Answer:
Number of term N = 9
Value of Sum = 0.186
Step-by-step explanation:
From the given information:
Number of term N = [tex]3 (0.5)^{5} + 3 (0.5)^{6} + 3 (0.5)^{7} + \cdots + 3 (0.5)^{13}[/tex]
Number of term N = [tex]3 (0.5)^{5} + 3 (0.5)^{6} + 3 (0.5)^{7} +3 (0.5)^{8}+3 (0.5)^{9} +3 (0.5)^{10} +3 (0.5)^{11}+3 (0.5)^{12}+ 3 (0.5)^{13}[/tex]
Number of term N = 9
The Value of the sum can be determined by using the expression for geometric series:
[tex]\sum \limits ^n_{k=m}ar^k =\dfrac{a(r^m-r^{n+1})}{1-r}[/tex]
here;
m = 5
n = 9
r = 0.5
Then:
[tex]\sum \limits ^n_{k=m}ar^k =\dfrac{3(0.5^5-0.5^{9+1})}{1-0.5}[/tex]
[tex]\sum \limits ^n_{k=m}ar^k =\dfrac{3(0.03125-0.5^{10})}{0.5}[/tex]
[tex]\sum \limits ^n_{k=m}ar^k =\dfrac{(0.09375-9.765625*10^{-4})}{0.5}[/tex]
[tex]\sum \limits ^n_{k=m}ar^k =0.186[/tex]
For the given the geometric series, 3·0.5⁵ + 3·0.5⁶ + 3·0.5⁷ + ...+ 3·(0.5)¹³,
the responses are;
(1) The number of terms are 9
(2) The value of the sum is approximately 0.374
How can the geometric series be evaluated?The given geometric series is presented as follows;
3·0.5⁵ + 3·0.5⁶ + 3·0.5⁷ + ...+ 3·(0.5)¹³
(1) The number of terms in the series = 13 - 4 = 9
Therefore;
The number of terms in the series = 9 terms(2) The value of the sum can be found as follows;
The common ratio, r = 0.5
The sum of the first n terms of a geometric progression is presented as follows;
[tex]S_n = \mathbf{\dfrac{a \cdot (r^n - 1)}{r - 1}}[/tex]
The sum of the first 4 terms are therefore;
[tex]S_4 = \dfrac{3 \times (0.5^4 - 1)}{0.5 - 1} = \mathbf{ 5.625}[/tex]
The sum of the first 13 terms is found as follows;
[tex]S_{13} = \dfrac{3 \times (0.5^{13} - 1)}{0.5 - 1} = \mathbf{ \dfrac{24573}{4096}}[/tex]
Which gives;
The sum of the 5th to the 13th term = S₁₃ - S₄
Therefore;
[tex]The \ sum \ of \ the \ 5th \ to \ the \ 13th \ term =\dfrac{24573}{4096} - \dfrac{45}{3} = \dfrac{1533}{4096} \approx \mathbf{0.374}[/tex]
The value of the sum of the terms of the series is approximately 0.374Learn more about geometric series here:
https://brainly.com/question/12471913
A car travels 133 mi averaging a certain speed. If the car had gone 30 mph faster, the trip would have taken 1 hr less. Find the car's average speed.
Answer:
49.923 mph
Step-by-step explanation:
we know that the car traveled 133 miles in h hours at an average speed of x mph.
That is, xh = 133.
We can also write this in terms of hours driven: h = 133/x.
If x was 30 mph faster, then h would be one hour less.
That is, (x + 30)(h - 1) = 133, or h - 1 = 133/(x + 30).
We can rewrite the latter equation as h = 133/(x + 30) + 1
We can then make a system of equations using the formulas in terms of h to find x:
h = 133/x = 133/(x + 30) + 1
133/x = 133/(x + 30) + (x + 30)/(x + 30)
133/x = (133 + x + 30)/(x + 30)
133 = x*(133 + x + 30)/(x + 30)
133*(x + 30) = x*(133 + x + 30)
133x + 3990 = 133x + x^2 + 30x
3990 = x^2 + 30x
x^2 + 30x - 3990 = 0
Using the quadratic formula:
x = [-b ± √(b^2 - 4ac)]/2a
= [-30 ± √(30^2 - 4*1*(-3990))]/2(1)
= [-30 ± √(900 + 15,960)]/2
= [-30 ± √(16,860)]/2
= [-30 ± 129.846]/2
= 99.846/2 ----------- x is miles per hour, and a negative value of x is neglected, so we'll use the positive value only)
= 49.923
Check if the answer is correct:
h = 133/49.923 = 2.664, so the car took 2.664 hours to drive 133 miles at an average speed of 49.923 mph.
If the car went 30 mph faster on average, then h = 133/(49.923 + 30) = 133/79.923 = 1.664, and 2.664 - 1 = 1.664.
Thus, we have confirmed that a car driving 133 miles at about 49.923 mph would have arrive precisely one hour earlier by going 30 mph faster
An experiment involves 17 participants. From these, a group of 3 participants is to be tested under a special condition. How many groups of 3 participants can
be chosen, assuming that the order in which the participants are chosen is irrelevant?
Answer: 680
Step-by-step explanation:
When order doesn't matter,then the number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]
Given: Total participants = 17
From these, a group of 3 participants is to be tested under a special condition.
Number of groups of 3 participants chosen = [tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\[/tex]
[tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\\\\=\dfrac{17\times16\times15\times14!}{3\times2\times14!}\\\\=680[/tex]
Hence, there are 680 groups of 3 participants can be chosen,.
please I need help with this question!
The weight of adult males in Boston are normally distributed with mean 69 kilograms and variance 25 kilograms.
I. what percentage of adult male in Boston weigh more than 72 kilograms?
ii. what must an adult male weigh in order to be among the heaviest 10% of the population?
Thank you in advance!
Answer:
lmkjhvjgcfnhjkhbmgnc gfghh
Step-by-step explanation:
The cost of plastering the 4 walls of a room which is 4m high and breadth one third of its length is Rs. 640 at the rate of Rs. 5/m². What will be the cost of carpeting its floor at the rate of Rs. 250/m².
Answer:
Rs. 32,000
Step-by-step explanation:
height = 4m
let length = x m
breadth = x/3 m
Area of the 4 walls = 2(length × height) + 2(breadth × height)
Area = 2(4×x) + 2(4 × x/3) = 8x + (8x)/3
Area = (32x)/3 m²
1 m² = Rs. 5
The cost for an area that is (32x)/3 m²= (32x)/3 × 5 Rs.
The cost of plastering 4 walls at Rs.5 per m² = 640
(32x)/3 × 5 = 640
(160x)/3 = 640
x = length = 12
Area = (32x)/3 m² = (32×12)/3 = 128m²
The cost of carpeting its floor at the rate of Rs. 250/m²:
= 128m² × Rs. 250/m² = 32,000
The cost of carpeting its floor at the rate of Rs. 250/m² = Rs. 32,000
How to do this? what is the answer??
Answer:
I think that is the C
Step-by-step explanation:
Answer:
Option B is the correct answer.
Step-by-step explanation:
here, arc RT =162°
as in question given that the value of arc RT is 162° the value of angle RST is 1/2 of 162°.
so, its value must be 81°only.
hope it helps..
If w'(t) is the rate of growth of a child in pounds per year, what does 7 w'(t)dt 4 represent? The change in the child's weight (in pounds) between the ages of 4 and 7. The change in the child's age (in years) between the ages of 4 and 7. The child's weight at age 7. The child's weight at age 4. The child's initial weight at birth.
Complete Question
If w'(t) is the rate of growth of a child in pounds per year, what does
[tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex] represent?
a) The change in the child's weight (in pounds) between the ages of 4 and 7.
b) The change in the child's age (in years) between the ages of 4 and 7.
c) The child's weight at age 7.
d) The child's weight at age 4. The child's initial weight at birth.
Answer:
The correct option is option a
Step-by-step explanation:
From the question we are told that
[tex]w'(t)[/tex] represents the rate of growth of a child in [tex]\frac{pounds}{year}[/tex]
So [tex]{w'(t)} \, dt[/tex] will be in [tex]pounds[/tex]
Which then mean that this [tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex] the change in the weight of the child between the ages of [tex]4 \to 7[/tex] years
A company had a market price of $38.50 per share, earnings per share of $1.75, and dividends per share of $0.90. its price-earnings ratio equals:
Answer: Price-earnings ratio= 22.0
Step-by-step explanation:
Given: A company had a market price of $38.50 per share, earnings per share of $1.75, and dividends per share of $0.90
To find: price-earnings ratio
Required formula: [tex]\text{price-earnings ratio }=\dfrac{\text{ Market Price per Share}}{\text{Earnings Per Share}}[/tex]
Then, Price-earnings ratio = [tex]\dfrac{\$38.50}{\$1.75}[/tex]
⇒Price-earnings ratio = [tex]\dfrac{22}{1}[/tex]
Hence, the price-earnings ratio= 22.0
Find the area of the figure. Round to the nearest tenth if necessary. 386.3m^2 194.3m^2 193.1m^2 201.9m^2
Add the top and bottom numbers together, divide that by 2 then multiply by the height.
15.3 + 19.5 = 34.8
34.8/2 = 17.4
17.4 x 11.1 = 193.14
Answer is 193.1 m^2
A gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else. A random sample of 600 18-29 year-olds is obtained today. What is the probability that no more than 70% would prefer to start their own business?
Answer:
The probability that no more than 70% would prefer to start their own business is 0.1423.
Step-by-step explanation:
We are given that a Gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else.
Let [tex]\hat p[/tex] = sample proportion of people who prefer to start their own business
The z-score probability distribution for the sample proportion is given by;
Z = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, p = population proportion who would prefer to start their own business = 72%
n = sample of 18-29 year-olds = 600
Now, the probability that no more than 70% would prefer to start their own business is given by = P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%)
P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%) = P( [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{0.70-0.72}{\sqrt{\frac{0.70(1-0.70)}{600} } }[/tex] ) = P(Z [tex]\leq[/tex] -1.07) = 1 - P(Z < 1.07)
= 1 - 0.8577 = 0.1423
The above probability is calculated by looking at the value of x = 1.07 in the z table which has an area of 0.8577.
what is the answer to 100×338
Answer:
33800
Step-by-step explanation:
100 x 338 = 33800
Answer:
33800
Step-by-step explanation:
338x10=3380 then 3380x10=33800
-------------------------------------------------------
Good luck with your assignment...
How many real roots and how many complex roots exist for the polynomial
F(x) - X4+ x2 - 5x2 + x -- 6?
O A. 2 real roots and 2 complex roots
B. O real roots and 4 complex roots
O c. 3 real roots and 1 complex root
D. 4 real roots and 0 complex roots
Answer:
D. 4 real roots and 0 complex roots
Step-by-step explanation:
If I assume that the function you are saying is
[tex]F(x)=x^4+x^3-5x^2+x-6[/tex]
There should be up to "4 roots," there can't be more or less than 4 total solutions. First, we need to check how many sign changes are there in this function. There are 3 positive real roots. Now lets check for negative roots.
[tex]F(-x)=x^4-x^3-5x^2-x-6[/tex]
There are is only 1 negative real root. Since we basically have 4 real roots, and the max is 4. There should be 4 real roots and 0 complex roots.
Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more?
Answer:
0.0668 or 6.68%
Step-by-step explanation:
Variance (V) = 10,000
Standard deviation (σ) = √V= 100
Mean score (μ) = 500
The z-score for any test score X is:
[tex]z=\frac{X-\mu}{\sigma}[/tex]
For X = 650:
[tex]z=\frac{650-500}{100}\\z=1.5[/tex]
A z-score of 1.5 is equivalent to the 93.32nd percentile of a normal distribution. Therefore, the probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)=1-P(X\leq 650)\\P(X\geq 650)=1-0.9332\\P(X\geq 650)=0.0668=6.68\%[/tex]
The probability is 0.0668 or 6.68%
The probability that he or she will make a score of 650 or more is 0.0668.
Let X = Scores made on a certain aptitude test by nursing students
X follows normal distribution with mean = 500 and variance of 10,000.
So, standard deviation = [tex]\sqrt{10000}=100[/tex].
z score of 650 is = [tex]\frac{\left(650-500\right)}{100}=1.5[/tex].
The probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)\\=P(z\geq 1.5)\\=1-P(z<1.5)\\=1-0.9332\\=0.0668[/tex]
Learn more: https://brainly.com/question/14109853
Luke is organising a camping trip for the youth club. He is looking at the temperature and rainfall charts for Brighton and Newquay. What is the probability of it raining in July in Brighton? Give your answer as a fraction.
Answer:
The answer is 15.6/31 or 1/2
Step-by-step explanation:
The data in the question is sufficient to find an answer for it.
1. I look at the temperature and rainfall chart for Brighton, United Kingdom.
2. Check for rainy season and dry season.
3. The rainy season lasts approximately 5 months while the dry season (which still has some rainfall) lasts approximately 7 months. All together, 12 months of the calendar year.
4. July happens to fall within the dry season. The temperature and rainfall statistics are observed.
The number of rainfall days is 15.6 and we know there are 31 days in July.
If the approximate number of days it rains in Brighton, in July, is 15.6 then the probability of rainfall in the month is 15.6/31 which is = 0.503 or 0.5
Therefore, there's a 50% chance of having rainfall in Brighton, on any day in the month of July.
In fraction, 0.5 = 1/2
a 12- inch ruler is duvided into 3 parts. the large part is 3 times longer than the small. the meddium part is times longer than then small, the medium part is 2 times long as the smallest .how long is the smallest part?
Answer:
2 inches
Step-by-step explanation:
x= smallest
3x=largest
2x=medium
x+3x+2x=12
6x=12
x=2
so smallest is 2
largest is 6 (3x)
medium is 4 (2x)
2+6+4=12
In which table does y vary inversely with x? A. x y 1 3 2 9 3 27 B. x y 1 -5 2 5 3 15 C. x y 1 18 2 9 3 6 D. x y 1 4 2 8 3 12
Answer:
In Table C, y vary inversely with x.
1×18 = 18
2×9 = 18
3×6 = 18
18 = 18 = 18
Step-by-step explanation:
We are given four tables and asked to find out in which table y vary inversely with x.
We know that an inverse relation has a form given by
y = k/x
xy = k
where k must be a constant
Table A:
x | y
1 | 3
2 | 9
3 | 27
1×3 = 3
2×9 = 18
3×27 = 81
3 ≠ 18 ≠ 81
Hence y does not vary inversely with x.
Table B:
x | y
1 | -5
2 | 5
3 | 15
1×-5 = -5
2×5 = 10
3×15 = 45
-5 ≠ 10 ≠ 45
Hence y does not vary inversely with x.
Table C:
x | y
1 | 18
2 | 9
3 | 6
1×18 = 18
2×9 = 18
3×6 = 18
18 = 18 = 18
Hence y vary inversely with x.
Table D:
x | y
1 | 4
2 | 8
3 | 12
1×4 = 4
2×8 = 16
3×12 = 36
4 ≠ 16 ≠ 36
Hence y does not vary inversely with x.
Bart bought a digital camera with a list price of $219 from an online store offering a 6 percent discount. He needs to pay $7.50 for shipping. What was Bart's total cost? A. $205.86 B. $211.50 C. $213.36
Answer:
Barts total cost is (c)213.36
Step-by-step explanation:
First, you subtract 6% from $219
=204.92
add shipping,
+7.50
=213.36
Hope this helps <3
Answer:
C. $213.36
Step-by-step explanation:
The original price is $219 and the discount is 6% which is equal to $13.14
$219 - $13.14 + $7.50 (shipping cost) = $213.36
the mean monthly income of trainees at a local mill is 1100 with a standard deviation of 150. find rthe probability that a trainee earns less than 900 a month g
Answer:
The probability is [tex]P(X < 900 ) = 0.0918[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean is [tex]\= x = 1100[/tex]
The standard deviation is [tex]\sigma = 150[/tex]
The random number value is x =900
The probability that a trainee earn less than 900 a month is mathematically represented as
[tex]P(X < x) = P(\frac{X -\= x}{\sigma} < \frac{x -\= x}{\sigma} )[/tex]
Generally the z-value for the normal distribution is mathematically represented as
[tex]z = \frac{x -\mu }{\sigma }[/tex]
So From above we have
[tex]P(X < 900 ) = P(Z < \frac{900 -1100}{150} )[/tex]
[tex]P(X < 900 ) = P( Z <-1.33)[/tex]
Now from the z-table
[tex]P(X < 900 ) = 0.0918[/tex]
TRIANGLE ABC IS DILATED BY A SCALE FACTOR OF 0.5 WITH THE ORIGIN AS THE CENTER OF DILATION, RESULTING IN THE IMAGE TRIANGLE A'B'C. IF A=(2,2). IF A (2,2), B= (4,3) AND C=(6,3), WHAT IS THE LENGTH OF LINE B'C'?
Answer: The length of the line B'C" is 1 unit.
Step-by-step explanation:
Given: Triangle ABC is dilated by a scale factor of 0.5 with the origin as the center of dilation , resulting in the image Triangle A'B'C'.
If A (2,2), B= (4,3) and C=(6,3).
Distance between (a,b) and (c,d): [tex]D=\sqrt{(d-b)^2+(c-b)^2}[/tex]
Then, BC [tex]=\sqrt{(3-3)^2+(6-4)^2}[/tex]
[tex]\\\\=\sqrt{0+2^2}\\\\=\sqrt{4}\\\\=2\text{ units}[/tex]
Length of image = scale factor x length in original figure
B'C' = 0.5 × BC
= 0.5 × 2
= 1 unit
Hence, the length of the line B'C" is 1 unit.
How to calculate a circumference of a circle?
Answer: Pi multiplied by the diameter of the circle
Step-by-step explanation:
Answer:
The formula for finding the circumference of a circle is [tex]C = 2\pi r[/tex]. You substitute the radius of the circle for [tex]r[/tex] and multiply it by [tex]2\pi[/tex].
15 points + brainliest if you can figure this out!
Answer:
(H1, T1)
Step-by-step explanation:
Since we know that the only number option is 1, we can cancel out the first 3 options. and obviously, there are only heads, and tails. So, using only the # 1 and heads and tails, we can conclude that the answer is (H1, T1).
Answer:
D. (H1, T1)
Step-by-step explanation:
Since all outcomes require card #1 is chosen, so any answer with 2 or 3 can be rejected, therefore the answer is
D. (H1, T1)
Please help. I’ll mark you as brainliest if correct!
Answer:
8lb of the cheaper Candy
17.5lb of the expensive candy
Step-by-step explanation:
Let the cheaper candy be x
let the costly candy be y
X+y = 25.5....equation one
2.2x +7.3y = 25.5(5.7)
2.2x +7.3y = 145.35.....equation two
X+y = 25.5
2.2x +7.3y = 145.35
Solving simultaneously
X= 25.5-y
Substituting value of X into equation two
2.2(25.5-y) + 7.3y = 145.35
56.1 -2.2y +7.3y = 145.35
5.1y = 145.35-56.1
5.1y = 89.25
Y= 89.25/5.1
Y= 17.5
X= 25.5-y
X= 25.5-17.5
X= 8
Find the surface area of the attached figure and round your answer to the nearest tenth, if necessary.
Answer:
[tex] S.A = 246.6 in^2 [/tex]
Step-by-step explanation:
The figure given above is a square pyramid, having a square base and 4 triangular faces on the sides that are of the same dimensions.
Surface area of the square pyramid is given as: [tex] B.A + \frac{1}{2}*P*L [/tex]
Where,
B.A = Base Area of the pyramid = 9*9 = 81 in²
P = perimeter of the base = 4(9) = 36 in
L = slant height of pyramid = 9.2 in
Plug in the values into the given formula to find the surface area
[tex] S.A = 81 + \frac{1}{2}*36*9.2 [/tex]
[tex] = 81 + 18*9.2 [/tex]
[tex] = 81 + 165.6 [/tex]
[tex] S.A = 246.6 in^2 [/tex]
1000 randomly selected Americans were asked if they believed the minimum wage should be raised. 600 said yes. Construct a 95% confidence interval for the proportion of Americans who believe that the minimum wage should be raised.
a. Write down the formula you intend to use with variable notation).
b. Write down the above formula with numeric values replacing the symbols.
c. Write down the confidence interval in interval notation.
Answer:
a. p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]
b.0.6 ± 1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]
c. { -1.96 ≤ p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex] ≥ 1.96} = 0.95
Step-by-step explanation:
Here the total number of trials is n= 1000
The number of successes is p` = 600/1000 = 0.6. The q` is 1 - p`= 1- 0.6 = 0.4
The degree of confidence is 95 % therefore z₀.₀₂₅ = 1.96 ( α/2 = 0.025)
a. The formula used will be
p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex] ( z with the base alpha by 2 (α/2 = 0.025))
b. Putting the values
0.6 ± 1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]
c. Confidence Interval in Interval Notation.
{ -1.96 ≤ p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex] ≥ 1.96} = 0.95
{ -z( base alpha by 2) ≤ p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex] ≥ z( base alpha by 2) } = 1- α
aryn needs enough mulch to cover a rectangle flower bed measuring 2 1/4 yd by 3 1/2yd each bag cover 3 square yds and cost $4 how many bags does she need and how much money she need
Answer:
cars are dum
Step-by-step explanation:
Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value
Answer:
z(c) = - 1,64
We reject the null hypothesis
Step-by-step explanation:
We need to solve a proportion test ( one tail-test ) left test
Normal distribution
p₀ = 63 %
proportion size p = 51 %
sample size n = 114
At 5% level of significance α = 0,05, and with this value we find in z- table z score of z(c) = 1,64 ( critical value )
Test of proportion:
H₀ Null Hypothesis p = p₀
Hₐ Alternate Hypothesis p < p₀
We now compute z(s) as:
z(s) = ( p - p₀ ) / √ p₀q₀/n
z(s) =( 0,51 - 0,63) / √0,63*0,37/114
z(s) = - 0,12 / 0,045
z(s) = - 2,66
We compare z(s) and z(c)
z(s) < z(c) - 2,66 < -1,64
Therefore as z(s) < z(c) z(s) is in the rejection zone we reject the null hypothesis
Crime and Punishment: In a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.
(A) If one of the study subjects is randomly selected, find the probability of getting someone who was not sent to prison.
(B) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, find the probability that this person was not sent to prison.
Answer:
(a) The probability of getting someone who was not sent to prison is 0.55.
(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is 0.63.
Step-by-step explanation:
We are given that in a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.
Let the probability that subjects studied were sent to prison = P(A) = 0.45
Let G = event that subject chose to plead guilty
So, the probability that the subjects chose to plead guilty given that they were sent to prison = P(G/A) = 0.40
and the probability that the subjects chose to plead guilty given that they were not sent to prison = P(G/A') = 0.55
(a) The probability of getting someone who was not sent to prison = 1 - Probability of getting someone who was sent to prison
P(A') = 1 - P(A)
= 1 - 0.45 = 0.55
(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is given by = P(A'/G)
We will use Bayes' Theorem here to calculate the above probability;
P(A'/G) = [tex]\frac{P(A') \times P(G/A')}{P(A') \times P(G/A') +P(A) \times P(G/A)}[/tex]
= [tex]\frac{0.55 \times 0.55}{0.55\times 0.55 +0.45 \times 0.40}[/tex]
= [tex]\frac{0.3025}{0.4825}[/tex]
= 0.63
WILL MARK AS BRAINLIEST 4. Suppose there is a card game where you are dealt a hand of three cards. You have already learned that the total number of three-card hands that can be dealt from a deck of 52 cards is: 52C3=52!/49!3! 52C3=22100 Calculate the probability of getting a hand that has exactly two aces in it (A A X). Do this by finding out the number of possible hands that have exactly two aces, and then dividing by the total possible number of three-card hands that is stated above. Part A: Use the multiplication principle to tell the total number of three-card hands (permutations) that can be made with two aces. (2 points) Part B: In the answer from Part I, each two-ace hand got counted twice. For example, A A X got counted as a separate hand from A A X. Since order should not matter in a card hand, these are really the same hand. What is the actual number of two-ace hands (combinations) you can get from a deck of 52 cards?(2 points) Part C: Find the probability of drawing a three-card hand that includes two aces from a deck of 52 cards. Write your answer as a fraction. (2 points)
Answer:
Part A- 6
Part B- 3
Part C- 3/22100
Step-by-step explanation:
Part A-
Use the permutation formula and plug in 3 for n and 2 for k.
nPr=n!/(n-k)!
3P2=3!/(3-2)!
Simplify.
3P2=3!/1!
3P2=6
Part B-
Use the combination formula and plug in 3 for n and 2 for k.
nCk=n!/k!(n-k)!
3C2=3!/2!(3-2)!
Simplify.
3C2=3!/2!(1!)
3C2=3
Part C-
It is given that the total number of three-card hands that can be dealt from a deck of 52 cards is 22100. Use the fact that the probability of something equals the total successful outcomes over the sample space. In this case the total successful outcomes is 3 and the sample space is 22100.
I believe the answer is 3/22100
I honestly suck at probability but I tried my best.
Mai invests $20,000 at age 20. She hopes the investment will be worth $500,000 when she turns 40. If the interest compounds continuously, approximately what rate of growth will she need to achieve her goal? Round to the nearest tenth of a percent.
Answer:16.1%
Step-by-step explanation:
Answer:
The investment needs the rate of growth to be approximately 16.1%.
Step-by-step explanation:
Find the slope of the line passing through the points (-3, -8) and (4,6).
Answer:
slope = 2Step-by-step explanation:
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have
[tex](-3;\ -8)\to x_1=-3;\ y_1=-8\\(4;\ 6)\to x_2=4;\ y_2=6[/tex]
Substitute:
[tex]m=\dfrac{6-(-8)}{4-(-3)}=\dfrac{6+8}{4+3}=\dfrac{14}{7}=2[/tex]
The formula for the slope m of the line that passes through two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is the following:
[tex]m=\dfrac{y_1-y_2}{x_1-x_2}[/tex]
We have points (4,6) and (-3,-8). Let's plug these values into the formula for slope:
[tex]m=\dfrac{6-(-8)}{4-(-3)}[/tex]
[tex]=\dfrac{14}{7}=2[/tex]
The slope of the line passing through the two points is 2. Let me know if you need any clarifications, thanks!
ASAP PLEASE HELP!!!!!! Find the y-intercept of the rational function. A rational function is graphed in the first quadrant, and in the second, third and fourth quadrants are other pieces of the graph. The graph crosses the x axis at negative 10 and crosses the y axis at negative 2.
Answer:
(0,-2)
Step-by-step explanation:
The y-intercept is simply when the function touches or crosses the y-axis.
We're told that the graph crosses the y-axis at -2. In other words, the y-intercept is at -2.
The ordered pair would be (0,-2)