Answer:
a. 46.9 m b. 56.1 m
Step-by-step explanation:
a. Width of the river
The angle of depression of the bottom of the second vertical cliff from the first vertical cliff = angle of elevation of the top of the first vertical cliff from the bottom of the second vertical cliff = 58°.
Since the height of the vertical cliff = 75.0 m, its distance from the other cliff which is the width of the river, d is gotten from
tan58° = 75.0 m/d
d = 75.0/tan58° = 46.87 m ≅ 46.9 m
b. Height of the second cliff
Now, the difference in height of the two cliffs is gotten from
tan22° = h/d, since the angle of depression of the top of second cliff from the first cliff is the angle of elevation of the top of the first cliff from the second cliff = 22°
h = dtan22° = 18.94 m
So, the height of the second cliff is h' = 75.0 - h = 75.0 m - 18.94 m = 56.06 m ≅ 56.1 m
The real numbers $x$ and $y$ are such that \begin{align*} x + y &= 4, \\ x^2 + y^2 &= 22, \\ x^4 &= y^4 - 176 \sqrt{7}. \end{align*}Compute $x - y.$
You get everything you need from factoring the last expression:
[tex]x^4-y^4=-176\sqrt7[/tex]
The left side is a difference of squares, and we get another difference of squares upon factoring. We end up with
[tex]x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)[/tex]
Plug in everything you know and solve for [tex]x-y[/tex]:
[tex]-176\sqrt7=(x-y)\cdot4\cdot22\implies x-y=\boxed{-2\sqrt7}[/tex]
Answer:
-2sqrt(7)
Step-by-step explanation:
Solution:
From the third equation, $x^4 - y^4 = -176 \sqrt{7}.$
By difference of squares, we can write
\[x^4 - y^4 = (x^2 + y^2)(x^2 - y^2) = (x^2 + y^2)(x + y)(x - y).\]Then $-176 \sqrt{7} = (22)(4)(x - y),$ so $x - y = \boxed{-2 \sqrt{7}}.$
Find the value of this expression if x=3 x^2 + 3/x-1
Answer: 9
Step-by-step explanation:
[tex]3^2 + \frac{3}{3}-1\\\\=9+1-1\\\\=9[/tex]
The slope of the line below is -3 which is the following is the point - slope from the line ?
Answer:
D. y + 6 = -3(x - 2)
Step-by-step explanation:
To find the equation in point-slope form, you need to use the slope and a point from that line. The slope is -3 and the point given is (2, -6).
Point-slope form is y - y₁ = m(x - x₁). Plug in the slope and point.
y - (-6) = -3(x - 2)
y + 6 = -3(x - 2)
Answer:
D. [tex]y - 2 = -3(x+6 )[/tex]
Step-by-step explanation:
Well point slope form is,
[tex]y - y_{1} = m(x-x_{1} )[/tex]
So we already have slope meaning we can plug that in for m.
[tex]y - y_{1} = -3(x-x_{1} )[/tex]
And with the given point (2,-6),
we can create point slope form.
[tex]y - 2 = -3(x+6 )[/tex]
Therefore,
the answer is d. [tex]y - 2 = -3(x+6 )[/tex].
Hope this helps :)
Pls solve ASAP!! Review the attachment and solve. Pls hurry!
Answer:
A. 3
Step-by-step explanation:
ΔDEC is bigger than ΔABC by 5. For the hypotenuse, 25 is 5 times bigger than 5.
So, side DE on ΔDEC has to be 5 times bigger than side AB on ΔABC.
If side AB equals 3, side DE equals 18 - 3, which is 15.
15 is five times bigger than 3, so the answer is A. 3.
Hope that helps.
Suppose your car has hhh liters of engine oil in the morning. During the day, some oil may have leaked, you may have added more oil, or both. The oil level in the evening is ggg liters.
Answer:
g = (h+a) - l
None of them
Step-by-step explanation:
Suppose your car has h liters of engine oil in the morning. During the day, some oil may have leaked, you may have added more oil, or both. The oil level in the evening is g liters. Which of the following expressions always represents how far away the new oil level is from the previous oil level? H+G lGl none of them
Let
h = liters of oil in the morning
l= liters that has leaked
a= liters that were added during the day
g= amount of liters at the end of the evening
Total liters of oil in the evening= (litres of oil in the morning + litres of oil added during the day) - litres of oil that leaked
Substituting each variable into the formula, we have
g = (h+a) - l
Triangle ABC has vertices at A(2,5), B(4,11) and C(-1,6). Determine the angles in this triangle.
I need this solved using vectors please
Answer:
The angles are
∠A = 90°, ∠B = 26.56°, ∠C = 63.43°
Step-by-step explanation:
We have that the angles of a vector are given as follows;
[tex]cos\left ( \theta \right ) = \dfrac{\mathbf{a\cdot b}}{\left | \mathbf{a} \right |\left | \mathbf{b} \right |}[/tex]
Whereby the vertices are represented as
A= (2, 5, 0), B = (4, 11, 0), C = (-1, 6, 0),
AB =(4, 11, 0) - (2, 5, 0) = (2, 6, 0) , BA = (-2, -6, 0)
BC = (-1, 6, 0) - (4, 11, 0) = (-5, -5, 0), CB = (5, 5, 0)
AC = (-1, 6, 0) - (2, 5, 0) = (-3, 1, 0), CA = (3, -1, 0)
θ₁ = AB·AC
a·c = a₁c₁ + a₂c₂ + a₃c₃ = 2×(-3) + 6×1 = 0
Therefore, θ₁ = 90°
BA·BC = (-2)×(-5) + (-6)×(-5) = 40
[tex]{\left | \mathbf{}BA \right |\left | \mathbf{}BC \right |}[/tex] = (√((-2)² + (-6)²)) × (√((-5)² + (-5)²)) = 44.72
cos(θ₂) = 40/44.72 = 0.894
cos⁻¹(0.894) =θ₂= 26.56°
CA·CB = 5×3 + 5×(-1) = 10
[tex]{\left | \mathbf{}CA \right |\left | \mathbf{}CB \right |}[/tex] = (√((3)² + (-1)²)) × (√((5)² + (5)²)) = 22.36
10/22.36 = 0.447
cos(θ₃) = 0.447
θ₃ = cos⁻¹(0.447) = 63.43°.
Find the domain of each function: g(x)= 1/x−9
Answer:
x ∈ R, x ≠ 9
Step-by-step explanation:
Given
f(x) = [tex]\frac{1}{x-9}[/tex]
The denominator of f(x) cannot be zero as this would make f(x) undefined.
To find the value that x cannot be, equate the denominator to zero and solve for x
x - 9 = 0 ⇒ x = 9 ← excluded value
Thus the domain is x ∈ R, x ≠ 9
Please answer this in two minutes
You are testing the claim that the mean GPA of night students is greater than the mean GPA of day students. You sample 30 night students, and the sample mean GPA is 2.36 with a standard deviation of 0.96 You sample 60 day students, and the sample mean GPA is 2.19 with a standard deviation of 0.66 Calculate the test statistic, rounded to 2 decimal places
Answer:
Z = 0.87
Explanation:
Given the following data;
Sample 1:
n1 = 30
Mean, X = 2.36
Standard deviation, Ox = 0.96
Sample 2:
n2 = 60
Mean, Y = 2.19
Standard deviation, Oy = 0.66
The formula for test statistics for two population is;
[tex]Z = \frac{X-Y}{\sqrt{(\frac{Ox^2} {n_1} } +\frac{Oy^2}{n_2} )}}[/tex]
Substituting the values, we have;
[tex]Z = \frac{2.36-2.19}{\sqrt{(\frac{0.96^2} {30} +\frac{0.66^2}{60} )}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{(\frac{0.9216} {30} +\frac{0.4356}{60} )}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{(0.03072 +0.00726)}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{0.03798}}[/tex]
[tex]Z = \frac{0.17}{0.19488}[/tex]
Z = 0.8723
The test statistics to 2 d.p is 0.87
Therefore, Z = 0.87
Please answer this question now
Answer:
7.8
Step-by-step explanation:
To do this problem you need to know Pythagorean Theorem which is also known as [tex]a^{2} +b^{2} =c^{2}[/tex].
In this problem 6 would be a, 5 would be b, and d would be c. So to do this we would do 5 squared (which is 25)+ 6 squared which is 36) and you would get 61 and when you do that you will just take the square root of that which is 7.81 and round it to the nearest tenth which is 7.8 and that would be the final answer
dentify which of these types of sampling is used: random, systematic, convenience, stratified, or cluster. To determine her air qualityair quality, MirandaMiranda divides up her day into three parts: morning, afternoon, and evening. She then measures her air qualityair quality at 33 randomly selected times during each part of the day. What type of sampling is used?
Answer:
The sampling method used is a stratified sampling method
Step-by-step explanation:
sampling is the selection of a predetermined representative subpopulation from a larger population, to estimate the characteristics of the whole population.
Stratified sampling: Here, the total population are divided into subcategories (strata) before sampling is done. The strata are formed based on some common characteristics. In our example, the times of the day (morning, afternoon and evening) has widely varying atmospheric conditions which will add biases to the measurement of air quality. For example, the air in the morning if compared to the afternoon in an industrial area may be purer because of minimal industrial activity, hence effective comparison will be made by stratification.
The coordinates of point L on a coordinate grid are (−2, −4). Point L is reflected across the y-axis to obtain point M and across the x-axis to obtain point N. What are the coordinates of points M and N? M(2, 4), N(−2, −4) M(2, −4), N(−2, 4) M(−2, −4), N(2, 4) M(−2, 4), N(2, −4)
Answer:
M(2, −4), N(−2, 4)
Step-by-step explanation:
Transformation is the movement of a point from one place to another. If an object is transformed, all the points of the object are being changed. There are different types of transformation which are: Reflection, rotation, translation and dilation.
Reflection of a point is the flipping of a point. If a point A(x, y) is reflected across the x axis, the new point is A'(x, -y). If a point B(x, y) is reflected across the y axis, the new point is A'(-x, y).
The coordinates of point L on a coordinate grid are (−2, −4), if Point L is reflected across the y-axis to obtain point M, the coordinates of M is at (2, -4).
if Point L is reflected across the x-axis to obtain point N, the coordinates of N is at (-2, 4).
Answer: M(2, −4), N(−2, 4) So D can i get branliest
Step-by-step explanation:
Solve with long division method 31/27
Answer:
1.148 repetent
Step-by-step explanation:
hope this helps
What is the domain of the function f(x) = x + 1/ x^2 - 6 + 8?
Answer:
The domain is all values but x=4 and x=2
Step-by-step explanation:
f(x) = (x+1) / ( x^2-6x+8)
Factor the function
f(x) = (x+1) / ( (x-4) ( x-2))
The domain of the function is all values of x except where the function does not exist
This is where the denominator goes to zero
(x-4) ( x-2) =0
Using the zero product property
x-4 =0 x-2 =0
x=4 x=2
The domain is all values but x=4 and x=2
Answer:
Hey there!
This, is the graph of your function:
Thus the domain, or all the possible x values would be all real numbers except 2 and 4, because the lines will only reach 2 and 4 when y is infinity.
Hope this helps :)
1.) Which movie had the Lower Q3 as shown in the box plot?
Movie A
Movie B
Both about the same
Q3, or third quartile, is visually located at the right edge of the box. Movie A shows to have a smaller Q3 value as it is to the left of Q3 for movie B.
I don't understand the British system of colonization
Answer:
Which of the following numbers is a composite number that is divisible by 3? A. 49 B. 103 C. 163 D. 261 Answer: B) 245
Step-by-step explanation:
I don’t know how to answer this?
Answer:
SOLUTION SET ={a/a≥20}
Step-by-step explanation:
[tex]\frac{2a}{5}-2\geq\frac{a}{4}+1[/tex]
[tex]adding 2 on both sides[/tex]
[tex]\frac{2a}{5}-2+2\geq \frac{a}{4}+1+2[/tex]
[tex]now subtracting \frac{a}{4} on both sides[/tex]
[tex]\frac{2a}{5}-\frac{a}{4}\geq 3[/tex]
[tex]takig LCM as 20\\\frac{8a}{20}-\frac{5a}{20}\geq 3[/tex]
[tex]\frac{3a}{20}\geq 3[/tex]
[tex]by cross-multiplication[/tex]
3a≥3×20
3a≥60
dividing 3 on both sides
3a/3≥60/3
a≥20
SOLUTION SET ={a/a≥20} is the answer
i hope this will help you :)
The table below lists some of the characteristics of the houses on Katrina’s street. Characteristics of Homes For Sale on Katrina’s Street Bedrooms Acres of land Sale price Appraised value Property tax 2 0.17 $230,000 $200,000 $1,220 2 0.20 $210,000 $220,000 $1,232 3 0.20 $275,000 $250,000 $1,400 4 0.24 $275,000 $275,000 $1,540 4 0.52 $360,000 $310,000 $1,736 4 0.75 $350,000 $320,000 $1,792 5 1.23 $375,000 $350,000 $1,960 Which relationship describes a function?
Answer:
your welcome and hope this helps
the angle of elevation of the top of a tree from a point 27m away on the same horizontal ground as the foot on the tree is 30 degrees .find the height of the tree.
Answer:
The height of the tree = 15.59m
Step-by-step explanation:
let's make the height of the tree = x
tan30=x/27
x = 27 x tan30
x = 15.59m
Select the number of solutions for each system of two linear equations.
Answer:
work is shown and pictured
C, infinitely many solutions.
B, one solution.
C, infinitely many solution.
A system of linear equations:A system of linear equations is a collection of one or more linear equations involving the same variables.
A system of linear equation has
one solution when the graph intersect at a point.no solution when the graphs are parallel.infinitely many solutions when the graphs are exact same line.According to the given questions
the given system of equations
(1). 2x+2y=3 and 4x+4y=6
if we see the graph of the above system of linear equations, the graphs are the" exact at same line".
Hence, they have infinitely many solution.
(2). 7x+5y=8 and 7x+7y =8
if we see the graph of the above system of linear equations, the graphs are intersecting at a single point.
Hence, there is only one solution.
(3). -2x+3y=7 and 2x-3y=-7
if we see the graph of the above system of linear equations, the graphs are exact at same line.
Hence, there is infinitely many solutions.
Learn more about the system of linear equations here:https://brainly.in/question/5130012
#SPJ2
A company has determined that its weekly profit is a function of the number of items that it sells. Which equation could represent the weekly profit in thousands of dollars, y, when the company sells x items? y squared = 4 x squared minus 100 y = negative x squared + 50 x minus 300 x = negative y squared minus 400 x squared = negative 6 y squared + 200
Answer:
B. y= -x^2+50x-300
Step-by-step explanation:
A. y^2=4x^2-100
B. y= -x^2+50x-300
C. x=-y^2-400
D. x^2=-6y^2+200
we are to find profits (y) when the company sells x items
Option A can be used to calculate the profit (y) squared
Option B can be used to calculate profits (y)
Option C can be used to calculate items sold(x)
Option D can be used to calculate items sold squared(x^2)
We are asked to find the weekly profit (y) function which eliminate options A, C and D leaving us with option B
Therefore, the weekly profits (y) function in thousands of dollars when the company sells x items is
B. y= -x^2+50x-300
Which transformations can be used to carry ABCD onto itself? The point of rotation is (3, 2). Check all that apply. A. Reflection across the line y = 2 B. Rotation of 180 C. Rotation of 90 D. Translation two units up
Answer: rotate 180 degrees and reflection across the line y=2
Step-by-step explan
Answer:
Step-by-step explanation:
The graphed line shown below is y = negative 2 x minus 8. Which equation, when graphed with the given equation, will form a system that has infinitely many solutions? y = negative (2 x + 8) y = negative 2 (x minus 8) y = negative 2 (x minus 4) y = negative (negative 2 x + 8)
Answer: A y = -(2x+8)
Step-by-step explanation:
The first line is y=-2x-8
Thus, the answer that simplifies to y = -2x-8 is the answer.
a) y=-(2x+8)
Distribute
y=-2x-8
Because it works, no need to try the others.
Hope it helps <3
Answer:
[tex]\boxed{y = -(2x + 8)}[/tex]
Step-by-step explanation:
For the two lines to have infinite [tex]\infty[/tex] solutions, the two equations must be the same.
First equation : y = -2x - 8
A. y = -(2x + 8)
y = -2x - 8 correct
B. y = -2(x - 8)
y = -2x + 16 incorrect
C. y = -2(x - 4)
y = -2x + 8 incorrect
D. y = -(-2x+8)
y = 2x - 8 incorrect
y = -2x - 8 and y = -(2x + 8) when graphed are the same, they intersect at infinite points and there are infinite solutions.
help plzz ... Trigonometry
Answer:
XYZ = 21.8
Step-by-step explanation:
the missing angle is XYZ
cos XYZ = [tex]\frac{adjacent}{hypotenus}[/tex] tan XYZ = [tex]\frac{6}{15}[/tex] tan XYz = 0.4using a calculator:
tan^(-1)(0.4)= 21.8so XYZ = 21.8
Tristan wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 3% and the other bank is offering a rate of 2.5% compounded annually. If Tristan decides to deposit $7,000 for 4 years, which bank would be the better deal? 1. a simple interest rate of 3% 2. a compound interest rate of 2.5%
Answer:
The bank offering simple interest at rate of 3% for four years
Step-by-step explanation:
Hello,
To find out which deal would be better, we have to find how much accrued on the simple and compound interest.
Data;
Principal (P) = $7,000
Time = 4 years
Simple interest rate = 3%
S.I = PRT / 100
S.I = (7000 × 3 × 4) / 100
S.I = $840
In four years, he would have $7000 + $840 = $7840.
For compound interest,
C.I = P(1 + r/n)^nt
Where n = number of time compounded = 1 (since it's annually)
rate = 2.5% = 2.5/ 100 = 0.025
C.I = 7000(1 + 0.025/1)⁽¹*⁴⁾
C.I = 7000 (1 + 0.025)⁴
C.I = 7000×(1.025)⁴
C.I = 7000 × 1.1038
C.I = $7726.6
In four years he would have $7,726.6
After calculating and evaluating both option, it's advisable for him to select the bank offering a simple interest of 3% for four years
*Marie made a model (shown below) of the square pyramid she plans to build when she grows up. Find the surface area of the model. 8 12 12
Answer:
336m^2
Step-by-step explanation:
The triangle area is half of base times height so: 1/2*8*12=48m^2
There are 4 triangles so 48*4=192
Then the square base area is side times side so: 12*12=144m^2
Then surface area of model is 192m^2+144m^2=336m^2
Answer:
336 m²
Step-by-step explanation:
We can find the surface area of this pyramid by finding the surface area of one of the sides, multiplying it by 4 (as there are 4 sides to the pyramid) then adding it to the surface area of the base.
Each side of this (excluding the base) is a triangle, and to find the area of a triangle we use the equation [tex]\frac{b \cdot h}{2}[/tex].
[tex]\frac{12 \cdot 8}{2}[/tex]
[tex]\frac{96}{2}[/tex]
48.
So, one side of this is 48. Multiplying it by 4 gets us 192.
Now we have to add the area of the base. The area of the bass is a square with side lengths of 12, so we can square 12 to get the area of the bass. 12² = 144.
Now let's add these numbers:
192+144 = 336
So, 336 m² is what this comes out to.
Hope this helped!
Which table represents a direct variation function? A table with 6 columns and 2 rows. The first row, x, has the entries, negative 3, negative 1, 2, 5, 10. The second row, y, has the entries, negative 4.5, negative 3.0, negative 1.5, 0.0, 1.5. A table with 6 columns and 2 rows. The first row, x, has the entries, negative 5.5, negative 4.5, negative 3.5, negative 2.5, negative 1.5. The second row, y, has the entries, 10, 8, 6, 4, 2. A table with 6 columns and 2 rows. The first row, x, has the entries, negative 5.5, negative 5.5, negative 5.5, negative 5.5, negative 5.5. The second row, y, has the entries, negative 3, negative 1, 2, 5, 10. A table with 6 columns and 2 rows. The first row, x, has the entries, negative 3, negative 1, 2, 5, 10. The second row, y, has the entries, negative 7.5, negative 2.5, 5.0, 12.5, 25.0.
Answer:
The correct option is;
A table with 6 columns and 2 rows. The first row, x, has entries, negative 3, negative 1, 2, 5, 10. The second row, y, has entries, negative 7.5, negative 2.5, 5.0, 12.5, 25
Please find attached the graphs of the table data
Step-by-step explanation:
Each of the given table data of in the tables are analysed to find direct variation;
Table 1
x, -3, -1, 2, 5, 10
y, -4.5, -3.0, -1.5, 0.0, 1.5
-4.5/-3 = 1.5 ≠ -3.0/-1 = 3
No direct variation
Table 2
x, -5.5, -4.5, -3.5, -2.5, -1.5
y, 10, 8, 6, 4, 2
10/(-5.5) = -20/11 ≠ 8/(-4.5) = -16/9
However, 10/(-5.5 + 0.5) = -2 = 8/(-4.5 + 0.5) = -2
Adjusted direct variation
Table 3
x, -5.5, -5.5, -5.5, -5.5, -5.5
y, -3, -1, 2, 5 , 10
-3/(-5.5) ≠ -1/-5.5
No direct variation
Table 4
x, -3, -1, 2, 5, 10
y, -7.5, -2.5, 5.0 , 12.5, 25
-7.5/-3 = 2.5 = -2.5/(-1) = 5.0/2 = 12.5/5 =25/10
Direct variation exists
Answer:
so D
Step-by-step explanation:
Antonio's toy boat is bobbing in the water next to a dock. Antonio starts his stopwatch, and measures the vertical distance from the dock to the height of the boat's mast, which varies in a periodic way that can be modeled approximately by a trigonometric function. The vertical distance from the dock to the boat's mast reaches its highest value of -27 \text{ cm}−27 cmminus, 27, space, c, m every 333 seconds. The first time it reaches its highest point is after 1.31.31, point, 3 seconds. Its lowest value is -44\text{ cm}−44 cmminus, 44, space, c, m. Find the formula of the trigonometric function that models the vertical height HHH between the dock and the boat's mast ttt seconds after Antonio starts his stopwatch. Define the function using radians.
Answer:
Step-by-step explanation:
Since we're given a time at which the height is maximum, we can use a cosine function for the model.
The amplitude is half the difference between the maximum and minimum: (-27 -(-44))/2 = 8.5 cm.
The mean value of the height is the average of the maximum and minimum: (-27 -44)/2 = -35.5 cm.
The period is given as 3 seconds, and the right shift is given as 1.31 seconds.
This gives us enough information to write the function as ...
H(t) = (amplitude)×cos(2π(t -right shift)/period) + (mean height)
H(t) = 8.5cos(2π(t -1.31)/3) -35.5 . . . . cm
Given: r || s, and t is a transversal that cuts both r and s. Prove: <1 = <5, <2 = <6, <3 = <7, and <4 = <8 Write a paragraph proof to prove that the corresponding angles shown are congruent.
Answer:
Lines r and s are parallel as Corresponding Angles given. There are four pairs of corresponding angles: angle 1 and angle 5, angle 2 and angle 6, angle 3 and angle 7, and angle 4 and angle 8. Since r and s are parallel, the slope of r is equal to the slope of s. Since t is a straight line, the slope of t is the same at both intersections, by the definition of a straight line. Thus, the corresponding angles created at both intersections must have the same measure, since the difference of the slopes at each intersection is the same, and the intersections share a common line. So, corresponding angles must have equal measure. Therefore, by definition of congruent angles, corresponding angles are congruent: angle 1 is congruent to angle 5, angle 2 is congruent to angle 6, angle 3 is congruent to angle 7, and angle 4 is congruent to angle 8.
Step-by-step explanation
answer from haven
describe the end behavior f(x)=5x^4+3x^2-1.