Help me pls I need help ​

Help Me Pls I Need Help

Answers

Answer 1

Answer:

C

Step-by-step explanation:

If two lines are parallel, their slopes are the same.

Since the slope of line l is 4/9, this means that the slope of line m must also be 4/9.

Answer 2

Answer:

C. 4/9

Step-by-step explanation:

Parallel lines have equal slopes.

Since line l and line m are parallel, then their slopes must be the same.

[tex]m_{l} =m_{m}[/tex]

We know that the slope of line l is 4/9

[tex]\frac{4}{9} = m_{m}[/tex]

Line l has a slope of 4/9, therefore line m must also have a slope of 4/9.

The correct answer is C. 4/9


Related Questions

A common inhabitant of human intestines is the bacterium Escherichia coli. A cell of this bacterium in a nutrient-broth medium divides into two cells every 20 minutes. The initial population of a culture is 58 cells. (a) Find the relative growth rate. (Assume t is measured in hours.) k = (b) Find an expression for the number of cells after t hours. P(t) = (c) Find the number of cells after 8 hours. cells (d) Find the rate of growth after 8 hours. (Round your answer to three decimal places.) billion cells per hour (e) When will the population reach 20,000 cells? (Round your answer to two decimal places.) hr

Answers

Answer:

a) k=2.08 1/hour

b) The exponential growth model can be written as:

[tex]P(t)=Ce^{kt}[/tex]

c) 977,435,644 cells

d) 2.033 billions cells per hour.

e) 2.81 hours.

Step-by-step explanation:

We have a model of exponential growth.

We know that the population duplicates every 20 minutes (t=0.33).

The initial population is P(t=0)=58.

The exponential growth model can be written as:

[tex]P(t)=Ce^{kt}[/tex]

For t=0, we have:

[tex]P(0)=Ce^0=C=58[/tex]

If we use the duplication time, we have:

[tex]P(t+0.33)=2P(t)\\\\58e^{k(t+0.33)}=2\cdot58e^{kt}\\\\e^{0.33k}=2\\\\0.33k=ln(2)\\\\k=ln(2)/0.33=2.08[/tex]

Then, we have the model as:

[tex]P(t)=58e^{2.08t}[/tex]

The relative growth rate (RGR) is defined, if P is the population and t the time, as:

[tex]RGR=\dfrac{1}{P}\dfrac{dP}{dt}=k[/tex]

In this case, the RGR is k=2.08 1/h.

After 8 hours, we will have:

[tex]P(8)=58e^{2.08\cdot8}=58e^{16.64}=58\cdot 16,852,338= 977,435,644[/tex]

The rate of growth can be calculated as dP/dt and is:

[tex]dP/dt=58[2.08\cdot e^{2.08t}]=120.64e^2.08t=2.08P(t)[/tex]

For t=8, the rate of growth is:

[tex]dP/dt(8)=2.08P(8)=2.08\cdot 977,435,644 = 2,033,066,140[/tex]

(2.033 billions cells per hour).

We can calculate when the population will reach 20,000 cells as:

[tex]P(t)=20,000\\\\58e^{2.08t}=20,000\\\\e^{2.08t}=20,000/58\approx344.827\\\\2.08t=ln(344.827)\approx5.843\\\\t=5.843/2.08\approx2.81[/tex]

The following chart represents the record low temperatures recorded in Phoenix for April-November. Select the answer below that best describes the mean and the median of the data set (round answers to the nearest tenth). A graph titled Phoenix Low Temperatures has month on the x-axis and temperature (degrees Fahrenheit) on the y-axis. April, 32; May, 40; June, 50; July, 61; August, 60; September, 47; October, 34; November, 25. a. The mean is 43.5°F, and the median is 43.6°F. b. The mean is 60.5°F, and the median is 60.5°F. c. The mean is 60°F, and the median is 61°F. d. The mean is 43.6°F, and the median is 43.5°F.

Answers

Answer:

d. The mean is 43.6°F, and the median is 43.5°F.

Step-by-step explanation:

Hello!

The data corresponds to the low temperatures in Phoenix recorded for April to November.

April: 32ºF

May: 40ºF

June: 50ºF

July: 61ºF

August: 60ºF

September: 47ºF

October: 34ºF

November: 25ºF

Sample size: n= 8 months

The mean or average temperature of the low temperatures in Phoenix can be calculated as:

[tex]\frac{}{X}[/tex]= ∑X/n= (32+40+50+61+60+47+34+25)/8= 43.625ºF (≅ 43.6ºF)

The Median (Me) is the value that separates the data set in two halves, first you have to calculate its position:

PosMe= (n+1)/2= (8+1)/2= 4.5

The value that separates the sample in halves is between the 4th and the 5th observations, so first you have to order the data from least to greatest:

25; 32; 34; 40; 47; 50; 60; 61

The Median is between 40 and 47 ºF, so you have to calculate the average between these two values:

[tex]Me= \frac{(40+47)}{2} = 43.5[/tex] ºF

The correct option is D.

I hope this helps!

Answer:

it is d

Step-by-step explanation:

The dimensions of a closed rectangular box are measured as 96 cm, 58 cm, and 48 cm, respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

Answers

Answer:

161.6 cm²

Step-by-step explanation:

Surface Area of the rectangular box = 2(LW+LH+WH)

L is the length of the box

W is the width of the box

H is the height of the box

let dL, dW and dH be the possible error in the dimensions L, W and H respectively.

Since there is a possible error of 0.2cm in each dimension, then dL = dW = dH = 0.2cm

The surface Area of the rectangular box using the differentials is expressed as shown;

S = 2{(LdW+WdL)+(LdH+HdL)+(WdH+HdW)]

Also given L = 96cm W = 58cm and H = 48cm, on substituting this given values and the differential error, we will have;

S = 2{(96*0.2+58*0.2) + (96*0.2+48*0.2)+(58*0.2+48*0.2)}

S = 2{19.2+11.6+19.2+9.6+11.6+9.6}

S = 2(80.8)

S = 161.6 cm²

Hence, the surface area of the box is 161.6 cm²

At her favorite sneakers store Nyeema saved $48 because of a
sale.
If the sneakers normally cost $120. How much did she save?​

Answers

Answer:

40%

Step-by-step explanation:

We can find what percent 48 is of 120 by dividing:

48/120 = 0.4 or 40%

So, she saved 40% from the original price.

In a particular year, the mean score on the ACT test was 19.6 and the standard deviation was 5.2. The mean score on the SAT mathematics test was 546 and the standard deviation was 126. The distributions of both scores were approximately bell-shaped. Round the answers to at least two decimal placesFind the z-score for an ACT score of 26. The Z-score for an ACT score of 26 is ______ .

Answers

Answer:

0.11

Step-by-step explanation:

Let the random variable score, X = 26; mean, ∪ = 19.6; standard deviation, α = 5.2

By comparing P(0≤ Z ≤ 26)

P(Z ≤ X - ∪/α) = P(Z ≤ 26 - 19.6/5.2)

= P(Z ≤ 1.231)

Using Table: P(0 ≤ Z ≤ 1) = 0.39

P(Z > 1) = (0.5 - 0.39) = 0.11

∴ P(Z > 26) = 0.11

Use the Laplace transform to solve the given initial-value problem.
y' + 3y = f(t), y(0) = 0
where f(t) = t, 0 ≤ t < 1 0, t ≥ 1

Answers

Answer:

The solution to the given Initial - Value - Problem is [tex]y(t) = \frac{-1}{9} + \frac{1}{3}t + \frac{1}{9}e^{-3t} - [\frac{-1}{9} + \frac{1}{3}t - \frac{2}{9}e^{-3(t-1)}]u(t-1)[/tex]

Step-by-step explanation:

y' + 3y = f(t).................(1)

f(t) = t      when 0 ≤ t < 1

f(t) = 0     when t ≥ 1

Step 1: Take the Laplace transform of the LHS of equation (1)

That is L(y' + 3y) = sY(s) + 3Y(s) = Y(s)[s + 3]..............(*)

Step 2: Get an expression for f(t)

For f(t) = t      when 0 ≤ t < 1

f₁(t) = t (1 - u(t - 1)) ( there is a time shift of the unit step)

For f(t) = 0     when t ≥ 1

f₂(t) = 0(u(t-1))

f(t) = f₁(t) + f₂(t)

f(t) = t - t u(t-1)................(2)

Step 3: Taking the Laplace transform of equation (2)

[tex]F(s) = \frac{1}{s^2} - e^{-s} ( \frac{1}{s^2} + \frac{1}{s})[/tex]...............(**)

Step 4: Equating * and **

[tex]Y(s) [s + 3]=\frac{1}{s^2} - e^{-s} ( \frac{1}{s^2} + \frac{1}{s}) \\Y(s) = \frac{1}{s^2(s+3)} - e^{-s} ( \frac{1}{s^2(s+3)} + \frac{1}{s(s+3)})[/tex].......................(3)

Since y(t) is the solution we are looking for we need to find the Inverse Laplace Transform of equation (3) by first breaking every  fraction into partial fraction:

[tex]\frac{1}{s^2 (s+3)} = \frac{-1}{9s} + \frac{1}{3s^2} + \frac{1}{9(s+3)}[/tex]

[tex]\frac{1}{s (s+3)} = \frac{1}{3s} + \frac{1}{3(s+3)}[/tex]

We can rewrite equation (3) by representing the fractions by their partial fractions.

[tex]Y(s) = \frac{-1}{9s} + \frac{1}{3s^2} + \frac{1}{9(s+3)} - e^{-s} [\frac{-1}{9s} + \frac{1}{3s^2} + \frac{1}{9(s+3)} + \frac{1}{3s} + \frac{1}{3(s+3)}]\\Y(s) = \frac{-1}{9s} + \frac{1}{3s^2} + \frac{1}{9(s+3)} - e^{-s}[\frac{2}{9s} + \frac{1}{3s^2} - \frac{2}{9(s+3)}][/tex]................(4)

step 5: Take the inverse Laplace transform of equation (4)

[tex]y(t) = \frac{-1}{9} + \frac{1}{3}t + \frac{1}{9}e^{-3t} - u(t-1)[\frac{2}{9} + \frac{1}{3}(t-1) - \frac{2}{9}e^{-3(t-1)}][/tex]

Simplifying the above equation:

[tex]y(t) = \frac{-1}{9} + \frac{1}{3}t + \frac{1}{9}e^{-3t} - [\frac{-1}{9} + \frac{1}{3}t - \frac{2}{9}e^{-3(t-1)}]u(t-1)[/tex]

The Laplace transform is use to solve the differential equation problem.

The solution for the given initial-value problem is,

[tex]y(t)=\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{1}{9}e^-3t-\left[\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{2}{9}e^{-3(t-1)}\right]u(t-1)[/tex]

Given:

The given initial value problem is [tex]y' + 3y = f(t)[/tex].

Consider the left hand side of the given equation.

[tex]y'+3y[/tex]

Take the Laplace transform.

[tex]L(y' + 3y) = sY(s) + 3Y(s) \\L(y' + 3y) = Y(s)[s + 3][/tex]

Consider the right hand side and get the expression for [tex]f(t)[/tex].

[tex]f(t) = t[/tex]  when 0 ≤ t < 1

From time shift of the unit step

[tex]f_1(t) = t (1 - u(t - 1))[/tex]

For f(t) = 0     when t ≥ 1

Now,

[tex]f_2(t) = 0(u(t-1))f(t) = f_1(t) + f_2(t)f(t) = t - t u(t-1)[/tex]

Take the Laplace for above expression.

[tex]F(s)=\dfrac{1}{s^2}-e^{-s}\left(\dfrac{1}{s^2}+\dfrac{1}{s}\right)[/tex]

Now, the equate the above two equation.

[tex]Y(s)\left[s+3\right ]=\dfrac{1}{s^2}-e^{-s}\left(\dfrac{1}{s^2}+\dfrac{1}{s}\right)\\Y(s)=\dfrac {1}{(s^2(s+3))}-e^{-s}\left(\dfrac{1}{(s^2(s+3))}+\dfrac{1}{s(s+3)\right)}[/tex]

Find the inverse Laplace for the above equation.

[tex]\dfrac{1}{(s^2(s+3))}=\dfrac{-1}{9s}+\dfrac{1}{3s^2}+\dfrac{1}{9(s+3)}\\\dfrac{1}{(s(s+3))}=\dfrac{1}{3s}+\dfrac{1}{3(s+3)}[/tex]

Calculate the partial fraction of above equation.

[tex]Y(s)=\dfrac{-1}{9s}+\dfrac{1}{3s^2}+\dfrac{1}{9(s+3)}-e^{-s}\left[\dfrac{-1}{9s}+\dfrac{1}{3s^2}+\dfrac{1}{9(s+3)}+\dfrac{1}{3s}+\dfrac{1}{3(s+3)}\right]\\Y(s)=\dfrac{2}{9s}+\dfrac{1}{3s^2}+\dfrac{1}{9(s+3)}-e^{-s}\left[\dfrac{2}{9s}+\dfrac{1}{3s^2}-\dfrac{2}{9(s+3)}\right][/tex]

Take the inverse Laplace of the above equation.

[tex]y(t)=\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{1}{9}e^-3t-\left[\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{2}{9}e^{-3(t-1)}\right]u(t-1)[/tex]

Thus, the solution for the given initial-value problem is,

[tex]y(t)=\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{1}{9}e^-3t-\left[\dfrac{-1}{9}+\dfrac{-1}{3}t+\dfrac{2}{9}e^{-3(t-1)}\right]u(t-1)[/tex]

Learn more about what Laplace transformation is here:

https://brainly.com/question/14487937

The length of a rectangle is 5M more than twice the width and the area of the rectangle is 63M to find the dimension of the rectangle

Answers

Answer:

width = 4.5 m

length = 14 m

Step-by-step explanation:

okay so first you right down that L = 5 + 2w

then as you know that Area = length * width so you replace the length with 5 + 2w

so it's A = (5 +2w) * w = 63

then 2 w^2 + 5w - 63 =0

so we solve for w which equals 4.5 after that you solve for length : 5+ 2*4.5 = 14

Find the remainder when f(x)=2x3−x2+x+1 is divided by 2x+1.

Answers

Step-by-step explanation:

it can be simply done by using remainder theorem.

Suppose 150 students are randomly sampled from a population of college students. Among sampled students, the average IQ score is 115 with a standard deviation of 10. What is the 99% confidence interval for the average IQ of college students? Possible Answers: 1) A) E =1.21 B) E = 1.25 C) E =2.52 D) E = 2.11 2) A) 112.48 < μ < 117.52 B) 113.79 < μ < 116.21 C) 112.9 < μ < 117.10 D) 113.75 < μ < 116.3

Answers

Answer:

99% confidence interval for the mean of college students

A) 112.48 < μ < 117.52

Step-by-step explanation:

step(i):-

Given sample size 'n' =150

mean of the sample = 115

Standard deviation of the sample = 10

99% confidence interval for the mean of college students are determined by

[tex](x^{-} -t_{0.01} \frac{S}{\sqrt{n} } , x^{-} + t_{0.01} \frac{S}{\sqrt{n} } )[/tex]

Step(ii):-

Degrees of freedom

ν = n-1 = 150-1 =149

t₁₄₉,₀.₀₁ =  2.8494

99% confidence interval for the mean of college students are determined by

[tex](115 -2.8494 \frac{10}{\sqrt{150} } , 115 + 2.8494\frac{10}{\sqrt{150} } )[/tex]

on calculation , we get

(115 - 2.326 , 115 +2.326 )

(112.67 , 117.326)  

Find the indicated conditional probability
using the following two-way table:
P( Drive to school | Sophomore ) = [?]
Round to the nearest hundredth.

Answers

Answer:

0.07

Step-by-step explanation:

The number of sophmores is 2+25+3 = 30.

Of these sophmores, 2 drive to school.

So the probability that a student drives to school, given that they are a sophmore, is 2/30, or approximately 0.07.

Answer:

[tex]\large \boxed{0.07}[/tex]

Step-by-step explanation:

The usual question is, "What is the probability of A, given B?"

They are asking, "What is the probability that you are driving to school if you are a sophomore (rather than taking the bus or walking)?"

We must first complete your frequency table by calculating the totals for each row and column.

The table shows that there are 30 students, two of whom drive to school.

[tex]P = \dfrac{2}{30}= \mathbf{0.07}\\\\\text{The conditional probability is $\large \boxed{\mathbf{0.07}}$}[/tex]

Find the area of this parallelogram.
6 cm
11 cm

Answers

Step-by-step explanation:

given,

base( b) = 6cm

height (h)= 11cm

now, area of parallelogram (a)= b×h

or, a = 6cm ×11cm

therefore the area of parallelogram (p) is 66cm^2.

hope it helps...

compute the missing data in the table for the following exponential function f(x)={1/4}

Answers

I can’t see the table, more info plz

Answer:

1/256

Step-by-step explanation:

The table shows a chain of fractions for f(x), x1 is 1/4, x2 is 1/16 and x3 is 1/64. All you need to do is multiply the denominator by 4 and put 1 over it. 64*4 = 256, adding the 1 as the numerator gives us the answer of 1/256 as x4.

Which value of x makes 7+5(x-3)=227+5(x−3)=227, plus, 5, left parenthesis, x, minus, 3, right parenthesis, equals, 22 a true statement? Choose 1 answer:

Answers

Answer:

7 + 5(x - 3) = 22

5(x - 3) = 15

x - 3 = 3

x = 6

Answer:

x = 6

Step-by-step explanation:

Step 1: Distribute 5

7 + 5x - 15 = 22

Step 2: Combine like terms

5x - 8 = 22

Step 3: Add 8 to both sides

5x = 30

Step 4: Divide both sides by 5

x = 6

PLEASE HELP!

Fill in the reason for statement 3 in proof below:

SAS
AA
SSS

Answers

Answer:

SAS

Step-by-step explanation:

ΔABD ~ ΔECD is similar through:

S - because ED = CD (Given)

A - same angle ∠D (Statement 2)

S - because AD = BD (Given)

Cheers!

Answer:

SAS

Step-by-step explanation:

You can notice that you have ED/AB = CD/BD You have one common angle

Which of the following graphs is described by the function given below?
y = 2x^2 + 8x + 3

Answers

Answer:

Option A

Step-by-step explanation:

Equation of the given quadratic function is,

y = 2x² + 8x + 3

y = 2(x² + 4x) + 3

  = 2(x² + 4x + 4 - 4) + 3

  = 2(x + 2)² - 8 + 3

  = 2(x + 2)² - 5

By comparing this equation with the equation of a quadratic function in vertex form,

y = a(x - h)² + k

Here (h, k) is the vertex of the parabola

Vertex of the given equation will be (-2, -5) and coefficient 'a' is positive (a > 0)

Therefore, vertex will lie in the 3rd quadrant and the parabola will open upwards.

Option (A). Graph A will be the answer.

Factor the trinomial!! PLEASE HELP and if possible please explain how to do this!!

Answers

Answer:

d.  a = 39

Step-by-step explanation:

Question:

for which value of "a" will the trinomial be factorizable.

x^2+ax-40

For the expression to have integer factors, a = sum of the pairs of factors of -40.

-40 has following pairs of factors

{(1,-40), (2,-20, (4,-10), (5,-8), (8, -5), (10,-4), (20,-2), (40,-1) }

meaning that the possible values of a are

+/- 39, +/- 18, +/- 6, +/- 3

out of which only +39 appears on answer d.  a=39

Select the correct answer.
If two angles of a triangle have equal measures and the third angle measures 90º, what are the angle measures of the triangle?
ОА.
60°, 60°, 60°
OB.
459,909, 90°
Ос.
30°, 30°, 90°
OD.
45°, 45°, 90°

Answers

Answer:

OD. 45,45,90

Step-by-step explanation:

An industrial psychologist conducted an experiment in which 40 employees that were identified as "chronically tardy" by their managers were divided into two groups of size 20. Group 1 participated in the new "It's Great to be Awake!" program, while Group 2 had their pay docked. The following data represent the number of minutes that employees in Group 1 were late for work after participating in the program.

Does the probability plot suggest that the sample was obtained from a population that is normally distributed? Provide TWO reasons for your classification.

Answers

Answer:

The probability plot of this distribution shows that it is approximately normally distributed..

Check explanation for the reasons.

Step-by-step explanation:

The complete question is attached to this solution provided.

From the cumulative probability plot for this question, we can see that the plot is almost linear with no points outside the band (the fat pencil test).

The cumulative probability plot for a normal distribution isn't normally linear. It's usually fairly S shaped. But, when the probability plot satisfies the fat pencil test, we can conclude that the distribution is approximately linear. This is the first proof that this distribution is approximately normal.

Also, the p-value for the plot was obtained to be 0.541.

For this question, we are trying to check the notmality of the distribution, hence, the null hypothesis would be that the distribution is normal and the alternative hypothesis would be that the distribution isn't normal.

The interpretation of p-valies is that

When the p-value is greater than the significance level, we fail to reject the null hypothesis (normal hypothesis) and but if the p-value is less than the significance level, we reject the null hypothesis (normal hypothesis).

For this distribution,

p-value = 0.541

Significance level = 0.05 (Evident from the plot)

Hence,

p-value > significance level

So, we fail to reject the null or normality hypothesis. Hence, we can conclude that this distribution is approximately normal.

Hope this Helps!!!

whats 1 and 1/2 + 2 and 3/10

Answers

Answer:

[tex]3\frac{4}{5}[/tex]

Step-by-step explanation:

You first need to make the denominators the same and the LCM (least Common Multiple of this equation is 10.

10/10-->1

1/2--> 5/10

2--> 20/10

3/10, the denominator is already 10, so don't need to change.

10/10+5/10+20/10+3/10=38/10=[tex]3\frac{8}{10}[/tex]=[tex]3\frac{4}{5}[/tex]

Answer:

3 4/5

Step-by-step explanation:

hopefully this helped :3

The heights of American men are normally distributed. If a random sample of American men is taken and the confidence interval is (65.3,73.7), what is the sample mean x¯? Give just a number for your answer. For example, if you found that the sample mean was 12, you would enter 12.

Answers

Answer:

69.5

Step-by-step explanation:

Given the confidence interval of the heights of american heights given as (65.3,73.7);

Lower confidence interval L = 65.3 and Upper confidence interval U = 73.7

Sample mean will be the average of both confidence interval . This is expressed mathematically as [tex]\overline x = \frac{L+U}{2}[/tex]

[tex]\overline x = \frac{65.3+73.7}{2}\\\overline x = \frac{139}{2}\\\overline x = 69.5[/tex]

Hence, the sample mean is 69.5

15% as a fraction in its lowest terms is:

-3/20
-5/100
-1/15
-3/100

Answers

Answer:

3/20

Step-by-step explanation:

15%

15/100

/5  /5

3/20

Fake Question: Should Sekkrit be a moderator? (answer if you can) Real Question: Solve for x. [tex]x^2+3x=-2[/tex]

Answers

Answer:

x = -2 , -1

Step-by-step explanation:

Set the equation equal to 0. Add 2 to both sides:

x² + 3x = -2

x² + 3x (+2) = - 2 (+2)

x² + 3x + 2 = 0

Simplify. Find factors of x²  and 2 that will give 3x when combined:

x²  + 3x + 2 = 0

x               2

x               1

(x + 2)(x + 1) = 0

Set each parenthesis equal to 0. Isolate the variable, x. Note that what you do to one side of the equation, you do to the other.

(x + 2) = 0

x + 2 (-2) = 0 (-2)

x = 0 - 2

x = -2

(x + 1) = 0

x + 1 (-1) = 0 (-1)

x = 0 - 1

x = -1

x = -2 , -1

~

Answer:

x = -2       OR      x = -1

Step-by-step explanation:

=> [tex]x^2+3x = -2[/tex]

Adding 2 to both sides

=> [tex]x^2+3x+2 = 0[/tex]

Using mid-term break formula

=> [tex]x^2+x+2x+2 = 0[/tex]

=> x(x+1)+2(x+1) = 0

=> (x+2)(x+1) = 0

Either:

x+2 = 0    OR     x+1 = 0

x = -2       OR      x = -1

P.S. Ummmm maybe...... Because he usually reports absurd answers! So, Won't it be better that he could directly delete it. And one more thing! He's Online 24/7!!!!!

Alexandra has $15 to buy drinks for her friends at the baseball game. Soda
costs $2.75 and bottled water costs $2.00. This relationship can be
represented by the inequality 2758+2w $ 15. Three of Alexandra's friends
asked for water. Which inequality represents the number of sodas she can
buy?
A. OS 85 3.27
B. 85 3.27
C. OSSS3
D. 853

Answers

Answer:

C

Step-by-step explanation:

write an equation for the costs:

if x is the number of sodas

and y is the number of waters

2.75x + 2y <= 15

(<= is less than or equal to)

if we substitute 3 for y

we get 2.75x + 2(3) <= 15

2.75x + 6 <= 15

2.75x <= 9

9 / 2.75 = 3.2727

however, you cannot buy part of a soda

so, round to 3

you also cannot buy negative sodas

so, the answer is C

A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 418 gram setting. It is believed that the machine is underfilling the bags. A 9 bag sample had a mean of 413 grams with a standard deviation of 20. A level of significance of 0.1 will be used. Assume the population distribution is approximately normal. Is there sufficient evidence to support the claim that the bags are underfilled?

Answers

Answer:

No. At a significance level of 0.1, there is not enough evidence to support the claim that the bags are underfilled (population mean significantly less than 418 g.)

Step-by-step explanation:

This is a hypothesis test for the population mean.

The claim is that the bags are underfilled (population mean significantly less than 418 g.)

Then, the null and alternative hypothesis are:

[tex]H_0: \mu=418\\\\H_a:\mu< 418[/tex]

The significance level is 0.1.

The sample has a size n=9.

The sample mean is M=413.

As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=20.

The estimated standard error of the mean is computed using the formula:

[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{20}{\sqrt{9}}=6.6667[/tex]

Then, we can calculate the t-statistic as:

[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{413-418}{6.6667}=\dfrac{-5}{6.6667}=-0.75[/tex]

The degrees of freedom for this sample size are:

[tex]df=n-1=9-1=8[/tex]

This test is a left-tailed test, with 8 degrees of freedom and t=-0.75, so the P-value for this test is calculated as (using a t-table):

[tex]\text{P-value}=P(t<-0.75)=0.237[/tex]

As the P-value (0.237) is bigger than the significance level (0.1), the effect is not significant.

The null hypothesis failed to be rejected.

At a significance level of 0.1, there is not enough evidence to support the claim that the bags are underfilled (population mean significantly less than 418 g.)

Suppose you just purchased a digital music player and have put 12 tracks on it. After listening to them you decide that you like 2 of the songs. With the random feature on your​ player, each of the 12 songs is played once in random order. Find the probability that among the first two songs played ​(a) You like both of them. Would this be​ unusual? ​(b) You like neither of them. ​(c) You like exactly one of them. ​(d) Redo​ (a)-(c) if a song can be replayed before all 12 songs are played.

Answers

Answer:

The answer is below

Step-by-step explanation:

We have the following information:

Number of songs you like = 2

Total number of songs = 12

a) P(you like both of them) = 2/12 x 1/11 = 0.015

This is unusual because the probability of the event is less than 0.05

b) P(you like neither of them) = 10/12 x 9/11  = 0.68

c) P(you like exactly one of them) = 2 x 2/12 x 10/11 = 0.30

d) If  a song can be replayed before all 12,

P(you like both of them) = 2/12 x 2/12  =0.027

This is unusual because the probability of the event is less than 0.05

P(you like neither of them) = 9/12 x 9/12  = 0.5625

P(you like exactly one of them) = 2 x 2/12 x 9/12 = 0.25

Two balls are drawn in succession out of a box containing 2 red and 5 white balls. Find the probability that at least 1 ball was​ red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw.

Answers

Answer:

With replacement = 14/49without replacement = 3/7

Step-by-step explanation:

Since there are  2 red and 5 white balls in the box, the total number of balls in the bag = 2+5 = 7balls.

Probability that at least 1 ball was​ red, given that the first ball was replaced before the second can be calculated as shown;

Since at least 1 ball picked at random, was red, this means the selection can either be a red ball first then a white ball or two red balls.

Probability of selecting a red ball first then a white ball with replacement = (2/7*5/7) = 10/49

Probability of selecting two red balls with replacement = 2/7*2/7 = 4/49

The probability that at least 1 ball was​ red given that the first ball was replaced before the second draw= 10/49+4/49 = 14/49

If the balls were not replaced before the second draw

Probability of selecting a red ball first then a white ball without replacement = (2/7*5/6) = 10/42 = 5/21

Probability of selecting two red balls without replacement = 2/7*2/6 = 4/42 = 2/21

The probability that at least 1 ball was​ red given that the first ball was not replaced before the second draw = 5/21+4/21 = 9/21 = 3/7

The probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.

Since two balls are drawn in succession out of a box containing 2 red and 5 white balls, to find the probability that at least 1 ball was red, given that the first ball was A) replaced before the second draw; and B) not replaced before the second draw; the following calculations must be performed:

2 + 5 = X7 = X

(2/7 + 2/7) / 2 = X (0.285 + 0.285) / 2 = X 0.285 = X

(2/7 + 1/6) / 2 = X (0.28 + 0.16) / 2 = X 0.451 / 2 = X 0.225 = X

Therefore, the probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.

Learn more about probability in https://brainly.com/question/14393430

Will anyone help me with geometry ASAP!? Please!? In desperate help!!!

Answers

Answer:

14.  C   41

15. k = 72

Step-by-step explanation:

14.

For parallel lines, alternate exterior angles must be congruent.

3x - 43 = 80

3x = 123

x = 41

15.

The sum of the measures of the angles of a triangle is 180 deg.

k + 33 + 75 = 180

k + 108 = 180

k = 72

Answer:

1. 32

2. 41

3. 72

Step-by-step explanation:

¿Cuál serie numérica tiene como regla general Xn = 2n +1?
a. 3, 5, 7, 9
b. 2, 4, 5, 8
c. 4, 6, 8,10
d. 2, 3, 4, 5

Answers

Answer:

The series of numbers that correspond to the general rule of  [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.

Step-by-step explanation:

We are given with the following series options below;

a. 3, 5, 7, 9

b. 2, 4, 5, 8

c. 4, 6, 8,10

d. 2, 3, 4, 5

And we have to identify what number series has a general rule as [tex]X_n=2n+1[/tex].

For this, we will put the values of n in the above expression and then will see which series is obtained as a result.

So, the given expression is ; [tex]X_n=2n+1[/tex]

If we put n = 1, then;

[tex]X_1=(2\times 1)+1[/tex]

[tex]X_1 = 2+1 = 3[/tex]

If we put n = 2, then;

[tex]X_2=(2\times 2)+1[/tex]

[tex]X_2 = 4+1 = 5[/tex]

If we put n = 3, then;

[tex]X_3=(2\times 3)+1[/tex]

[tex]X_3 = 6+1 = 7[/tex]

If we put n = 4, then;

[tex]X_4=(2\times 4)+1[/tex]

[tex]X_4 = 8+1 = 9[/tex]

Hence, the series of numbers that correspond to the general rule of  [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.

which equation represents the graph function?

Answers

Answer:

[tex]\displaystyle y=-\frac{1}{3}x+3[/tex]

Step-by-step explanation:

First, notice that since the graph of the function is a line, we have a linear function.

To find the equations for linear functions, we need the slope and the y-intercept. Recall the slope-intercept form:

[tex]y=mx+b[/tex]

Where m is the slope and b is the y-intercept.

We are given the point (0,3) which is the y-intercept. Thus, b = 3.

To find the slope, we can use the slope formula:

[tex]\displaystyle m=\frac{\Delta y}{\Delta x} =\frac{2-3}{3-0}=-1/3[/tex]

Therefore, our equation is:

[tex]\displaystyle y=-\frac{1}{3}x+3[/tex]

how many types of progression in mathematics?

Answers

There are three different type


Explain

In math , there are three different type , they are arithmetic progression ( Ap) , Geometric progression and Harmonic



Arithmetic Progression - When a fix constant is added to each number except the first number.

For example : 2,4,6,8,10..... Here 2 is added each time to get the next number.


2. Geometric Progression - When a fix constant is multiplied to each number except the first number.

For example : 2,6,18,54.... Here 3 is multiplies each time to get first number.

3. Harmonic - a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression.

For example : 1/2 , 1/4 , 1/6, 1/8 ....
Other Questions
The cost of units transferred from Work in Process Inventory to Finished Goods Inventory is called the cost of goods manufactured. 1. True 2. False ** BRAINLIEST IF ANSWERED**The area of the regular hexagon is 50 in sq. What is the measure of the apothem? * 10 in 2 in 25 in 5 in How are ABC and ADE related? How does the satire in the passage influence the readers' interpretation of Mr. Collins? A conducting sphere 45 cm in diameter carries an excess of charge, and no other charges are present. You measure the potential of the surface of this sphere and find it to be 14 kV relative to infinity. Find the excess charge on this sphere. g Donalds employer fires Donald after only four months on the job, a clear breach of Donalds written twelve-month employment contract. Donald is entitled to recover as damages: Garcia Company has 10,400 units of its product that were produced last year at a total cost of $156,000. The units were damaged in a rainstorm because the warehouse where they were stored developed a leak in the roof. Garcia can sell the units as is for $3 each or it can repair the units at a total cost of $18,400 and then sell them for $7 each. Calculate the incremental net income if the units are repaired Find the missing segment in the attached image If the particles of matter that make up a substance are relatively far apart and can move freely, the substance is in what state?gaseousliquidsolid from which document does the idea of world revolution come Solve the algebraic expressio (0.4)(8)2 Two characters on the "Star Trek" television series, Mr. Spock and Commander Data, are completely logical. They make their decisions on the basis of realistic considerations, not emotions or moral judgment. They also show no emotions, ever. A psychotherapist would describe their affect asnalities are entirely ____ Elijah created the scatterplot to show the relationship between the temperature in degrees Fahrenheit and the number of visitors to a zoo. A graph titled Temperature versus Zoo Visitors has Degrees Fahrenheit on the x-axis, and Visitors on the y-axis. Points are at (70, 100), (77, 96), (90, 75), (93, 73), (98, 60). Which is true regarding the data in his scatterplot? As the temperature increases, the number of visitors decreases. As the temperature increases, the number of visitors increases. As the temperature increases, the number of visitors remains the same. As the temperature increases, the number of visitors increases then decreases. Please help ASAP. Plz answer top question thanks so much. Your help is much appreciated. PLEASE HELPP!! QUESTION IS BELOW which statement describes suchitas final diagram It was reported that 23% of U.S. adult cellphone owners called a friend for advice about a purchase while in a store. If a sample of 15 U.S adult cellphone owners is selected, what is the probability that 7 called a friend for advice about a purchase while in a store given that f(x) = x + 6x and g(x) = x + 9 calculatea) fg (4) =B) gf (4) = I need help with this question Show all work and answer all 4 parts. Projectile motion. 20 points. Thank you.