Answer:
With a 85% confidence level you'd expect the teenage boys to be on average between [29.217; 30.783]cm taller than the girls.
Step-by-step explanation:
Hello!
Given the variables:
X₁: height of a teenage boy.
n₁= 46
[tex]\frac{}{X}[/tex]₁= 195cm
S₁²= 58cm²
X₂= height of a teenage girl
n₂= 66
[tex]\frac{}{X}[/tex]₂= 165cm
S₂²= 75cm²
If the boys are taller than the girls then you'd expect μ₁ > μ₂ or expressed as a difference between the two population means: μ₁ - μ₂ > 0
To estimate the difference between both populations you have to calculate the following interval:
([tex]\frac{}{X}[/tex]₁- [tex]\frac{}{X}[/tex]₂) + [tex]t_{n_1+n_2-2; 1-\alpha /2}[/tex] * [tex]\sqrt{\frac{S_1}{n_1} +\frac{S_2}{n_2} }[/tex]
[tex]t_{n_1+n_2-2; 1-\alpha /2}= t_{110; 0.925}= 1.450[/tex]
Point estimate: ([tex]\frac{}{X}[/tex]₁- [tex]\frac{}{X}[/tex]₂) = (195-165)= 30
Margin of error:[tex]t_{n_1+n_2-2; 1-\alpha /2}[/tex] * [tex]\sqrt{\frac{S_1}{n_1} +\frac{S_2}{n_2} }[/tex]= 1.450*0.54= 0.783
30 ± 0.783
[29.217; 30.783]
With a 85% confidence level you'd expect the teenage boys to be on average between [29.217; 30.783]cm taller than the girls.
I hope this helps!
Four buses carrying 198 students from the same school arrive at a football stadium. The buses carry, respectively 90, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students who were on the bus carrying the randomly selected student. One of the four bus drivers is also randomly selected. Let Y denote the number of students on her bus. a) Which of E[X] or E[Y] do you think is larger
Answer:
E[x] is larger
Step-by-step explanation:
I think E[x] is larger because the expected number of students on the bus of a randomly chosen student is larger.
This is because the higher the number of students present in a bus, the higher the probability that a randomly selected student would have been on that bus.
Whereas, for every driver to be chosen, the probability of any bus being chosen is 1/4 irrespective of the number of students in that particular bus
If two points are given, then exactly one line can be drawn through those two points. Which geometry term does the statement represent?
Answer:
its a postulate
Step-by-step explanation:
The statement represents a geometric postulate.
A postulate is one of the basic concepts of geography, and indicates an assumption that is accepted as true in the given theory.
In this way, the main characteristic of the postulate is its general acceptance by the spectrum that studies it, that is, by the totality or vast majority of the scientists who are dedicated to its analysis.
Learn more in https://brainly.com/question/17252827
The dot plots show the number of hours a group of fifth graders and seventh graders spent playing outdoors over a one-
week period.
Time Spent Playing Outdoors
for Fifth Graders and Seventh Graders
.
5th Grade
0
ta
1 2 3 4 5
Hours
7
8
9 10
7th Grade
.
Answer: B
Step-by-step explanation:
Answer:B
Step-by-step explanation: I took the edge quiz and it was right.
A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 4 m from the dock
Answer:
-1.031 m/s or [tex]\frac{-\sqrt{17} }{4}[/tex]
Step-by-step explanation:
We take the length of the rope from the dock to the bow of the boat as y.
We take x be the horizontal distance from the dock to the boat.
We know that the rate of change of the rope length is [tex]\frac{dy}{dt}[/tex] = -1 m/s
We need to find the rate of change of the horizontal distance from the dock to the boat = [tex]\frac{dx}{dt}[/tex] = ?
for x = 4
Applying Pythagorean Theorem we have
[tex]1^{2} +x^{2} =y^{2}[/tex] .... equ 1
solving, where x = 4, we have
[tex]1^{2} +4^{2} =y^{2}[/tex]
[tex]y^{2} = 17[/tex]
[tex]y = \sqrt{17}[/tex]
Differentiating equ 1 implicitly with respect to t, we have
[tex]2x\frac{dx}{dt} = 2y\frac{dy}{dt}[/tex]
substituting values of
x = 4
y = [tex]\sqrt{17}[/tex]
[tex]\frac{dy}{dt}[/tex] = -1
into the equation, we get
[tex]2(4)\frac{dx}{dt} = 2(\sqrt{17} )(-1)[/tex]
[tex]\frac{dx}{dt} = \frac{-\sqrt{17} }{4}[/tex] = -1.031 m/s
If Joe drives 50 mph for 0.5 hours and then 60 mph for 1.5 hours, then how far did he drive?
Answer:
115 mi
Step-by-step explanation:
speed = distance/time
distance = speed * time
0.5 hours at 50 mph
distance = 50 mph * 0.5 h = 25 mi
1.5 hours at 60 mph
distance = 60 mph * 1.5 h = 90 mi
total distance = 25 mi + 90 mi = 115 mi
Please answer this correctly without making mistakes
Answer:
ace hardware store
Step-by-step explanation:
Ace is the place with the helpful hardware folks!
given that (-9,-3) is on a graph of f(x), find the corresponding point for the function f(x+1)
Answer:
(-10, -3)
Step-by-step explanation:
Replacing x with x+1 in a function moves its graph 1 unit to the left. The point that is 1 unit to the left of (-9, -3) is (-10, -3).
subtract the following .1/2 from 3/5
Answer:
1/10
Step-by-step explanation:
1/2= 5/10 - make it an equivalent fraction with the same denominator as the other fraction.
3/5= 6/10
5/10-6/10- subtract
=1/10
21. In the figure given below, AC is parallel to DE. Find the valuesof xy and z and hence find the 2DBE.
21-70X
509
Answer:
X= 50°
Y= 70°
Z= 30°
BDE= 30°
2BDE= 60°
Step-by-step explanation:
(2x -70 )+z+(2x+20)=180...(sum of angle on a straight line)
2x -70 = BDE... alternate angles
Y + (2x-70)+(50+x-20) = 180...(sum of angles in a triangle)
X-20 = z ... alternate and opposite angles
(2x -70 )+z+(2x-+20)=180
2x-70 + x-20 +2x +20= 180
5x -70= 180
5x = 250
X= 50°
X-20 = z
50-20= z
30° = z
2x -70 = BDE
2(50) -70 = BDE
100-70 = BDE
30°= BDE
Y + (2x-70)+(50+x-20)
Y + 100-70 +50 +50 -20 = 180
Y + 200-90=180
Y= 70°
2BDE = 2*30
2BDE= 60°
Please help, I don’t need an explanation, just the answer.
Answer:
x=2 y=4
Step-by-step explanation:
Question 3 (5 points)
POINT
-POINT A
POINT B
What are the coordinates of the point labeled B in the graph shown above?
A) (3, 2)
B) (-3,2)
OC) (-2,3)
D) (-2, -3)
Question 4 (5 points)
Answer:
(D) -2,-3
Step-by-step explanation:
From the origin, we can find the current position of point B by counting.
B is 2 to the left of the y-axis, meaning that it's x value is -2.
B is 3 down of the x-axis, making it's y value -3.
Therefore, the coordinates of point B are -2,-3.
Hope this helped!
Answer: (D) -2,-3
Step-by-step explanation:
please factor!
7x^2+27xy-4y^2
On an uphill hike Ted climbs at 3mph. Going back down, he runs at 5mph. If it takes him forty minutes longer to climb up than run down, then what is the length of the hike?
Answer:
10 miles
Step-by-step explanation:
3 mi/1 hr x (h hours + 2/3 hr) = 5 mi/1 hr x h hours
3h + 2 = 5h
2 = 2h
h = 1 hour
3mi/hr x 1 2/3 hr = 5 miles
5 mi/hr x 1 hr = 5 miles
He hiked 10 miles. (
Find the vertical and horizontal asymptotes, domain, range, and roots of f (x) = -1 / x-3 +2.
Answer:
Vertical asymptote: [tex]x=3[/tex]
Horizontal asymptote: [tex]f(x) =2[/tex]
Domain of f(x) is all real numbers except 3.
Range of f(x) is all real numbers except 2.
Step-by-step explanation:
Given:
Function:
[tex]f (x) = -\dfrac{1 }{ x-3} +2[/tex]
One root, [tex]x = 3.5[/tex]
To find:
Vertical and horizontal asymptote, domain, range and roots of f(x).
Solution:
First of all, let us find the roots of f(x).
Roots of f(x) means the value of x where f(x) = 0
[tex]0= -\dfrac{1 }{ x-3} +2\\\Rightarrow 2= \dfrac{1 }{ x-3}\\\Rightarrow 2x-2 \times 3=1\\\Rightarrow 2x=7\\\Rightarrow x = 3.5[/tex]
One root, [tex]x = 3.5[/tex]
Domain of f(x) i.e. the values that we give as input to the function and there is a value of f(x) defined for it.
For x = 3, the value of f(x) [tex]\rightarrow \infty[/tex]
For all, other values of [tex]x[/tex] , [tex]f(x)[/tex] is defined.
Hence, Domain of f(x) is all real numbers except 3.
Range of f(x) i.e. the values that are possible output of the function.
f(x) = 2 is not possible in this case because something is subtracted from 2. That something is [tex]\frac{1}{x-3}[/tex].
Hence, Range of f(x) is all real numbers except 2.
Vertical Asymptote is the value of x, where value of f(x) [tex]\rightarrow \infty[/tex].
[tex]-\dfrac{1 }{ x-3} +2 \rightarrow \infty[/tex]
It is possible only when
[tex]x-3=0\\\Rightarrow x=3[/tex]
[tex]\therefore[/tex] vertical asymptote: [tex]x=3[/tex]
Horizontal Asymptote is the value of f(x) , where value of x [tex]\rightarrow \infty[/tex].
[tex]x\rightarrow \infty \Rightarrow \dfrac{1 }{ x-3} \rightarrow 0\\\therefore f(x) =-0+2 \\\Rightarrow f(x) =2[/tex]
[tex]\therefore[/tex] Horizontal asymptote: [tex]f(x) =2[/tex]
Please refer to the graph of given function as shown in the attached image.
Find the number c that satisfies the conclusion of the Mean Value Theorem on the given interval. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x)
Answer:
2.25
Step-by-step explanation:
The computation of the number c that satisfied is shown below:
Given that
[tex]f(x) = \sqrt{x}[/tex]
Interval = (0,9)
According to the Rolle's mean value theorem,
If f(x) is continuous in {a,b) and it is distinct also
And, f(a) ≠ f(b) so its existance should be at least one value
i.e
[tex]f^i(c) = \frac{f(b) - f(a)}{b -a }[/tex]
After this,
[tex]f(x) = \sqrt{x} \\\\ f^i(x) = \frac{1}{2}x ^{\frac{1}{2} - 1} \\\\ = \frac{1}{2}x ^{\frac{-1}{2}[/tex]
[tex]f^i(x) = \frac{1}{{2}\sqrt{x} } = f^i(c) = \frac{1}{{2}\sqrt{c} } \\\\\a = 0, f (a) = f(o) = \sqrt{0} = 0 \\\\\ b = 9 , f (b) = f(a) = \sqrt{9} = 3\\[/tex]
After this,
Put the values of a and b to the above equation
[tex]f^i(c) = \frac{f(b) - f(a)}{b - a} \\\\ \frac{1}{{2}\sqrt{c} } = \frac{3 -0}{9-0} \\\\ \frac{1}{\sqrt[2]{c} } = \frac{3}{9} \\\\ \frac{1}{\sqrt[2]{c} } = \frac{1}{3} \\\\ \sqrt[2]{c} = 3\\\\\sqrt{c} = \frac{3}{2} \\\\ c = \frac{9}{4}[/tex]
= 2.25
what is 20% of 50naira?
Answer:
10
Step-by-step explanation:
To find 20% of 50 you need to times 20 with 50 and divide by 100.
20×50÷100
=10
A train travels 45 feet in 1/10 if a second. How far will it travel in 3.5 seconds
Answer:
1575 ft
Step-by-step explanation:
Convert 1/10 to decimal to make the math simpler.
1/10 = 0.1
Divide 3.5 by 0.1.
3.5/0.1 = 35
Multiply 35 by 45.
35 × 45 = 1575
The train will travel 1575 feet in 3.5 seconds.
The distance covered by the train in 3.5 seconds will be 1575 feet.
What is speed?The distance covered by the particle or the body in an hour is called speed. It is a scalar quantity. It is the ratio of distance to time.
We know that the speed formula
Speed = Distance/Time
A train travels 45 feet in 1/10 in a second.
Then the speed will be
Speed = 45 / (1/10)
Speed = 45 x 10
Speed = 450 feet per second
The distance covered by the train in 3.5 seconds will be
Distance = 450 x 3.5
Distance = 1575 feet
More about the speed link is given below.
https://brainly.com/question/7359669
#SPJ2
Translate the following into an algebraic expression: A number is 30% of 20% of the number x.
Answer: 0.06x
Step-by-step explanation:
An algebraic expression is an expression consist of integer constants, variables, and algebraic operations.The given statement: A number is 30% of 20% of the number x.
The required algebraic expression would be:
30% of 20% of x
[tex]=\dfrac{30}{100}\times \dfrac{20}{100}\times x[/tex] [we divide a percentage by 100 to convert it into decimal]
[tex]=\dfrac{6}{100}\times x\\\\=0.06x[/tex]
Hence, the required algebraic expression would be :
0.06x
A popular charity used 31% of its donations on expenses. An organizer for a rival charity wanted to quickly provide a donor with evidence that the popular charity has expenses that are higher than other similar charities. The organizer randomly selected 10 similar charities and examined their donations. The percentage of the expenses that those 10 charities spend on expenses is given below. Use a TI-83, TI-83 Plus, or TI-84 calculator to test whether the mean is less than 31% and then draw a conclusion in the context of the problem. Use α=0.05. 26 12 35 19 25 31 18 35 11 26 Select the correct answer below: Reject the null hypothesis. There is sufficient evidence to conclude that the mean is less than 31%. Reject the null hypothesis. There is insufficient evidence to conclude that the mean is less than 31%. Fail to reject the null hypothesis. There is sufficient evidence to conclude that the mean is less than 31%. Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is less than 31%.
Answer:
Reject the null hypothesis. There is sufficient evidence to conclude that the mean is less than 31%.
Step-by-step explanation:
In this case we need to test whether the popular charity has expenses that are higher than other similar charities.
The hypothesis for the test can be defined as follows:
H₀: The popular charity has expenses that are higher than other similar charities, i.e. μ > 0.31.
Hₐ: The popular charity has expenses that are less than other similar charities, i.e. μ < 0.31.
As the population standard deviation is not known we will use a t-test for single mean.
Compute the sample mean and standard deviation as follows:
[tex]\bar x=\frac{1}{n}\sum X=\frac{1}{10}\cdot[0.26+0.12+...+0.26]=0.238\\\\s= \sqrt{ \frac{ \sum{\left(x_i - \overline{X}\right)^2 }}{n-1} } = \sqrt{ \frac{ 0.0674 }{ 10 - 1} } =0.08654\approx 0.087[/tex]
Compute the test statistic value as follows:
[tex]t=\frac{\bar x-\mu}{s/\sqrt{n}}=\frac{0.238-0.31}{0.087/\sqrt{10}}=-2.62[/tex]
Thus, the test statistic value is -2.62.
Compute the p-value of the test as follows:
[tex]p-value=P(t_{\alpha, (n-1)}<-2.62}[/tex]
[tex]=P(t_{0.05,9}<-2.62)\\=0.014[/tex]
*Use a t-table.
Thus, the p-value of the test is 0.014.
Decision rule:
If the p-value of the test is less than the significance level then the null hypothesis will be rejected and vice-versa.
p-value = 0.014 < α = 0.05
The null hypothesis will be rejected at 5% level of significance.
Thus, concluding that there is sufficient evidence to conclude that the mean is less than 31%.
Simba Travel Agency arranges trips for climbing Mount Kilimanjaro. For each trip, they charge an initial fee of $100 in addition to a constant fee for each vertical meter climbed. For instance, the total fee for climbing to the Shira Volcanic Cone, which is 3000 meters above the base of the mountain, is $400.Let y represent the total fee (in dollars) of a trip where they climbed x vertical meters.Complete the equation for the relationship between the total fee and vertical distance.
Answer:
[tex]y(x)=100+0.1x[/tex]
Step-by-step explanation:
Let y represent the total fee (in dollars) of a trip where they climbed x vertical meters.
We know that there is an initial fee of $100, so we know that if we climb x=0 meters, we have a fee of y(0)=100.
[tex]y(0)=100[/tex]
As there is a constant fee (lets called it m) for each vertical meter climbed, we have a linear relationship as:
[tex]y(x)-y(0)=m(x-0)\\\\\\y(x)-100=mx\\\\\\y(x)=100+mx[/tex]
We know that for x=3000, we have a fee of $400, so if we replace this in the linear equation, we have:
[tex]y(3000)=100+m(3000)=400\\\\\\100+3000m=400\\\\3000m=400-100=300\\\\m=300/3000=0.1[/tex]
Then, we have the equation for the total fee in function of the vertical distance:
[tex]y(x)=100+0.1x[/tex]
Ash Lee bought a new Brunswick boat for $17,000. He made a $2,500 down payment on it. The bank's loan was for 60 months. Finance charges totaled $4,900. His monthly payment is:
Answer: $323.33
Step-by-step explanation:
($17,000 + $4,900 - $2,500) ÷ 60 months = $323.33 per month
↓ ↓ ↓
price finance down payment
a hat contains 2 red apples and 3 green apples. a bucket contains 7 red apples and 3 green apples. a container is selected at random and an apple is drawn out. what is the probability that it will be a red apple
Answer:
15
Step-by-step explanation:
Find an equation of the line that passes through the two given points. Use a graphing calculator to verify your result. (-1,0) (4,4)
Answer:
first we find the slope, m=(4-0)/(4+1)
Step-by-step explanation:
first, we find the slope, m=(4-0)/(4+1)=4/5
y-4=4/5 (x-4), y=(4/5)x+4/5
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 80% of the time if the person has the virus and 10% of the time if the person does not have the virus. (This 10% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive".
(a) Using Bayes’ Theorem, when a person tests positive, determine the probability that the person is infected.
(b) Using Bayes’ Theorem, when a person tests negative, determine the probability that the person is not infected.
Answer:
A) P(A|B) = 0.01966
B) P(A'|B') = 0.99944
Step-by-step explanation:
A) We are told that A is the event "the person is infected" and B is the event "the person tests positive".
Thus, using bayes theorem, the probability that the person is infected is; P(A|B)
From bayes theorem,
P(A|B) = [P(A) × P(B|A)]/[(P(A) x P(B|A)) + (P(A') x P(B|A'))]
Now, from the question,
P(A) = 1/400
P(A') = 399/400
P(B|A) = 0.8
P(B|A') = 0.1
Thus;
P(A|B) = [(1/400) × 0.8)]/[((1/400) x 0.8) + ((399/400) x (0.1))]
P(A|B) = 0.01966
B) we want to find the probability that when a person tests negative, the person is not infected. This is;
P(A'|B') = P(Not infected|negative) = P(not infected and negative) / P(negative) = [(399/400) × 0.9)]/[((399/400) x 0.9) + ((1/400) x (0.2))] = 0.99944
what is this? 15.8 = d/25
Answer:
395
Step-by-step explanation:
15.8=d/25
multiply both sides by 25 to remove the denominator
25×15.8=d
d=395
A manufacturer knows that on average 20% of the electric toasters produced require repairs within 1 year after they are sold. When 20 toasters are randomly selected, find appropriate numbers x and y such that (a) the probability that at least x of them will require repairs is less than 0.5; (b) the probability that at least y of them will not require repairs is greater than 0.8
Answer:
(a) The value of x is 5.
(b) The value of y is 15.
Step-by-step explanation:
Let the random variable X represent the number of electric toasters produced that require repairs within 1 year.
And the let the random variable Y represent the number of electric toasters produced that does not require repairs within 1 year.
The probability of the random variables are:
P (X) = 0.20
P (Y) = 1 - P (X) = 1 - 0.20 = 0.80
The event that a randomly selected electric toaster requires repair is independent of the other electric toasters.
A random sample of n = 20 toasters are selected.
The random variable X and Y thus, follows binomial distribution.
The probability mass function of X and Y are:
[tex]P(X=x)={20\choose x}(0.20)^{x}(1-0.20)^{20-x}[/tex]
[tex]P(Y=y)={20\choose y}(0.20)^{20-y}(1-0.20)^{y}[/tex]
(a)
Compute the value of x such that P (X ≥ x) < 0.50:
[tex]P (X \geq x) < 0.50\\\\1-P(X\leq x-1)<0.50\\\\0.50<P(X\leq x-1)\\\\0.50<\sum\limits^{x-1}_{0}[{20\choose x}(0.20)^{x}(1-0.20)^{20-x}][/tex]
Use the Binomial table for n = 20 and p = 0.20.
[tex]0.411=\sum\limits^{3}_{x=0}[b(x,20,0.20)]<0.50<\sum\limits^{4}_{x=0}[b(x,20,0.20)]=0.630[/tex]
The least value of x that satisfies the inequality P (X ≥ x) < 0.50 is:
x - 1 = 4
x = 5
Thus, the value of x is 5.
(b)
Compute the value of y such that P (Y ≥ y) > 0.80:
[tex]P (Y \geq y) >0.80\\\\P(Y\leq 20-y)>0.80\\\\P(Y\leq 20-y)>0.80\\\\\sum\limits^{20-y}_{y=0}[{20\choose y}(0.20)^{20-y}(1-0.20)^{y}]>0.80[/tex]
Use the Binomial table for n = 20 and p = 0.20.
[tex]0.630=\sum\limits^{4}_{y=0}[b(y,20,0.20)]<0.50<\sum\limits^{5}_{y=0}[b(y,20,0.20)]=0.804[/tex]
The least value of y that satisfies the inequality P (Y ≥ y) > 0.80 is:
20 - y = 5
y = 15
Thus, the value of y is 15.
Is (4,2) a solution of the system?
Answer:
No.
Step-by-step explanation:
Substitute 4 (as x) and 2 (as y) into the 2 equations to see if they fit.
y = x - 2
2 = 4 - 2
2 = 2
The first equation is true for (4,2).
Now try the 2nd one.
y = 3x + 4
2 = 3(4) + 4
2 ≠ 16
So the 2nd equation is not true for (4,2).
Either one not true makes the solution incorrect.
No, (4, 2) is not the solution for system of Equation.
What is Solution to a Equation?An assignment of values to the unknown variables that establishes the equality in the equation is referred to as a solution.
To put it another way, a solution is a value or set of values (one for each unknown) that, when used to replace the unknowns, cause the equation to equal itself.
Given:
Equations:
y= x-2 ............(1)
y= 3x+ 4.................(2)
Put the value of y from equation 1 to equation (2), we get
x- 2 = 3x+ 4
x- 3x = 4+ 2
-2x = 6
x= -3
and, y= -3 -2 = -5
So, the solution to the system is (-3, -5)
and, (4, 2) can only satisfy the Equation y= x-2 but does not satisfy y= 3x+ 4.
Learn more about Solution of Equation here:
https://brainly.com/question/545403
#SPJ2
Please help!! Which inequality is graphed on the coordinate plane?
Answer:
The correct answer that corresponds with that graph is B: y ≤-3x+2.
Step-by-step explanation:
1) First we need to figure out what kind of symbol the line is, greater or less than equations (< , >) then the line are dotted,and if its greater than or equal to or less than or equal to equations ( ≤, ≥) since the line are solid.
2) Now we need to figure out which side should be shaded, if the symbol is a less than or a less than or equal to then the shaded side should be on the left, if the symbol is a greater than or a greater than or equal then the shaded side should be on the right.
In this case we have a solid line and a shaded left side which mean the symbol that been used here is a less than or equal to symbol ( ≤ ).
So our answer is B: y ≤-3x+2.
Remember:
- greater or less than equations (< , >) = dotted line
- greater than or equal to or less than or equal to equations ( ≤, ≥) = solid line
- less than or a less than or equal to = shaded left side
- greater than or greater than or equal to = shaded right side
Complete the table
Distance(ft)
Height(ft)
Answer:
a = 6, b = 7, c = 8, d = 7 and e = 6
Step-by-step explanation:
Let's remember that the complete revolution of the wheel is 360 degrees, and the distance traveled by a complete revolution is the length of the circumference: 2*pi*radius.
The inicial height of the point is 6 ft, and the radius of the wheel is 1 ft.
When the distance traveled is 0, the wheel turned 0 degrees, and the point will be in its inicial position (the lower position of the wheel), which is 6 feet high.
So the height will be a = 6 + 0 = 6 ft
When the distance traveled is pi/2, the wheel turned 90 degrees, and the point will be half the complete height of the wheel, which is 2 feet.
So the height will be b = 6 + 1 = 7 ft
When the distance traveled is pi, the wheel turned 180 degrees, and the point will be at the top of the wheel, which is 2 feet higher than the lower point of the wheel.
So the height will be c = 6 + 2= 8 ft
When the distance traveled is 3pi/2, the wheel turned 270 degrees, and the point will be half the complete height of the wheel, which is 2 feet.
So the height will be d = 6 + 1 = 7 ft
When the distance traveled is 2pi, the wheel turned 360 degrees, and the point will be in its inicial position (the lower position of the wheel), which is 6 feet high.
So the height will be e = 6 + 0 = 6 ft
So the answers are:
a = 6, b = 7, c = 8, d = 7 and e = 6
Answer:
6, 7, 8, 7, 6
Step-by-step explanation:
Question
Given that tan(0) =5/12
and 0 is in Quadrant III. what is cos(0)? Write your answer in exact form. Do not round.
Provide your answer below:
Answer:
cosΘ = - [tex]\frac{12}{13}[/tex]
Step-by-step explanation:
Given that Θ is in the third quadrant then cosΘ < 0
Given
tanΘ = [tex]\frac{5}{12}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]
Then 5 and 12 are the legs of a right triangle (5- 12- 13 ) with hypotenuse = 13
Thus
cosΘ = - [tex]\frac{adjacent}{hypotenuse}[/tex] = - [tex]\frac{12}{13}[/tex]