graph of f has a horizontal tangent line are x ≈ -1.3275 and x ≈ 0.4815 (rounded to four decimal places).

Therefore, the value(s) of x where the graph of f has a horizontal tangent line are approximately x ≈ -1.3275 and x ≈ 0.4815.

Learn more about tangent line:

https://brainly.com/question/31617205

#SPJ11


Related Questions

just answer please
Which substitution have you to do to evaluate the following integral: | x " cos x sin4 x dx COS X U= X u = sin4 x u = cos x u = sin x Which substitution have you to do to evaluate the following in

Answers

The appropriate substitution to evaluate the integral ∫x^2 cos(x) sin^4(x) dx is u = sin(x). This simplifies the integral to ∫u^2 sin^3(u) du, which can be evaluated using integration techniques or a table of integrals.

To evaluate the integral ∫x^2 cos(x) sin^4(x) dx, we can use the substitution u = sin(x).

First, we need to find the derivative of u with respect to x. Differentiating both sides of the equation u = sin(x) with respect to x gives du/dx = cos(x).

Next, we substitute u = sin(x) and du = cos(x) dx into the integral. The x^2 term becomes u^2 since x^2 = (sin(x))^2. The cos(x) term becomes du since cos(x) dx = du.

Therefore, the integral simplifies to ∫u^2 sin^3(u) du. We can now integrate this expression with respect to u.

Using integration techniques or a table of integrals, we can find the antiderivative of u^2 sin^3(u) with respect to u.

Once the antiderivative is determined, we obtain the solution of the integral by substituting back u = sin(x).

It is important to note that the choice of substitution is not unique and can vary depending on the integrand. In this case, substituting u = sin(x) simplifies the integral by replacing the product of cosine and sine terms with a single variable, allowing for easier integration.

To know more about integrals refer here:

https://brainly.com/question/31433890#

#SPJ11

please help this is hard

Answers

Answer:

1/1 + 3/4 or 4/4 + 3/4

and

5/4 + 2/4

Step-by-step explanation:

In this image there are two circles, but the other one is only 3/4 shaded.

To make a sum of these two fractions there are many ways.

The total is [tex]1\frac{3}{4}[/tex] so we can add

[tex]\frac{1}{1}+ \frac{3}{4} \\=\frac{4}{4}+ \frac{3}{4} \\=\frac{7}{4} \\=1\frac{3}{4}[/tex]

Another one is

[tex]\frac{5}{4} +\frac{2}{4} \\=\frac{7}{4} \\=1\frac{3}{4} \\[/tex]

Find the area of the triangle having the indicated angle and sides B = 123º, a= 64, c = 28 (Round your answer to one decimal place.) O 750.4 O 753.4 O 1,502.9 O 751.4

Answers

The area of the triangle can be found using the formula: Area = (1/2) * a * c * sin(B), where B is the angle in degrees and a and c are the lengths of the sides. Given B = 123º, a = 64, and c = 28, the area of the triangle is approximately 751.4.

To find the area of the triangle, we can use the formula for the area of a triangle when we know two sides and the included angle. The formula is given as:

[tex]Area = (1/2) * a * c * sin(B).[/tex]

In this case, we are given B = 123º, a = 64, and c = 28. Plugging these values into the formula, we get:

[tex]Area = (1/2) * 64 * 28 * sin(123º)[/tex]

Using a calculator, we can find the sine of 123º, which is approximately 0.816. Substituting this value into the formula, we have:

[tex]Area = (1/2) * 64 * 28 * 0.816[/tex]

Evaluating this expression, we get:

Area ≈ 751.4

Therefore, the area of the triangle is approximately 751.4 (rounded to one decimal place).

Learn more about area here:

https://brainly.com/question/1631786

#SPJ11

In order to solve the following system of equations by addition,
which of the following could you do before adding the equations
so that one variable will be eliminated when you add them?
4x - 2y = 7
3x - 3y = 15
A. Multiply the top equation by
-3 and the bottom equation by 2.
B. Multiply the top equation by 3 and the bottom equation by 4.
C. Multiply the top equation by 3 and the bottom equation by 2.
D. Multiply the top equation by 1/3.
SUBMIT

Answers

The required step is Multiply the top equation by -3 and the bottom equation by 2.

In this case, looking at the coefficients of y in the two equations, we can see that multiplying the top equation by -3 and the bottom equation by 2 will make the coefficients of y additive inverses:

(-3)(4x - 2y) = (-3)(7)

2(3x - 3y) = 2(15)

This simplifies to:

-12x + 6y = -21

6x - 6y = 30

Now, when you add these two equations, the variable y will be eliminated:

(-12x + 6y) + (6x - 6y) = -21 + 30

-6x = 9

Therefore, Multiply the top equation by -3 and the bottom equation by 2.

Learn more about Equation here:

https://brainly.com/question/29538993

#SPJ1

Answer:

A

Step-by-step explanation:

If f(x) = 5x sin(6x), find f'(x). - STATE all rules used. Evaluate Show all steps. Find f'(x) if STATE all rules used. /dr 21 6x5 - 1 f(x) = ln(2x) + cos(6x).

Answers

The derivative of f(x) = 5x sin(6x) is f'(x) = 2/x - 6sin(6x) and the derivative of f(x) = ln(2x) + cos(6x) is f'(x) = 2/x - 6sin(6x)

To obtain f'(x) for the function f(x) = 5x sin(6x) we will follow the following steps:

1. Apply the product rule.

Let u = 5x and v = sin(6x).

Then, using the product rule: (u*v)' = u'v + uv'

2. Obtain the derivatives of u and v.

u' = 5 (derivative of 5x with respect to x)

v' = cos(6x) * 6 (derivative of sin(6x) with respect to x)

3. Plug the derivatives into the product rule.

f'(x) = u'v + uv'

= 5 * sin(6x) + 5x * cos(6x) * 6

= 5sin(6x) + 30xcos(6x)

Therefore, f'(x) = 5sin(6x) + 30xcos(6x).

Now, let's obtain f'(x) for the function f(x) = ln(2x) + cos(6x):

1. Apply the sum rule and chain rule.

f'(x) = (ln(2x))' + (cos(6x))'

2. Obtain the derivatives of ln(2x) and cos(6x).

(ln(2x))' = (1/x) * 2 = 2/x

(cos(6x))' = -sin(6x) * 6 = -6sin(6x)

3. Combine the derivatives.

f'(x) = 2/x - 6sin(6x)

Therefore, f'(x) = 2/x - 6sin(6x).

To know more about the derivative refer here:

https://brainly.com/question/27072366#

#SPJ11

Use the transformation u=>x=y,v=x+4y to evaluate the gwen integral for the region R bounded by the lines y=-26•2. y=-3+3, y=-x and y=-x-2 +9xy + 4y) dx dy R S| (279xy4y?) dx dy=D R (Simplify your answer)

Answers

The

integral

becomes:

[tex]\int\limits^a_b {\frac{D -279(u - v)(u - 2v)^4(u - 2v)}{4} dudv}[/tex], where the limits of

integration

for u are [tex]\frac{1232}{525}[/tex] to 1 and the

limits for v are ([tex]\frac{x1864}{525}[/tex]) to ([tex]\frac{15u-12}{9}[/tex].

To evaluate the given integral using the transformation u = x + y and v = x + 4y, we need to find the

Jacobian

of the transformation and express the region R in terms of u and v.

Let's find the Jacobian first:

J = ∂(x, y) / ∂(u, v)

To do this, we need to find the

partial derivatives

of x and y with respect to u and v.

From u = x + y, we can express x in terms of u and v:

x = u - v

Similarly, from v = x + 4y, we can express y in terms of u and v:

v = x + 4y

v = (u - v) + 4y

v = u + 4y - v

2v = u + 4y

y = (u - 2v) / 4

Now, let's find the partial derivatives:

∂x/∂u = 1

∂x/∂v = -1

∂y/∂u = 1/4

∂y/∂v = -1/2

The Jacobian is given by:

J = (∂x/∂u * ∂y/∂v) - (∂y/∂u * ∂x/∂v)

J = (1 * (-1/2)) - (1/4 * (-1))

J = -1/2 + 1/4

J = -1/4

Now, let's express the region R in terms of u and v.

The lines that bound the region R in the xy-plane are:

y = -26x

y = -3x + 3

y = -x

y = -x - 2 + 9xy + 4y

We can rewrite these equations in terms of u and v using the

inverse transformation

:

x = u - v

y = (u - 2v) / 4

Substituting these values in the equations of the lines, we get:

(u - 2v) / 4 = -26(u - v)

(u - 2v) / 4 = -3(u - v) + 3

(u - 2v) / 4 = -(u - v)

(u - 2v) / 4 = -(u - v) - 2 + 9(u - 2v) + 4(u - 2v)

Simplifying these equations, we have:

u - 2v = -104(u - v)

u - 2v = -12(u - v) + 12

u - 2v = -u + v

u - 2v = -u + v - 2 + 9u - 18v + 4u - 8v

Further simplifying, we get:

104(u - v) = -u + v

12(u - v) = -u + v - 12

2u - 3v = -2u - 6v + 2u - 10v

Simplifying the above equations, we find:

105u - 103v = 0

15u - 9v = 12

v = (15u - 12) / 9

Now, let's evaluate the integral:

[tex]\int\limits^a_b {\int\limits^a_b {R 279xy^4y} \, dx dy} =\int\limits^a_b {\int\limits^a_b {D f(u,v) |J|} \, du dv}[/tex]

Substituting the values of x and y in terms of u and v in the integrand, we have:

[tex]279(u - v)(u - 2v)^4(u - 2v) |J|[/tex]

Since J = -1/4, we can simplify the expression:

[tex]-279(u - v)(u - 2v)^4(u - 2v) / 4[/tex]

The region D in the uv-plane is determined by the equations:

105u - 103v = 0

15u - 9v = 12

Solving these equations, we find the limits of integration for u and v:

u = (1232/525)

v = (1864/525)

Therefore, the integral becomes:

[tex]\int\limits^a_b {\frac{D -279(u - v)(u - 2v)^4(u - 2v)}{4} dudv}[/tex], where the

limits

of integration for u are (1232/525) to 1 and the limits for v are (1864/525) to (15u - 12) / 9.

Please note that further simplification of the integral expression may be possible depending on the specific requirements of your problem.

To know more about

Integration

click : https://brainly.com/question/31744185?

#SPJ11

Let R be the region in the first quadrant bounded above by the parabola y=4-x²and below by the line y = 1. Then the area of R is:

Answers

The area of region R is 3√3 - √3/3 square units.

To find the area of region R bounded by the parabola y = 4 - x^2 and the line y = 1 in the first quadrant, we need to find the points of intersection between the parabola and the line.

First, set y = 4 - x^2 equal to y = 1: 4 - x^2 = 1

Rearranging the equation, we have:x^2 = 3

Taking the square root of both sides, we get: x = ±√3

Since we are only considering the first quadrant, we take the positive value: x = √3.

Now, to find the area of region R, we integrate the difference of the two curves with respect to x from 0 to √3.

Area of R = ∫[0, √3] (4 - x^2 - 1) dx

Simplifying the integrand, we have: Area of R = ∫[0, √3] (3 - x^2) dx

Integrating term by term, we get: Area of R = [3x - (x^3/3)] evaluated from 0 to √3

Plugging in the limits, we have: Area of R = [3√3 - (√3)^3/3] - [3(0) - (0^3/3)] , Area of R = 3√3 - (√3)^3/3

Simplifying further, we get: Area of R = 3√3 - √3/3

To know more about  area of region refer here:

https://brainly.com/question/32362619#

#SPJ11

how do i solve this in very simple terms that are applicable for any equation that is formatted like this

Answers

Step-by-step explanation:

You need to either graph the equation or manipulate the equation into the standard form for a circle  ( often requiring 'completing the square' procedure)

circle equation:

        (x-h)^2 + (y-k)^2  = r^2    where (h,l) is the center   r = radius

x^2  - 6x      +     y^2 + 10 y  = 2    'complete the square for x and y

x^2 -6x +9    +     y^2 +10y + 25   = 2  + 9   + 25      reduce both sides

(x-3)^2           +  (y+5)^2    = 36     (36 is 6^2   so r = 6)

   center is  3, -5

When determining whether there is a correlation between two​ variables, one should use a​ ____________ to explore the data visually.
When determining whether there is a correlation between two​ variables, one should use a

protractor
probability distribution
correlation coefficient
scatterplot
to explore the data visually.

Answers

When determining whether there is a correlation between two variables, one should use a scatterplot to explore the data visually.

The values of two variables are represented on a Cartesian plane in a scatterplot, which is a graphical representation of data points. A dot is used to symbolise each data point, and the location of the dot on the plot reflects the values of the variables. We can visually evaluate the link between the two variables by charting the values of one variable on the x-axis and the values of the other variable on the y-axis.

A scatterplot enables us to see the pattern or trend in the data points when investigating the correlation between two variables. It enables us to determine whether the variables have a linear relationship, such as a positive or negative correlation. Scatterplots can also make any outliers visible.


Learn more about correlation here:

https://brainly.com/question/30116167


#SPJ11


# 5a) , 5b) and 5c) please
5. Let f (,y) = 4 + VI? + y. (a) (3 points) Find the gradient off at the point (-3, 4), (b) (3 points) Determine the equation of the tangent plane at the point (-3,4). () (4 points) For what unit vect

Answers

The gradient of f at the point (-3, 4) is (∂f/∂x, ∂f/∂y) = (1/2√(-3), 1). (b) The equation of the tangent plane at the point (-3,4) is  z = (1/2√(-3))(x + 3) + y (c) Unit vector is (√3/√13, √12/√13).

(a) The gradient of f at the point (-3, 4) can be found by taking the partial derivatives with respect to x and y:

∇f(-3, 4) = (∂f/∂x, ∂f/∂y) = (∂(4 + √x + y)/∂x, ∂(4 + √x + y)/∂y)

Evaluating the partial derivatives, we have:

∂f/∂x = 1/2√x

∂f/∂y = 1

So, the gradient of f at (-3, 4) is (∂f/∂x, ∂f/∂y) = (1/2√(-3), 1).

(b) To determine the equation of the tangent plane at the point (-3, 4), we use the formula:

z - z0 = ∇f(a, b) · (x - x0, y - y0)

Plugging in the values, we have:

z - 4 = (1/2√(-3), 1) · (x + 3, y - 4)

Expanding the dot product, we get:

z - 4 = (1/2√(-3))(x + 3) + (y - 4)

Simplifying further, we have:

z = (1/2√(-3))(x + 3) + y

(c) To find the unit vector in the direction of steepest ascent of f at (-3, 4), we use the normalized gradient vector:

∇f/||∇f|| = (∂f/∂x, ∂f/∂y)/||(∂f/∂x, ∂f/∂y)||

Calculating the norm of the gradient vector, we have:

||(∂f/∂x, ∂f/∂y)|| = ||(1/2√(-3), 1)|| = √[(1/4(-3)) + 1] = √(1/12 + 1) = √(13/12)

Thus, the unit vector in the direction of steepest ascent of f at (-3, 4) is:

∇f/||∇f|| = ((1/2√(-3))/√(13/12), 1/√(13/12)) = (√3/√13, √12/√13).

To learn more about derivatives  click here

brainly.com/question/29144258

#SPJ11








- Ex 4. Find the derivative of the function f(x) = lim x? - 8x +9. Then find an equation of the tangent line at the point (3.-6). xa

Answers

The answer explains how to find the derivative of the given function and then determine the equation of the tangent line at a specific point. It involves finding the derivative using the limit definition and using the derivative to find the equation of a line.

To find the derivative of the function f(x) = lim (x→a) (-8x + 9), we need to apply the limit definition of the derivative. The derivative represents the rate of change of a function at a given point.

Using the limit definition, we can compute the derivative as follows:

f'(x) = lim (h→0) [f(x+h) - f(x)] / h,

where h is a small change in x.

After evaluating the limit, we can find f'(x) by simplifying the expression and substituting the value of x. This will give us the derivative function.

Next, to find the equation of the tangent line at the point (3, -6), we can use the derivative f'(x) that we obtained. The equation of a tangent line is of the form y = mx + b, where m represents the slope of the line.

At the point (3, -6), substitute x = 3 into f'(x) to find the slope of the tangent line. Then, use the slope and the given point (3, -6) to determine the value of b. This will give you the equation of the tangent line at that point.

By substituting the values of the slope and b into the equation y = mx + b, you will have the equation of the tangent line at the point (3, -6).

Learn more about derivative here:

https://brainly.com/question/29020856

#SPJ11

Does anyone can help me with this one and I also need more math math questions

Answers

a) The measure of x = 3 units

b)The measure of the hypotenuse of the triangle x = 10 units

Given data ,

Let the triangle be represented as ΔABC

Now , the base length of the triangle is BC = 12 units

From the given figure of the triangle ,

For a right angle triangle

From the Pythagoras Theorem , The hypotenuse² = base² + height²

a)

x = √ ( 5 )² - ( 4 )²

On solving for x:

x = √ ( 25 - 16 )

x = √9

On further simplification , we get

x = 3 units

Therefore , the value of x = 3 units

b)

x = √ ( 8 )² + ( 6 )²

On solving for x:

x = √ ( 64 + 36 )

x = √100

On further simplification , we get

x = 10 units

Therefore , the value of x = 10 units

Hence , the hypotenuse of the triangle is x = 10 units

To learn more about triangles click :

https://brainly.com/question/16739377

#SPJ1

find the solution of the differential equation that satisfies the given initial condition. dp dt = 5 pt , p(1) = 6

Answers

The solution to the given initial value problem, dp/dt = 5pt, p(1) = 6, is p(t) = 6e^(2t^2-2).

To solve the differential equation, we begin by separating the variables. We rewrite the equation as dp/p = 5t dt. Integrating both sides gives us ln|p| = (5/2)t^2 + C, where C is the constant of integration.

Next, we apply the initial condition p(1) = 6 to find the value of C. Substituting t = 1 and p = 6 into the equation ln|p| = (5/2)t^2 + C, we get ln|6| = (5/2)(1^2) + C, which simplifies to ln|6| = 5/2 + C.

Solving for C, we have C = ln|6| - 5/2.

Substituting this value of C back into the equation ln|p| = (5/2)t^2 + C, we obtain ln|p| = (5/2)t^2 + ln|6| - 5/2.

Finally, exponentiating both sides gives us |p| = e^((5/2)t^2 + ln|6| - 5/2), which simplifies to p(t) = ± e^((5/2)t^2 + ln|6| - 5/2).

Since p(1) = 6, we take the positive sign in the solution. Therefore, the solution to the differential equation with the initial condition is p(t) = 6e^((5/2)t^2 + ln|6| - 5/2), or simplified as p(t) = 6e^(2t^2-2)

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

Designing a Silo
As an employee of the architectural firm of Brown and Farmer, you have been asked to design a silo to stand adjacent to an existing barn on the campus of the local community college. You are charged with finding the dimensions of the least expensive silo that meets the following specifications.

The silo will be made in the form of a right circular cylinder surmounted by a hemi-spherical dome.
It will stand on a circular concrete base that has a radius 1 foot larger than that of the cylinder.
The dome is to be made of galvanized sheet metal, the cylinder of pest-resistant lumber.
The cylindrical portion of the silo must hold 1000π cubic feet of grain.
Estimates for material and construction costs are as indicated in the diagram below.

The design of a silo with the estimates for the material and the construction costs.

The ultimate proportions of the silo will be determined by your computations. In order to provide the needed capacity, a relatively short silo would need to be fairly wide. A taller silo, on the other hand, could be rather narrow and still hold the necessary amount of grain. Thus there is an inverse relationship between r, the radius, and h, the height of the cylinder.


Combine the results to yield a formula for the total cost of the silo project. Total project cost C(r)= ______________

Answers

The cost of the cylinder in terms of the single variable, r, alone is 2000π + πr⁴

How to calculate the cost

The volume of a cylinder is given by πr²h. We know that the volume of the cylinder must be 1000π cubic feet, so we can set up the following equation:

πr²h = 1000π

h = 1000/r²

The cost of the cylinder is given by 2πr²h + πr² = 2πr²(1000/r²) + πr² = 2000π + πr⁴

The cost of the cylinder in terms of the single variable, r, alone is:

Cost of cylinder = 2000π + πr⁴

Learn more about cylinder on

https://brainly.com/question/9554871

#SPJ1

Expanding and simplifying

5(3x+2) - 2(4x-1)

Answers

Step-by-step explanation:

5(3x+2) - 2(4x-1)

To expand and simplify the expression 5(3x+2) - 2(4x-1), you can apply the distributive property of multiplication over addition/subtraction. Let's break it down step by step:

First, distribute the 5 to both terms inside the parentheses:

5 * 3x + 5 * 2 - 2(4x-1)

This simplifies to:

15x + 10 - 2(4x-1)

Next, distribute the -2 to both terms inside its parentheses:

15x + 10 - (2 * 4x) - (2 * -1)

This simplifies to:

15x + 10 - 8x + 2

Combining like terms:

(15x - 8x) + (10 + 2)

This simplifies to:

7x + 12

Therefore, the expanded and simplified form of 5(3x+2) - 2(4x-1) is 7x + 12.

#6. A soup can is to have a capacity of 250 cm and the diameter of the can must be no less than 4 cm and no greater than 8 cm. What are the dimensions of the can that can be constructed using the LEAS

Answers

The can constructed using the LEAS (Lowest Empty Space) algorithm should have a diameter between 4 cm and 8 cm and a capacity of 250 cm.

The LEAS algorithm aims to minimize the empty space in a container while maintaining the desired capacity. To determine the dimensions of the can, we need to find the height and diameter that satisfy the given conditions.

Let's assume the diameter of the can is d cm. The radius of the can would then be r = d/2 cm. To calculate the height, we can use the formula for the volume of a cylinder: V = πr^2h, where V is the desired capacity of 250 cm. Rearranging the formula, we have h = V / (πr^2).

To minimize the empty space, we can use the lower limit for the diameter of 4 cm. Substituting the values into the formulas, we find that the radius is 2 cm and the height is approximately 19.87 cm.

Next, let's consider the upper limit for the diameter of 8 cm. Using the same formulas, we find that the radius is 4 cm and the height is approximately 9.93 cm.

Therefore, the can constructed using the LEAS algorithm can have dimensions of approximately 4 cm in diameter and 19.87 cm in height, or 8 cm in diameter and 9.93 cm in height, while maintaining a capacity of 250 cm.

Learn more about diameter here:

https://brainly.com/question/31445584

#SPJ11

a name closely associated with the binomial probability distribution is

Answers

The name closely associated with the binomial probability distribution is Blaise Pascal.

Blaise Pascal was a French mathematician, physicist, and philosopher who made significant contributions to the field of probability theory. He, along with Pierre de Fermat, developed the foundations of the binomial probability distribution. The binomial probability distribution is used to model the number of successes in a fixed number of independent Bernoulli trials, each having the same probability of success.

Blaise Pascal played a crucial role in the development of the binomial probability distribution, and his work in probability theory has had lasting impacts on various fields such as mathematics, statistics, and social sciences.

To know more about  binomial, visit:

https://brainly.com/question/30339327

#SPJ11

You are designing a rectangular poster to contain 75 in? or printing with a 6-in margin at the top and bottom and a 2-in margin at each side. What overall dimensions wil minimize the amount of paper used? What is the vertical height of the poster that will minimize the amount of paper used? What is tho horizontal width of the poster that wil minimize the amount of paper usod?

Answers

The poster needs to be designed to fit 75 square inches of printing with a 6-inch margin at the top and bottom and a 2-inch margin on either side. The aim is to minimize the amount of paper used. The dimensions of the poster that will minimize the amount of paper used are 7 inches for the vertical height and 16 inches for the horizontal width.

We need to design a rectangular poster to fit 75 square inches of printing with a 6-inch margin at the top and bottom and a 2-inch margin on either side. This means the total area of the poster will be 75 + (6 x 2) x (2 x 2) = 99 square inches. To minimize the amount of paper used, we need to find the dimensions of the poster that will give us the smallest area. Let the vertical height of the poster be h and the horizontal width be w. Then we have h + 12 = w + 4  (since the total width of the poster is h + 4 and the total height is w + 12)75 = hw. We can solve the first equation for h in terms of w: h = w - 8 + 12 = w + 4. Substituting this into the second equation, we get:75 = w(w + 4)w² + 4w - 75 = 0w = (-4 ± √676)/2 = (-4 ± 26)/2 = 11 or -15The negative value doesn't make sense in this context, so we take w = 11. Then we have h = 15. Therefore, the dimensions of the poster that will minimize the amount of paper used are 7 inches for the vertical height and 16 inches for the horizontal width.

Learn more about margin here:

https://brainly.com/question/903996

#SPJ11

Interpret the congruence 12x 4 (mod 33) as an
equation in Z/33Z, and determine all solutions to this equation.
How many are there?

Answers

There are no solutions to the equation 12x ≡ 4 (mod 33) in Z/33Z after interpreting the congruence.

The given congruence is 12x ≡ 4 (mod 33).

Here, we interpret it as an equation in Z/33Z.

This means that we are looking for solutions to the equation 12x = 4 in the ring of integers modulo 33.

In other words, we want to find all integers a such that 12a is congruent to 4 modulo 33.

We can solve this equation by finding the inverse of 12 in the ring Z/33Z.

To find the inverse of 12 in Z/33Z, we use the Euclidean algorithm.

We have:33 = 12(2) + 9 12 = 9(1) + 3 9 = 3(3) + 0

Since the final remainder is 0, the greatest common divisor of 12 and 33 is 3.

Therefore, 12 and 33 are not coprime, and the inverse of 12 does not exist in Z/33Z.

This means that the equation 12x ≡ 4 (mod 33) has no solutions in Z/33Z.

To learn more about congruence click here https://brainly.com/question/31992651

#SPJ11

find the derivatives 3 L ly. ý -5x48x (6 x³ + 3 x ) ³ 5х4 +8x²

Answers

The derivative of a sum or difference is the sum or difference of the derivatives of the individual terms, and the derivative of a product involves the product rule.

Let's break down the given expression and find the derivatives term by term. We have:

3 L ly. ý -5x48x (6 x³ + 3 x ) ³ 5х4 +8x²

Using the power rule, the derivative of xⁿ is nxⁿ⁻¹, we can differentiate each term. Here are the derivatives of the individual terms:

The derivative of 3 is 0 since it is a constant term.

The derivative of L ly. ý is 0 since it is a constant term.

The derivative of -5x⁴8x is (-5)(4)(x⁴)(8x) = -160x⁵.

The derivative of (6x³ + 3x)³ is 3(6x³ + 3x)²(18x² + 3) = 18(6x³ + 3x)²(2x² + 1).

The derivative of 5x⁴ + 8x² is 20x³ + 16x.

After differentiating each term, we can simplify and combine like terms if necessary to obtain the final derivative of the given expression.

In summary, by applying the rules of differentiation, we find the derivatives of the individual terms in the expression and then combine them to obtain the overall derivative of the given expression.

Learn more about product rule here:

https://brainly.com/question/29198114

#SPJ11

The volume of the solid bounded below by the xy-plane, on the sides by p=18, and above by p= 16 is

Answers

The volume of the solid bounded below by the xy-plane, on the sides by p=18, and above by p=16 is 32π units cubed.

To find the volume of the solid, we need to integrate the function over the given region. In this case, the region is bounded below by the XY-plane, on the sides by p=18, and above by p=16.

Since the region is in polar coordinates, we can express the volume element as dV = p dp dθ, where p represents the distance from the origin to a point in the region, DP is the differential length along the radial direction, and dθ is the differential angle.

To integrate the function over the region, we set up the integral as follows:

V = ∫∫R p dp dθ,

where R represents the region in the polar coordinate system.

Since the region is bounded by p=18 and p=16, we can set up the integral as follows:

[tex]V = ∫[0,2π] ∫[16,18] p dp dθ.[/tex]

Evaluating the integral, we get:

[tex]V = ∫[0,2π] (1/2)(18^2 - 16^2) dθ[/tex]

[tex]= ∫[0,2π] (1/2)(324 - 256) dθ[/tex]

[tex]= (1/2)(324 - 256) ∫[0,2π] dθ[/tex]

 = (1/2)(68)(2π)

 = 68π.

Therefore, the volume of the solid bounded below by the xy-plane, on the sides by p=18, and above by p=16 is 68π units cubed, or approximately 213.628 units cubed.

learn more about integrate here:

https://brainly.com/question/31744185

#SPJ11

if f(x) = thon +372 + 5) dt + Problem 4. (1 point) Find the derivative of the following function F(x) = w = *(2-1)d ( using the Fundamental Theorem of Calculus. F'(x) =

Answers

The main answer to the question is F'(x) = w * (2 - 1) = w.

How to find the derivative of the function F(x) = w * (2 - 1)?

The derivative of the function F(x) = w * (2 - 1) using the Fundamental Theorem of Calculus (how to find derivatives of functions involving constant terms to gain a deeper understanding of the concepts and applications) is simply w.

The derivative of a constant term is zero, and since (2 - 1) is a constant, its derivative is also zero. Therefore, the derivative of the function F(x) is equal to w.

Learn more about the Fundamental Theorem of Calculus

brainly.com/question/30761130

#SPJ11

Find the average value of x. , 2) = x + on the truncated cone ? - x2 + y2 with 1 SS 4. 128.5 X

Answers

The average value of the function f(x, y) = x + √(x^2 + y^2) on the truncated cone x^2 + y^2 with 1 ≤ z ≤ 4 is 128.5.

Step 1: Set up the integral:

We need to calculate the double integral of f(x, y) over the truncated cone region. Let's denote the region as R.

∫∫R (x + √(x^2 + y^2)) dA

Step 2: Convert to cylindrical coordinates:

Since we are working with a truncated cone, it is convenient to switch to cylindrical coordinates. In cylindrical coordinates, the function becomes:

∫∫R (ρcosθ + ρ)ρ dρ dθ,

where R represents the region in cylindrical coordinates.

Step 3: Determine the limits of integration:

To determine the limits of integration, we need to consider the bounds for ρ and θ.

For the ρ coordinate, the lower bound is determined by the smaller radius of the truncated cone, which is 1. The upper bound is determined by the larger radius, which can be found by considering the equation of the cone. Since the equation is x^2 + y^2, the larger radius is 2. Therefore, the limits for ρ are 1 to 2.

For the θ coordinate, since we are considering the entire range of angles, the limits are 0 to 2π.

Step 4: Evaluate the integral:

Evaluating the double integral:

∫∫R (ρcosθ + ρ)ρ dρ dθ

= ∫[0,2π] ∫[1,2] (ρ^2cosθ + ρ^2)ρ dρ dθ

= ∫[0,2π] ∫[1,2] ρ^3cosθ + ρ^3 dρ dθ

To evaluate this integral, we integrate with respect to ρ first:

= ∫[0,2π] [(1/4)ρ^4cosθ + (1/4)ρ^4] |[1,2] dθ

= ∫[0,2π] [(1/4)(2^4cosθ - 1^4cosθ) + (1/4)(2^4 - 1^4)] dθ

Simplifying:

= ∫[0,2π] (8cosθ - cosθ + 15) / 4 dθ

= (1/4) ∫[0,2π] (7cosθ + 15) dθ

Evaluating the integral of cosθ over the interval [0,2π] gives zero, and integrating the constant term gives 2π times the constant. Therefore:

= (1/4) [7sinθ + 15θ] |[0,2π]

= (1/4) [(7sin(2π) + 15(2π)) - (7sin(0) + 15(0))]

= (1/4) [(0 + 30π) - (0 + 0)]

= (1/4) (30π)

= 30π/4

= 15π/2

≈ 23.5619

Step 5: Divide by the area of the region:

To find the average value, we divide the calculated integral by the area of the region. The area of the truncated cone region can be determined using geometry, or by integrating over the region and evaluating the integral. The result is 128.5.

Therefore, the average value of the function f(x, y) = x + √(x^2 + y^2) on the truncated cone x^2 + y^2 with 1 ≤ z ≤ 4 is approximately 128.5.

To learn more about function  Click Here: brainly.com/question/30721594

#SPJ11

Find the arc length for the curve y = 3x^2 − 1/24 ln x taking p0(1, 3 ) as the starting point.

Answers

To find the arc length for the curve y = 3x² − (1/24) ln x with the starting point p0(1, 3), we need to integrate the expression √(1 + (dy/dx)²) with respect to x over the desired interval. The resulting value will give us the arc length of the curve.

To find the arc length, we need to integrate the expression √(1 + (dy/dx)²) with respect to x over the given interval. In this case, the given function is y = 3x²− (1/24) ln x. To compute the derivative dy/dx, we differentiate each term separately. The derivative of 3x² is 6x, and the derivative of (1/24) ln x is (1/24x). Squaring the derivative, we get (6x)² + (1/24x)².

Next, we substitute this expression into the arc length formula:

∫√(1 + (dy/dx)²) dx. Plugging in the squared derivative expression, we have ∫√(1 + (6x)² + (1/24x)²) dx. To evaluate this integral, we need to employ appropriate integration techniques, such as trigonometric substitutions or partial fractions.

By integrating the expression, we obtain the arc length of the curve between the starting point p0(1, 3) and the desired interval. The resulting value represents the distance along the curve between these two points, giving us the arc length for the given curve.

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11

bella is baking chocolate chip cookies for an event. it takes of a cup of flour to bake 6 cookies. she uses cups of flour for every 50 chocolate chips used. there are a total of 150 chocolate chips for each tray of cookies. if bella is baking 2 trays of chocolate chip cookies, then how many cookies will she bake in total?

Answers

there are a total of 150 chocolate chips for each tray of cookies. if bella is baking 2 trays of chocolate chip cookies, then Bella will bake a total of 36  cookies.

To determine the total number of cookies Bella will bake, we need to calculate the number of cups of flour she will use. Since it takes 1/6 cup of flour to bake 6 cookies, for 150 chocolate chips (which equals 3 cups), Bella will need (3/1)  (1/6) = 1/2 cup of flour.

Since Bella is baking 2 trays of chocolate chip cookies, she will use a total of 1/2 × 2 = 1 cup of flour.

Now, let's determine how many cookies can be baked with 1 cup of flour Using combination of conversion . We know that Bella uses 1 cup of flour for every 50 chocolate chips. Since each tray has 150 chocolate chips, Bella will be able to bake 150 / 50 = 3 trays of cookies with 1 cup of flour.

Therefore, Bella will bake a total of 3 trays × 6 cookies per tray = 18 cookies per cup of flour. Since she is using 1 cup of flour, she will bake a total of 18 * 1 = 18 cookies.

As Bella is baking 2 trays of chocolate chip cookies, the total number of cookies she will bake is 18 × 2 = 36 cookies.

learn more about combination of conversion here:

https://brainly.com/question/30917804

#SPJ11


Can i get help asap pls
​​​​​​​
- Find the average value of f(x) = –3x2 - 4x + 4 over the interval [0, 3]. Submit an exact answer using fractions if needed. Provide your answer below:

Answers

The average value of [tex]f(x) = -3x^2 - 4x + 4[/tex] over the interval [0, 3] is -11/3.

What is function?

In mathematics, a function is a unique arrangement of the inputs (also referred to as the domain) and their outputs (sometimes referred to as the codomain), where each input has exactly one output and the output can be linked to its input.

To find the average value of a function f(x) over an interval [a, b], we can use the formula:

Average value = (1 / (b - a)) * ∫[a, b] f(x) dx

In this case, we want to find the average value of [tex]f(x) = -3x^2 - 4x + 4[/tex]over the interval [0, 3].

Average value = (1 / (3 - 0)) * ∫[tex][0, 3] (-3x^2 - 4x + 4) dx[/tex]

Simplifying:

Average value = (1/3) * ∫[0, 3] [tex](-3x^2 - 4x + 4) dx[/tex]

          [tex]= (1/3) * [-x^3 - 2x^2 + 4x] from 0 to 3[/tex]

          [tex]= (1/3) * (-(3^3) - 2(3^2) + 4(3)) - (1/3) * (0 - 2(0^2) + 4(0))[/tex]

             = (1/3) * (-27 - 18 + 12) - (1/3) * 0

             = (1/3) * (-33)

             = -11/3

Therefore, the average value of [tex]f(x) = -3x^2 - 4x + 4[/tex] over the interval [0, 3] is -11/3.

Learn more about function on:

https://brainly.com/question/11624077

#SPJ4








Problem 1. (7 points) Calculate the following integral using integration by parts: / 2sec (-42) de We lett and du Sode der and and then use the integration by parts formula to find that 1 **(-1) dr dr

Answers

The integral ∫2sec(-42) de evaluates to 2sec(-42)e + ln|sec(-42)| + C, where C is the constant of integration.

To evaluate the given integral, we can apply integration by parts, which is a technique used to integrate the product of two functions. The integration by parts formula is given as ∫u dv = uv - ∫v du, where u and v are functions of the variable of integration.

Let's choose u = sec(-42) and dv = de. We need to find du and v in order to apply the integration by parts formula. Differentiating u with respect to the variable of integration, we have du = sec(-42)tan(-42)d(-42), which simplifies to du = sec(-42)tan(-42)d(-42). To find v, we integrate dv, which gives v = e.

Applying the integration by parts formula, we have ∫2sec(-42) de = 2sec(-42)e - ∫e(sec(-42)tan(-42)d(-42)). Simplifying the expression, we have ∫2sec(-42) de = 2sec(-42)e + ∫sec(-42)tan(-42)d(-42). The integral on the right-hand side can be evaluated, resulting in ∫2sec(-42) de = 2sec(-42)e + ln|sec(-42)| + C, where C is the constant of integration.

The integral ∫2sec(-42) de evaluates to 2sec(-42)e + ln|sec(-42)| + C, where C is the constant of integration.

Learn more about indefinite integral here: brainly.com/question/31263260

#SPJ11

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) 5x4 + 7x2 + x + 2 dx x(x2 + 1)2 x Need Help? Read It Submit Answer

Answers

The integral of [tex]\( \frac{{5x^4 + 7x^2 + x + 2}}{{x(x^2 + 1)^2}} \)[/tex] with respect to x  is [tex]\( \frac{{5}}{{2(x^2 + 1)}} + \frac{{3}}{{2(x^2 + 1)^2}} + \ln(|x|) + C \)[/tex], where C represents the constant of integration.

To evaluate the integral, we can use the method of partial fractions. We begin by factoring the denominator as [tex]\( x(x^2 + 1)^2 = x(x^2 + 1)(x^2 + 1) \)[/tex]. Since the degree of the numerator is smaller than the degree of the denominator, we can rewrite the integrand as a sum of partial fractions:

[tex]\[ \frac{{5x^4 + 7x^2 + x + 2}}{{x(x^2 + 1)^2}} = \frac{{A}}{{x}} + \frac{{Bx + C}}{{x^2 + 1}} + \frac{{Dx + E}}{{(x^2 + 1)^2}} \][/tex]

To determine the values of [tex]\( A \), \( B \), \( C \), \( D \), and \( E \)[/tex], we can multiply both sides of the equation by the denominator and then equate the coefficients of corresponding powers of x. Solving the resulting system of equations, we find that [tex]\( A = 0 \), \( B = 0 \), \( C = 5/2 \), \( D = 0 \),[/tex] and [tex]\( E = 3/2 \)[/tex].

Integrating each of the partial fractions, we obtain [tex]\( \frac{{5}}{{2(x^2 + 1)}} + \frac{{3}}{{2(x^2 + 1)^2}} + \ln(|x|) + C \)[/tex] as the final result, where C is the constant of integration.

To learn more about integration refer:

https://brainly.com/question/5028068

#SPJ11

Use the four-step process to find f'(x), and then find f(1), f'(2), and f'(3). f(x)= 2 +7VX

Answers

The derivative of f(x) = 2 + 7√x is f'(x) = (7/2√x). Evaluating f(1), f'(2), and f'(3) gives f(1) = 9, f'(2) = 7/4, and f'(3) = 7/6.

To find the derivative f'(x) of the given function f(x) = 2 + 7√x, we can use the four-step process:

Step 1: Identify the function. In this case, the function is f(x) = 2 + 7√x.

Step 2: Apply the power rule. The power rule states that if we have a function of the form f(x) = a√x, the derivative is f'(x) = (a/2√x). In our case, a = 7, so f'(x) = (7/2√x).

Step 3: Simplify the expression. The expression (7/2√x) cannot be further simplified.

Step 4: Substitute the given values to find f(1), f'(2), and f'(3).

- f(1) = 2 + 7√1 = 2 + 7(1) = 2 + 7 = 9.

- f'(2) = (7/2√2) is the derivative evaluated at x = 2.

- f'(3) = (7/2√3) is the derivative evaluated at x = 3.

Therefore, f(1) = 9, f'(2) = 7/4, and f'(3) = 7/6.

Learn more about derivative here:

https://brainly.com/question/29020856

#SPJ11

Because of an insufficient oxygen supply, the trout population in a lake is dying. The population's rate of change can be modeled by the equation below where t is the time in days. dP/dt = – 110e–t/15 When t = 0, the population is 1650.
(a) Write an equation that models the population P in terms of the time t. P =
(b) What is the population after 17 days?
(c) According to this model, how long will it take for the entire trout population to die? (Round to 1 decimal place.)

Answers

The equation that models the trout population in terms of time is P = 1650[tex]e^{(-t/15)[/tex], the population after 17 days is approximately 1287.81, and according to this model, the trout population will never reach zero and will not completely die off.

(a) To find the equation that models the population P in terms of time t, we need to solve the differential equation:

dP/dt = [tex]-110e^{(-t/15)[/tex]

To do this, we can integrate both sides of the equation with respect to t:

∫ dP = ∫[tex]-110e^{(-t/15) }dt[/tex]

Integrating the right side gives us:

P = -110 ∫[tex]e^{(-t/15)}dt[/tex]

To integrate [tex]e^{(-t/15),[/tex] we can use the substitution u = -t/15:

du = (-1/15)dt

dt = -15du

Substituting these values into the equation, we get:

P = -110 ∫ [tex]e^{u[/tex] (-15du)

P = 1650[tex]e^{(-t/15)[/tex]+ C

Since we know that when t = 0, the population is 1650, we can substitute those values into the equation to solve for C:

1650 = 1650[tex]e^{(0/15)[/tex] + C

1650 = 1650 + C

C = 0

Therefore, the equation that models the population P in terms of time t is:

P = 1650[tex]e^{(-t/15)[/tex]

(b) To find the population after 17 days, we can substitute t = 17 into the equation:

P = 1650[tex]e^{(-17/15)[/tex]

P ≈ 1287.81

The population after 17 days is approximately 1287.81.

(c) According to the model, the entire trout population will die when P = 0. We can set up the equation and solve for t:

0 = 1650[tex]e^{(-t/15)[/tex]

Dividing both sides by 1650:

0 = [tex]e^{(-t/15)[/tex]

Taking the natural logarithm (ln) of both sides:

ln(0) = -t/15

Since the natural logarithm of 0 is undefined, there is no solution to this equation. Therefore, according to this model, the trout population will never reach zero and will not completely die off.

Therefore, the equation that models the trout population in terms of time is P = 1650[tex]e^{(-t/15)\\[/tex], the population after 17 days is approximately 1287.81, and according to this model, the trout population will never reach zero and will not completely die off.

To know more about equation check the below link:

https://brainly.com/question/17145398

#SPJ4

Other Questions
please answerLet z(x, y) = -6x + 3y, x = 4s - 9t, y = -7s - 5t. Calculated and using the chain rule. Find the consumer and producer surpluses (in million dollars) by using the demand and supply functions, where p is the price in dollars) and x is the number of units (in millions). See Example 5 Demand Function p = 40 - 0.2x consumer surplus $ Supply Function p = 0.2x millions producer surplus $ millions Need Help? Read It [-70.43 Points] DETAILS LARAPCALC10 5.5.046. Find the consumer and producer surpluses by using the demand and supply functions, where p is the price in dollars) and x is the number of units (in millions). Demand Function p = 610 - 21x Supply Function p = 40x $ consumer surplus producer surplus $ a common method used to smooth net income over time is: multiple choice accelerate revenue into earlier periods delay expenses into later periods using accrual of operating expenses and future adjustments using nonrecurring items to increase earnings in one year and reduce it later on AI TRIPLE CAMERA SHOT ON itel 4.1 Question 4 Table 3 below shows the scoreboard of the recently held gymnastic competition, it also reflects the decimal places. names of the athletes, and their teams, divisions and various events with total scores given to three TABLE 3: GYMNASTIC COMPETITION SCOREBOARD GYMNAST TEAM G Gilliland H Radebe L. Gumede GTC Olympus Olympus TGA GTC Olympus GTC GTC TGA A Boom B Makhatini Olympus S Rigby H Khumalo C Maile M Stolp M McBride DIV. 4.1.4 Determine the missing value C. 4.1.5 Define the term modal. Senior A Junior B Junior A Senior A Senior A Junior A Senior A Junior A Senior A Junior B VAULT EVENTS > BARS A BEAM FLOOR TOTAL SCORE 9,550 9,400 9.625 37.675 37,000 36,975 9,450 9,250 8,900 9,400 9,475 9,300 8,700 9,500 8,650 8,925 9,100 9,350 36,425 9,225 36,425 9,050 9,375 36,400 9,500 9,300 C 8,950 9,025 9,400 B 1 8,725 9.475 9,050 8,700 9,650 9,350 9,500 36,375 9,050 36,275 8,300 8,700 9,500 36,150 9,200 9,150 9,350 37,050 (adapted from DBE 2018 MLQP) Use the above scoreboard to answer questions that follow. 4.1.1 Identify the team that achieved the lowest score for the vault event? 4.1.2 G. Gilliland's range is 0.525, calculate his minimum score A. 4.1.3 The mean score for the bar event is 8. 975, calculate the value of B. Round you answer to the nearest whole number. 4.1.6 Write down the modal score for the total points scored. 4.1.7 Determine, as a percentage, the probability of selecting a gymnast in the junior division with a total score of more than 36, 970. 4.1.8 Calculate the value of quartile 2 for the floor event. (2) (3) (6) (3) [24] How much force does the atmosphere exert on one side of a vertical wall 4.00 m high and 10.0 m long? Let S be the set of points on the x -axis such that x > 0. a. Is (0,0) an accumulation point? b. Is (1,1) an accumulation point? Find the general solution of the differential equation y+11y12y=0. Use C1, C2, C3,... for constants of integration. y(t)= Equation Editor what is the pressure in a 19.0- l cylinder filled with 44.7 g of oxygen gas at a temperature of 311 k ? express your answer to three significant figures with the appropriate units. What is the x-value of the solution for the system of equations graphed below? a box is 3 cm wide, 2 cm deep, and 4 cm high. if each side is doubled in length, what would be the total surface area of the bigger box? the flared components of the paired nostrils are composed of Find the area between y = 5 and y = 5 and y = (-1) - 4 with a > 0. U Q The area between the curves is square units. the primary goal of a business firm is to question content area bottom part 1 a. make a quality product. b. maximize profit. c. promote fairness. d. increase its production. e. promote workforce job satisfaction. 9. A rectangle is to be inscribed in the ellipso a + 12 = 1. (See diagram below.) (3,4) 1+1 (a) (10 pts) Let a represent the x-coordinate of the top-right corner of the rectangle. De- termine a formul You can practice converting between the mass of a solution and mass of solute when the mass percent concentration of a solution is known. The concentration of the KCN solution given in Part A corresponds to a mass percent of 0.436 %. What mass of a 0.436 % KCN solution contains 501 mg of KCN? Express the mass to three significant figures and include the appropriate units. What is the distance to the earths horizon from point P?Enter your answer as a decimal in the box. Round only your final answer to the nearest tenth.(15 points) 21 Use mathematical induction to show that Coti) = (nti) (nt)/2 whenever 'n' is a non negative integen J=0 1. A plane intersects one nappe of a double-napped cone such that the plane is not perpendicular to the axis and is not parallel to the generating line.Which conic section is formed?circlehyperbolaellipseparabola2. A plane intersects one nappe of a double-napped cone such that it is perpendicular to the vertical axis of the cone and it does not contain the vertex of the cone.Which conic section is formed?hyperbolaparabolaellipsecircle3. Which intersection forms a hyperbola?A plane intersects only one nappe of a double-napped cone, and the plane is perpendicular to the axis of the cone.A plane intersects both nappes of a double-napped cone, and the plane does not intersect the vertex.A plane intersects only one nappe of a double-napped cone, and the plane is not parallel to the generating line of the cone.A plane intersects only one nappe of a double-napped cone, and the plane is parallel to the generating line of the cone.4. Which conic section results from the intersection of the plane and the double-napped cone shown in the figure?ellipseparabolacirclehyperbola (picture below is to this question)5. A plane intersects a double-napped cone such that the plane intersects both nappes through the cone's vertex.Which terms describe the degenerate conic section that is formed?Select each correct answer.degenerate ellipsedegenerate hyperbolapointlinepair of intersecting linesdegenerate parabola Find the standard matrices A and A' for T = T2 T1 and T' = T1 T2. T1: R2 R2, T1(x, y) = (x 2y, 3x + 4y)T2: R2 R2, T2(x, y) = (0, x)A =A' = Consider z = u^2 + uf(v), where u = xy; v = y/x, with f being a derivable function of a variable. Calculating: ^2z/(x y) through chain rule u get: ^2z/(x y) = A xy + B f(y/x) + C f' (y/x) + D f (y/x) ,where A, B, C, D are expresions we need to find.What are the Values of A, B, C, and D?