Answer: Since we know that cos A = 3/10, we can use the Pythagorean identity to find sin A:
sin^2 A + cos^2 A = 1
sin^2 A = 1 - cos^2 A
sin A = sqrt(1 - cos^2 A)
Substituting cos A = 3/10, we get:
sin A = sqrt(1 - (3/10)^2)
sin A = sqrt(1 - 9/100)
sin A = sqrt(91)/10
Since we also know that tan A < 0, we know that the sine and tangent of A have opposite signs, and therefore sin A is negative.
Therefore:
sin A = -sqrt(91)/10
Step-by-step explanation:
4. The elevation at ground level is 0 feet. An elevator starts 80 feet below ground level. After
traveling for 20 seconds, the elevator is 30 feet below ground level. Which statement describes
the elevator's rate of change in elevation during this 20-second interval?
A. The elevator traveled upward at a rate
1 rate of 2½ feet per second.
B. The elevator traveled downward at a rate of 2 feet per second.
C. The elevator traveled upward at a rate of 4 feet per second.
D. The elevator traveled downward at a rate of 4 feet per second.
a
Answer:
[tex]m = \frac{ - 30 - ( - 80)}{20 - 0} = \frac{50}{20} = 2 \frac{1}{2} [/tex]
A. The elevator traveled upward at a rate of 2 1/2 feet per second. -30 > -80.
Identify the correct equation of the graph.
-10
O f(b) = (6+4)² +8
O f(b) = (b+8)² +4
Of(b)=(6-8)²-4
O
-5
10
5
-5
-10
V
5
O f(b) = (b-8)² +4
Of(b) = (6-4)²-8
Of(b) (6-4)² +8
10
Check
Thus, the correct equation for the given parabolic graph is found as: f(b) = (b – 8)² + 4.
Explain about the quadratic function in vertex form:A parabola has a lowest point if it opens upward. A parabola has a highest point if it opens downward.
The vertex of the parabola is located at this lowest or highest point.
Vertex form of a quadratic function:
f(x) = a(x – h)² + k, where a, h, and k are constants.
The vertex of the parabola is at because it is translated h horizontal units and k vertical units from the origin (h, k).
(h,k) are the vertex of parabola.
From the given graph:
f(b) is the given function:
Vertex (h,k) = (8, 4)
Thus, h= 8 and k = a = 1, x = b.
Put the values in quadratic function:
f(b) = 1(b – 8)² + 4
f(b) = (b – 8)² + 4
Thus, the correct equation for the given parabolic graph is found as: f(b) = (b – 8)² + 4.
Know more about the quadratic function in vertex form:
https://brainly.com/question/28201865
#SPJ1
Find the volume of this sphere.
Use 3 for TT.
-d=6in
V ≈ [?] in ³
V = πr³
Enter
Answer: Spheres aren’t three-dimensional—they are two-dimensional. This is evident from the fact that in order to specify a point on a sphere, you only need two pieces of information, such as latitude and longitude.
If you include the interior of the sphere, this is instead called a closed ball, and that is three-dimensional. You can specify a point in the closed ball in all sorts of different ways; one of the most convenient would be latitude, longitude, and distance from the center. However, other than convenience, there is no reason to prefer one coordinate system over any other.
(This fact has nothing to do with spheres or closed balls—that is just a statement that is generally true. People who insist that “the three dimensions” are length, width, and height don’t know what they are talking about.)
Step-by-step explanation:
If f(x)={x+4 if x≤−2
-x if x>−2,
what is f(−4)?
A. -2
B. 4
C. -4
D. 0
Since -4 is less than or equal to -2, we use the first part of the definition of f(x) which is f(x) = x + 4 if x ≤ -2. Therefore,
f(-4) = (-4) + 4 = 0.
So, the answer is D. 0.
Briana helps her mother make a quilt The quilt is 6 feet wide and 12 feet long
Briana and her mother will need to measure and cut the fabric for the quilt. They will need to decide on a pattern and color scheme for the quilt. They will need to sew the pieces of fabric together to create the quilt top. They will need to layer the quilt top with batting and backing fabric and then quilt the layers together. Finally, they will need to bind the edges of the quilt.
A Bakery sold 382 cakes in one week. this was twice as the day so the previous week. write an equation that can be used to find the number of cakes and that were sold the previous week 
Answer:
164 Cakes
Step-by-step explanation:
382 Cakes are made in Week A. This was twice the amount of Week B. 328 divided by two equals 164.
Tentor, Inc., purchases disposable coffee cups on which to print logos for sporting events, proms, birthdays, and other special occasions. The owner received a large shipment of 861 cups this afternoon, and to ensure the quality of the shipment, he selected a random sample of 410 cups and identified 353 as defective.
What is the estimated proportion of defectives in the population? (Round the final answer to 3 decimal places.)
Answer
What is the standard error of the sample proportion? (Round your answer to 3 decimal places.)
Answer
What are the upper and lower bounds for a 98% confidence level? (Round the final answers to 3 decimal places.)
Upper bound is Answer
Lower bound is Answer
It is estimated that 0.861 percent of the population is faulty. The sample proportion's standard error is 0.022. A 98% confidence level has an upper bound of 0.910 and a lower bound of 0.812.
What is a proportion?The comparative relationship between two or more things in terms of their size, amount, or number is referred to as a "proportion." Either a ratio or a fraction can be used to express it. The term "proportion" in statistics refers to the division of the total number of events by the frequency of each event.
The formula p = x/n, where p is the estimated proportion of defectives in the population, x is the number of defectives in the sample, and n is the sample size, can be used to determine the estimated proportion of defectives in the population.
When we substitute values, we obtain:
p = 353/410 = 0.861
As a result, the population's estimated defectiveness rate is 0.861.
The formula SE = √(p(1-p)/n), where SE is the standard error and n is the sample size, can be used to get the standard error of the sample percentage.
When we substitute values, we obtain:
SE is equal to√(0.861(1.0.861)/410) = 0.022.
As a result, the sample proportion's standard error is 0.022.
Using the following formula, the upper and lower bounds for a 98% confidence level can be determined:
Lower bound = z*SE - p
Upper bound = z*SE + p
where z is the z-score for a 98% degree of confidence.
We discover that the z-score corresponding to a 98% confidence level is roughly 2.33 using a z-table or calculator.
When we substitute values, we obtain:
Lower bound is equal to 0.861 - 2.33*0.022, or 0.812.
Upper bound is equal to 0.861 + 2.33 * 0.022 = 0.910.
Consequently, the range of a 98% confidence level is as follows:
Maximum: 0.910
Upper limit: 0.812
To know more about proportion visit:
brainly.com/question/30657439
#SPJ1
It is estimated that 0.861 percent of the population is faulty. The sample proportion's standard error is 0.022. A 98% confidence level has an upper bound of 0.910 and a lower bound of 0.812.
What is a proportion?
The comparative relationship between two or more things in terms of their size, amount, or number is referred to as a "proportion." Either a ratio or a fraction can be used to express it. The term "proportion" in statistics refers to the division of the total number of events by the frequency of each event.
The formula p = x/n, where p is the estimated proportion of defectives in the population, x is the number of defectives in the sample, and n is the sample size, can be used to determine the estimated proportion of defectives in the population.
When we substitute values, we obtain:
p = 353/410 = 0.861
As a result, the population's estimated defectiveness rate is 0.861.
The formula SE = √(p(1-p)/n), where SE is the standard error and n is the sample size, can be used to get the standard error of the sample percentage.
When we substitute values, we obtain:
SE is equal to[tex]\sqrt{\frac{0.861(1.0.861)}{410)}[/tex]= 0.022.
As a result, the sample proportion's standard error is 0.022.
Using the following formula, the upper and lower bounds for a 98% confidence level can be determined:
Lower bound = z*SE - p
Upper bound = z*SE + p
where z is the z-score for a 98% degree of confidence.
We discover that the z-score corresponding to a 98% confidence level is roughly 2.33 using a z-table or calculator.
When we substitute values, we obtain:
Lower bound is equal to 0.861 - 2.33*0.022, or 0.812.
Upper bound is equal to 0.861 + 2.33 * 0.022 = 0.910.
Consequently, the range of a 98% confidence level is as follows:
Maximum: 0.910
Upper limit: 0.812
To know more about proportion refer the below link
https://brainly.com/question/18514274
#SPJ1
In a word processing document or on a separate piece of paper, use the guide to construct a two column proof proving AC > EF, given BC = EF. Upload the entire proof below.
Given:
BC = EF
Prove:
AC > EF
STATMENT REASON
1. 1.
2. 2. Betweenness
3. AC > BC 3.
4. 4.
The given information and the transitive property of inequalities, we can prove that [tex]AC[/tex] is greater than [tex]EF[/tex] .
What is the transitive property of inequalities?Statement Reason
[tex]BC = EF[/tex] Given
Betweenness Given
[tex]AC > BC[/tex] Given
[tex]AC > EF[/tex] Transitive property [tex](3, 1)[/tex]
Explanation:
[tex]BC = EF[/tex] Given: Given statement that BC is equal to EF.
Betweenness Given: Given statement that states the concept of betweenness, where BC is between AC and EF.
AC > BC Given: Given statement that [tex]AC[/tex] is greater than BC.
[tex]AC > EF[/tex] Transitive property: Using the transitive property, we can conclude that [tex]AC[/tex] is greater than EF (based on statement 3 and 1).
Therefore, using the given information and the transitive property of inequalities, we can prove that AC is greater than [tex]EF[/tex] .
Learn more about transitive here:
https://brainly.com/question/2437149
#SPJ1
Write the absolute value equation that has the following solutions.
One solution: x = 15
The absolute value equation is:
|x - 15| = 0
How to write the absolute value equation?We want an absolute value equation that only has the solution x = 15.
So we must have something equal to zero (so we avoid the problem with the signs that we can have with other numbers)
So the equation will be something like:
|x - a| = 0
And the solution is 15, so:
|15 - a | = 0
then a = 15
The equation is:
|x - 15| = 0
Learn more about absolute value:
https://brainly.com/question/1782403
#SPJ1
Home values in a town have declined 26% per year for each of the past
four years. What was the total percentage decrease in home values
during the four-year period?
Answer: 104%
Step-by-step explanation: 26% times 4 years
in row 2, write the standard form equation of a circle whose diameter endpoints are shown here (-3,4) (2,1)
The standard form equation of a circle whose diameter endpoints are (-3,4) (2,1) is [tex](x - (-0.5))^2 + (y - 2.5)^2[/tex] = 6.5
What is the general form of equation of a circle?The general form of the equation of a circle is (x - h)² + (y - k)² = r², where (h, k) represents the center of the circle and r represents the radius. This equation is derived using the Pythagorean theorem, which states that the sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse. By setting (x - h)² and (y - k)² equal to r² and then combining the two equations, we get the standard form equation of a circle.
The center of the circle lies in the middle of the diameter, so we find the midpoint of the end points:
[tex](\frac{-3+2}{2} , \frac{4+1}{2} )[/tex] = (-0.5, 2.5)
And radius of the circle is half of the diameter, which is:
[tex]\frac{\sqrt{( 2-(-3))^2 + (1-4)^2 )}}{2}[/tex] = [tex]\frac{\sqrt{26}}{2}[/tex]
Therefore, the circle equation is:
[tex](x - (-0.5))^2 + (y - 2.5)^2[/tex] = [tex](\frac{\sqrt{26} }{2} )^2[/tex] = 26/4 = 6.5
[tex](x - (-0.5))^2 + (y - 2.5)^2[/tex] = 6.5
To know more about circle equation visit:
brainly.com/question/29288238
#SPJ1
Bhavik bought 3 liters of milk and 5 loaves of bread for a total of $11. A month later, he bought 4 liters of milk and 4 44 loaves of bread at the same prices, for a total of $10. How much does a liter of milk cost, and how much does a loaf of bread cost?
The cost of a liter of milk is $2.50 and the cost of a loaf of bread is $2.50.
What is cost?Cost is the value of goods or services measured in money or other forms of exchange. It is the amount that must be given up in exchange for something else. Costs are typically incurred in the production of goods and services, and can include both tangible and intangible elements, such as labor, materials, overhead, and financing.
The total cost for 3 liters of milk and 5 loaves of bread was $11. Therefore, the cost for 1 liter of milk was ($11 / 3) = $3.67. The cost for 1 loaf of bread was ($11 / 5)
= $2.20.
The total cost for 4 liters of milk and 4 loaves of bread was $10. Therefore, the cost for 1 liter of milk was ($10 / 4) = $2.50. The cost for 1 loaf of bread was ($10 / 4)
= $2.50.
Therefore, the cost of a liter of milk is $2.50 and the cost of a loaf of bread is $2.50.
To learn more about cost
https://brainly.com/question/2292799
#SPJ1
Melissa collected the data in the table.
When x = 4, what is the residual?
–3
–1
1
3
From the data in the table, we can conclude that when x = 4, then the residual will equal -1.
How to determine the residualTo determine the residual, we can begin by obtaining the difference between the given and the predicted values of y.
So, Residual = Gven value - Predicted value.
When x = 4 in the table, Given value is 9 and predicted value is 10. So, 9 - 10 = -1. So, we can say that the residual value is -1.
Learn more about residual values here:
https://brainly.com/question/30243740
#SPJ1
Answer:
The residual is the difference between the actual y-value and the predicted y-value on a regression line. Since no table or equation is provided, we cannot calculate the exact residual. However, I can explain the concept to you.
Step-by-step explanation:
In general, to calculate the residual, we would need a regression equation or a line of best fit. This equation allows us to predict the y-values for different x-values. Then, we can compare the predicted values to the actual values given in the table to find the residuals.
If you have the regression equation or the line of best fit, I can help you calculate the residual for a specific x-value.
Create a Truth Table for
(A ⋀ B) → C
The truth table is given above for (A ⋀ B) → C.
What is the logical statement?
A logical statement, also known as a proposition or a statement of fact, is a declarative sentence that is either true or false, but not both. It is a statement that can be evaluated based on the available information or evidence to determine its truth value. In other words, a logical statement is a statement that can be either true or false, but not both.
To create a truth table for the logical statement (A ⋀ B) → C, we need to consider all possible combinations of truth values for propositions A, B, and C.
There are 2 possible truth values (true or false) for each proposition, so there are 2³ = 8 possible combinations.
We can organize these combinations into a table as follows:
| A | B | C | (A ⋀ B) | (A ⋀ B) → C |
|---|---|---|---------|-------------|
| T | T | T | T | T |
| T | T | F | T | F |
| T | F | T | F | T |
| T | F | F | F | T |
| F | T | T | F | T |
| F | T | F | F | T |
| F | F | T | F | T |
| F | F | F | F | T |
In this table, the column labeled (A ⋀ B) represents the truth value of the conjunction of A and B (i.e., A AND B), and the column labeled (A ⋀ B) → C represents the truth value of the conditional statement (A ⋀ B) → C.
The symbol "T" represents "true" and the symbol "F" represents "false".
Hence, The truth table is given above for (A ⋀ B) → C.
To learn more about the logical statement visit:
https://brainly.com/question/29021787
#SPJ1
8. You and 4 friends are going to an event, and you want to keep the cost below $100 per person. Write and solve an inequality to find the total cost, x.
k^2+6k=0 solve the quadratic equation by factoring
Answer:
K = √-6k
i did the math and got this answer and it was right
7.
Colin uses
cup of vegetable oil in each cake that he makes for his father's beker
If Colin made 8 cakes, how much oil did Colin use in all?
Mark only one oval.
I added 13:5
A. 51/3 cups
OB. 41/3 cups
OC. 51/2 cups
OD.41/2 cups
Spain
42°
The number of cups of vegetable oil used by Colin to make 8 cakes is given by A = 5 1/3 cups
What is an Equation?Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data,
Let the equation be represented as A
Now, the value of A is
Substituting the values in the equation, we get
Let the number of cups of vegetable oil used by Colin to make 8 cakes be represented as A
Now , the number of cups of vegetable oil used by Colin to make 1 cake is given by = ( 2/3 ) cups of oil
And , number of cups of vegetable oil used by Colin to make 8 cakes A =
A = 8 x number of cups of vegetable oil used by Colin to make 1 cake
On simplifying the equation, we get
[tex]\text{A} = 8 \times \huge \text{(} \dfrac{2}{3} \huge \text{)}= \dfrac{16}{3}[/tex]
[tex]\boxed{\bold{A = 5 \dfrac{1}{3} \ cups}}[/tex]
Therefore, the value of A is 5 1/3 cups
Hence, the number of cups of vegetable oil required is 5 1/3 cups
To learn more about equations click:
brainly.com/question/19297665
Complete question is-
Colin uses 2/3 cup of vegetable oil in each cake that he makes for his father's bakery.
If Colin made 8 cakes, how much oil did Colin use in all?
A. 5 1/3 cups
B. 7 1/3 cups
C. 8 2/3 cups
D. 16 1/3 cups
A four-sided shape with the top side labeled as 10.2 cm. The height is labeled 5 cm. A portion of the base from the perpendicular to a vertex is labeled 4 cm. The portion of the base from the perpendicular to the right vertex is 6.2 cm.
What is the area of the figure?
25.5 cm2
45.5 cm2
51 cm2
56.1 cm2
The area of the figure is 51 cm², which is option C.
What is area?In mathematics, area refers to the measure of the size of a two-dimensional surface or shape. It is typically expressed in square units, such as square meters (m²) or square centimeters (cm²), and can be calculated for a variety of geometric shapes, including squares, rectangles, triangles, circles, and more complex shapes such as trapezoids or polygons.
To find the area of the figure, we need to identify the shape of the figure. From the given information, we know that the figure has a top side, a height, and a base. We are also told that the base is divided into two parts by a perpendicular, and one of the parts is labeled as 4 cm, while the other part from the perpendicular to the right vertex is 6.2 cm.
Based on this information, we can draw the figure as a trapezoid, where the top side is the shorter base, the height is the vertical distance between the two bases, and the longer base is the sum of the two parts of the base.
Using the given information, we can calculate the longer base:
longer base = 4 cm + 6.2 cm = 10.2 cm
Now we can use the formula for the area of a trapezoid to find the area of the figure:
A = (1/2)h(b₁ + b₂)
where h is the height, b₁ is the shorter base, and b₂ is the longer base.
Plugging in the given values, we get:
A = (1/2)(5 cm)(10.2 cm + 10.2 cm) = 51 cm²
Therefore, the area of the figure is 51 cm² , which is option C.
To know more about area visit:
https://brainly.com/question/25292087
#SPJ1
Complete Question:
A four-sided figure has one side labeled 10.2 cm, a height of 5 cm, and a portion of the base from the perpendicular to a vertex labeled 4 cm. The portion of the base from the perpendicular to the right vertex is labeled 6.2 cm. What is the area of the figure?
2. center (5, -6), radius 4
Answer:
(x - 5)² + (y + 6)² = 16
Step-by-step explanation:
assuming you require the equation of the circle
the equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k ) are the coordinates of the centre and r is the radius
here (h, k ) = (5, - 6 ) and r = 4 , then
(x - 5)² + (y - (- 6) )² = 4² , that is
(x - 5)² + (y + 6)² = 16
Julia drew s sketches of flowers. She split them evenly among her 3 pen pals. Write an expression that shows how many sketches each pen pal received.
Answer:
s/3
Step-by-step explanation:
since she drew s drawings and split them among 3 penpals, it would be s/3, for example, 6 drawings/ 3 would be 2 drawings for each person.
In 1870, the French writer Jules Verne
In 1870, the French writer Jules Verne published his novel "Twenty Thousand Leagues Under the Sea", which tells the story of an underwater adventure aboard the submarine Nautilus.
Who is the French writer?The novel is considered one of Verne's most popular and well-known works, and it has been translated into many languages and adapted into numerous films, TV shows, and stage productions. "Twenty Thousand Leagues Under the Sea" is known for its imaginative portrayal of futuristic technology, such as the advanced submarine Nautilus, and its detailed descriptions of underwater life and exploration.
Therefore, The novel has also been praised for its themes of adventure, exploration, and the relationship between man and nature. It remains a classic in science fiction and adventure literature, and continues to be read and enjoyed by readers around the world.
To know more about French writer here:
https://brainly.com/question/17460800
#SPJ1
help with statistics
Statistics is a branch of mathematics that involves the collection, analysis, interpretation, presentation, and organization of data. It is used in a wide range of fields such as science, engineering, social sciences, business, economics, and more.
What is statistics?In statistics, data is collected through various methods such as surveys, experiments, and observations. This data is then analyzed using statistical methods to extract meaningful insights, identify patterns and relationships, and make informed decisions.
Some common statistical techniques include descriptive statistics, inferential statistics, hypothesis testing, regression analysis, and probability theory. These techniques are used to help researchers and analysts to understand and draw conclusions about data, and to test whether their conclusions are statistically significant.
Statistics has many practical applications, such as market research, medical research, quality control, risk assessment, and many others. It plays a critical role in modern society, helping individuals and organizations make informed decisions based on data-driven insights.
Learn more about statistic on;
https://brainly.com/question/15525560
#SPJ1
Jackson has a loyalty card good for a 10% discount at his local hardware store. What would his total in dollars and cents be, after the discount and before tax, if the total cost of all the items he wants to buy is $27.40? Round to the nearest cent.
Jackson's total cost after the discount and before tax would be $24.67.
Calculating discounted price :When a store offers a discount, it reduces the price of the item by a certain percentage. In this case, Jackson has a loyalty card that gives him a 10% discount on his purchase.
To calculate the price after the discount, we multiply the original price by 1 minus the discount percentage (in decimal form).
Here we have
Jackson has a 10% discount at his local hardware store.
Let 'x' be the cost before tax
After a 10% discount,
The amount that Jackson could pay 90% of the cost
Given that he wants to buy $ 27.40
The cost of items after discount = 90% of 27.40
= [ 90/100 ] × 27.40
= [ 0.9 ] × 27.40
= 24.66
Therefore,
Jackson's total cost after the discount and before tax would be $24.67.
Learn more about Discounts at
https://brainly.com/question/30814332
#SPJ9
Consider a circle whose equation is x2 + y2 – 2x – 8 = 0. Which statements are true? Select three options. The radius of the circle is 3 units. The center of the circle lies on the x-axis. The center of the circle lies on the y-axis. The standard form of the equation is (x – 1)² + y² = 3. The radius of this circle is the same as the radius of the circle whose equation is x² + y² = 9.
The true statements are:
1. The radius of the circle is 3 units
2. The standard form of the equation is (x-1)^2+y^2=3
3. The center of the circle lies on X-axis
4. The radius of this circle is the same as the radius of the circle whose equation is x^2+y^2=9
The given equation is: x^2+y^2-2x-8=0
The equation in the standard form of the circle can be written as (x-h)^2+(y-k)^2=r^2, where h= center of the circle and r= radius of the circle
The given equation in standard form can be written as
(x^2-2x+1)+y^2-9=0
(x-1)^2+y^2=3^2
Hence from the above equation, the center of the circle is at (1,0) and the radius is 3 units.
To learn more about problems on the equation of a circle refer to:
https://brainly.com/question/23799314?referrer=searchResults
6. WRITING IN MATH Describe why the
difference of squares pattern has no middle term
with a variable. Example w-121
The two middle terms, -11w and +11w, cancel each other out, leaving only the first and last terms. This is why there is no middle term with a variable in the factorization of the difference of squares pattern.
How do you find a middle term?When expanding a binomial expression in the form of (a + b)ⁿ, the middle term can be found using the following formula:
Middle term coefficient = nC(k), where k = (n+1)/2 if n is odd, and k = n/2 or (n/2 + 1) if n is even. The middle term coefficient is then multiplied by the product of a raised to the power of (n-k) and b raised to the power of k.
The difference of squares pattern is a special algebraic pattern that arises when we factor a polynomial that is the difference between two perfect squares. For example,
x² - y² = (x+y)(x-y)
When we apply this pattern to the expression w - 121, we can rewrite it as:
w² - 11²
And, we can use the difference of squares pattern to factor it as:
(w + 11)(w - 11)
Notice that there is no middle term with a variable in this factorization. This is because when we multiply (w + 11)(w - 11), the middle term cancels out.
To see why this happens, let's expand the product:
(w + 11)(w - 11) = w² - 11w + 11w - 121
The two middle terms, -11w and +11w, cancel each other out, leaving only the first and last terms. This is why there is no middle term with a variable in the factorization of the difference of squares pattern.
To know more about middle term visit:
brainly.com/question/29129680
#SPJ1
Find a formula for the exponential function passing through the points
(-3, 5/8 ) and (3, 40).
The exponential function is y=5.[tex]2^x[/tex].
What is exponential function?
A mathematical function called an exponential function is employed frequently in everyday life. It is mostly used to compute investments, model populations, determine exponential decline or exponential growth, and so forth.
Here the exponential function is [tex]y=ab^x[/tex]
Since (-3,5/8) is on the graph, -[tex]\frac{5}{8}[/tex]=[tex]ab^{-3}[/tex] -----> 1
Since (3, 40) is on the graph, 40=[tex]ab^3[/tex] ------> 2
So, [tex]\frac{ab^3}{ab^{-3}}=\frac{40}{\frac{-5}{8}}[/tex]
=> [tex]b^{3+3}=8\times8[/tex]
=> [tex]b^6=2^6[/tex]
=> b = 2
put b=2 into 2 then,
=> 40= [tex]a\times2^3[/tex]
=> 8a=40
=> a =5
Then the exponential function is y=5.[tex]2^x[/tex].
To learn more about exponential function refer the below link
https://brainly.com/question/2456547
#SPJ1
Helppppppppppppppppppppp
Will mark brainliest if answer is correct
Using factorization and simplifying the equations, the points of intersections are (-2, 0), ( [ -1 - 3√(7) ] / 2, 4[ -1 - 3√(7) ] / 2 - 11 ) and ( [ -1 + 3√(7) ] / 2, 4[ -1 + 3√(7) ] / 2 - 11 )
What is the points of intersection of both functionsWe are given two equations:
y = 4x² - 3x + 3
y = x³ + 7x² - 3x + d
and we know that they intersect at x = -4, so we can substitute -4 for x in both equations:
y = 4(-4)² - 3(-4) + 3 = 49
y = (-4)³ + 7(-4)² - 3(-4) + d = -64 + 112 + 12 + d = 60 + d
So, at x = -4, we have y = 49 and y = 60 + d. Since the graphs intersect, these two equations must be equal:
49 = 60 + d
Solving for d, we get:
d = -11
Therefore, the two equations become:
y = 4x² - 3x + 3
y = x³ + 7x² - 3x - 11
We can now set them equal to each other:
4x² - 3x + 3 = x³ + 7x² - 3x - 11
Simplifying and rearranging, we get:
x³ + 3x² - 8x - 14 = 0
We can try to factor this expression by testing possible roots. One possible root is x = 2, because if we substitute 2 for x, we get:
2³ + 3(2)² - 8(2) - 14 = 8 + 12 - 16 - 14 = -10
Since this expression evaluates to a non-zero value, x = 2 is not a root. Similarly, we can test x = -1:
(-1)³ + 3(-1)² - 8(-1) - 14 = -1 + 3 + 8 - 14 = -4
This expression also evaluates to a non-zero value, so x = -1 is not a root. Finally, we can test x = -2:
(-2)³ + 3(-2)² - 8(-2) - 14 = -8 + 12 + 16 - 14 = 6
This expression evaluates to zero, so x = -2 is a root. Using long division or synthetic division, we can divide the cubic polynomial by x + 2 to get:
x³ + 3x² - 8x - 14 = (x + 2)(x² + x - 7)
The quadratic factor x² + x - 7 can be factored using the quadratic formula, giving us:
x² + x - 7 = [ -1 ± √(1 + 4*7) ] / 2
= [ -1 ± 3√(7) ] / 2
Therefore, the three intersection points are:
(-2, 0)
( [ -1 - 3√(7) ] / 2, 4[ -1 - 3√(7) ] / 2 - 11 )
( [ -1 + 3√(7) ] / 2, 4[ -1 + 3√(7) ] / 2 - 11 )
Learn more on point of intersection here;
https://brainly.com/question/11337174
#SPJ1
How long did Lizzie practice on Thursday and Friday altogether?
J
P
D
Lizzie's Drum Practice
P
S
P
D
P
S
S
Monday Tuesday Wednesday Thursday Friday
= 5 minutes
DONE
0
minutes
7 8
4
00
5
1 2
0
9
6
3
Answer:
Lizzie practiced for a total of 14 minutes on Thursday and Friday combined.
On Thursday, she practiced for 5 minutes according to the table.
On Friday, she practiced for 9 minutes according to the table.
Adding these two times together, we get:
5 minutes + 9 minutes = 14 minutes
Therefore, Lizzie practiced for a total of 14 minutes on Thursday and Friday combined.
Explain Why 387 is not a term of the sequence
Answer:
In order to determine whether 387 is a term of a sequence, we need to know the rule or formula for generating the sequence. Without this information, it is not possible to determine whether 387 is a term of the sequence or not.
If we assume that the sequence is an arithmetic sequence, where each term is obtained by adding a fixed constant to the previous term, we can use the following formula to determine whether 387 is a term of the sequence:
an = a1 + (n-1)d
where a1 is the first term of the sequence, d is the common difference between consecutive terms, and n is the term we are trying to find.
If we substitute the values for the first few terms of the sequence, we can check whether 387 is a term or not. For example, if the first few terms of the sequence are:
a1 = 3
a2 = 8
a3 = 13
a4 = 18
and so on, with a common difference of 5 between consecutive terms, we can use the formula to find the value of the 129th term of the sequence:
a129 = a1 + (129-1)d
a129 = 3 + 128(5)
a129 = 643
Since 387 is not equal to 643, it is not a term of this sequence. However, without knowing the rule or formula for generating the sequence, it is impossible to say for certain whether 387 is a term or not.