Answer:
Its d [tex]x^{2} -6x+7=0[/tex]
Step-by-step explanation:
A= [tex]2+\sqrt{3\\}[/tex]
B= [tex]3\sqrt{2}[/tex]
C= [tex]-3+\sqrt{2}[/tex]
Answer:
D. x^2 - 6x + 7 = 0.
Step-by-step explanation:
The roots are 3 plus or minus sqrt(2). That means the equation is...
(x - [3 + sqrt(2)]) * (x - [3 - sqrt(2)])
= [x - 3 - sqrt(2)] * [x - 3 + sqrt(2)]
= x^2 - 3x - xsqrt(2) - 3x + 9 + 3sqrt(2) + xsqrt(2) - 3sqrt(2) - (sqrt(2))^2
= x^2 - 3x - 3x + 9 - 2 - xsqrt(2) + xsqrt(2) + 3sqrt(2) - 3sqrt(2)
= x^2 - 6x + 7.
Hope this helps!
When 394 Beach Boys fans were surveyed, 113 said that California girls was their fav song. Find a point estimate for the true proportion of BB fans who favor that song??
1. 0.713
2. 113
3. 0.287
4. 0.95
5. None of the above
Answer: 3. 0.287
Step-by-step explanation:
Let p be the true proportion of BB fans who favor that song.
As per given, Sample size for survey of Beach Boys fans = 394
Number of Beach Boys fans said that California girls was their fav song = 113
Then, the sample proportion of BB fans who favor that song: [tex]\hat{p}=\dfrac{113}{394}[/tex]
[tex]=0.286802030457\approx0.287[/tex]
Since sample proportion is the best estimate for the true proportion.
Hence, a point estimate for the true proportion of BB fans who favor that song is 0.287.
So, the correct option is 3. 0.287 .
Use the given conditions to write an equation for the line in point-slope form
Passing through (7,3) and (4,4)
OA
1
1.
y-3 = - =(x-
5(x-4) or y-4 = - 3(x - 7)
B.
1
1
y-3= - 3(x-7) or y- 4= - 3(x - 4)
O C. y - 3 = 7(x + 7) or y-4= 4(x-3).
OD
1
1
y + 3 = - 3(x+7) or y+4= - 3(x+4)
Answer:
(Y-3)= -1/3(x-7)
Or
(Y-4)= -1/3(x-4)
Steb by step explanation:
The condition for the line is (7,3) and (4,4).
Point slope form of equation is in this format below.
(Y-y1)= m(x-x1)
We have the given parameters in the above format except the m
M = gradient
Gradient= (y2-y1)/(x2-x1)
Gradient=(4-3)/(4-7)
Gradient= 1/-3
Gradient= -1/3
So
(Y-y1)= m(x-x1)
(Y-3)= -1/3(x-7)
Or
(Y-4)= -1/3(x-4)
Amy and Bob decide to paint one wall of a building. Working alone, Amy takes 12 hours to paint the entire wall while Bob takes 18 hours for the same. Amy painted the wall for 4 hours and then Bob took over and completed the wall. How long did it take for them to paint the entire wall
Answer:
16 hours
Step-by-step explanation:
From the above question, we are given the following information
For one wall, working alone,
Amy can paint for 12 hours
Which means, in
1 hour , Amy would have painted = 1/12 of the wall
Bob can paint for 18 hours
Which means ,
in 1 hour, Bob would have painted = 1/18 of the wall.
We are told Amy painted the wall for 4 hours and then Bob took over and completed the wall.
Step 1
Find the portion of the wall Amy painted before Bob took over.
Amy painted the wall for 4 hours before Bob took over.
If:
1 hour = 1/12 of the wall for Amy
4 hours =
Cross multiply
4 × 1/12 ÷ 1
= 4/12 = 1/3
Amy painted one third(1/3) of the wall
Step 2
Find the number of hours left that Bob used in painting the remaining part of the wall
Let the entire wall = 1
If Amy painted 1/3 of the wall
Bob took over and painted = 1 - 1/3
= 2/3 of the wall
If,
Bob painted 1/18 of the wall = 1 hour
2/3 of the wall = ?? = Y
Cross multiply
2/3 × 1 = 1/18 × Y
Y = 2/3 ÷ 1/18
Y = 2/3 × 18/1
Y = 36/3
Y = 12 hours.
This means, the number of hours Bob worked when he took over from Amy = 12 hours.
Step 3
The third and final step is to calculate how many hours it took them to paint the wall
Number of hours painted by Amy + Number of hours painted by Bob
= 4 hours + 12 hours
= 16 hours
Therefore, it took them 16 hours to paint the entire wall.
In a game of rock-paper-scissors, you have a 1/3 chance of winning, a 1/3 chance of losing, and a 1/3 chance of tying in any given round. What is the probability that you will win at least twice in 3 rounds, given that there aren't any tied rounds in this particular match
Answer: 1/5
Step-by-step explanation:
given data;
chances of winning = 1/3
chances of losing = 1/3
chances of tying in a given round = 1/3
solution:
probability that you would win atleast 2 in any 3 matches without a tied match is
1/3 / ( 2 - 1/3 )
= 1/3 / 5/3
= 1/5
the probability of winning 2 of 3 games without a tie is 1/5
Phuong collects Persian and Oriental rugs in a ratio of 3:4. If Phuong has 84 Oriental rugs, how many rugs are in his collection?
Answer:
The answer is
147Step-by-step explanation:
Let the total number of rugs be x
To find the total number of rugs we must first find the total parts which is
3 + 4 = 7
4/7 of the total rugs are 84 Oriental rugs
Which is written as
[tex] \frac{4}{7} x = 84[/tex]
Multiply through by 7
[tex]7 \times \frac{4}{7} x = 84 \times 7[/tex]
Simplify
[tex]4x = 588[/tex]
Divide both sides by 4
[tex] \frac{4x}{4} = \frac{588}{4} \\ \\ \\ \\ x = 147[/tex]
The total number of rugs is 147Hope this helps you
Una masa de 16 libras viaja con una velocidad de 30 m/s . Cuál es su energía cinética?
Energía cinética = 1 / 2mv²
Donde m es la masa y v es la velocidad
De la pregunta
la masa es de 16 libras
la velocidad es de 30 m / s
16 libras es equivalente a 7.257 kg
Entonces la energía cinética es
1/2(7.257)(30)²
Que es 3265.65 juliosEspero que esto te ayude
Which Graph represents the solution to the compound inequality 4x +8< -16 or 4x + 8 > 4
Answer:
Step-by-step explanation:
We can solve each inequality apart and then see the possible solution sets.
Consider the inequality 4x+8 < -16. If we divide by 4 on both sides, we get
x+2 < -4. If we substract 2 on both sides we get x<-6. So the solution set for this inequality is the set of real numbers that are less than -6 (lie to the left of the point -6).
Consider 4x+8>4. If we divide by 4 on both sides we get x+2>1. If we substract 2 on both sides we get x>-1. So the solution set for this inequality is the set of real numbers that are bigger than -1 (lie to the right of the point -1).
So, for us to have 4x+8<-16 or 4x+8>4 we must have that either x <-6 or x>-1. So the solution set for the set of inequalities is the union of both sets, that is
[tex](\-infty, -6) \cup (-1,\infty)[/tex]
16. Use yesterday’s stock table for the company Icarus to answer the following questions.
52-week Price
High Low
Stock
Symbol
Dividend
Annual Yield Return (%)
P/E ratio
Volume Traded
High Low
Price Price
Closing Price
Net Change
28.38 15
Icarus
ICR
0.41
1.1
24
105300
24 23.5
24
. . . .
a. What was the high price for Icarus stock over the last 52 weeks?16a. _______________
b. If you owned 1000 shares of Icarus stock last year, what is the dollar amount of the b. _________________
dividend you received?
c. What is the annual yield return for dividends alone?c. _________________
d. How many shares of Icarus stock were traded yesterday?d. _________________
e. What was the low price for Icarus stock yesterday?e. _________________
f. What was the price of Icarus stock at the close of the stock exchange yesterday?f. _________________
g. Compute Icarus’s annual earnings per share using the formula below.g. _________________
CAN ANYONE HELP ME PLEASE? Two numbers total of 52 and have a difference of 30. Find the two numbers. The larger number is ? and the smaller number is ?
Answer:
41 and 11.
Step-by-step explanation:
Let's say the 2 numbers are x and y.
Since they add up to 52, x + y = 52.
Seeing as the difference is 30, x - y = 30 assuming x is the larger number.
We have left:
x + y = 52
x - y = 30
By solving these simultaneous equations (adding the 2 equations together for instance), we are left with 2x = 82
Therefore x = 41.
Since x + y = 52
41 + y = 52
Therefore y = 11
Therefore we have: the larger number is 41 and the smaller number is 11.
You are returning from Mexico and want to convert 5,00 pesos to US dollar . The rate of exchange that day is 1 pesos is 0.55 . How many dollars will you receive for your pesos ?
Hey there! I'm happy to help!
We see that 1 peso is equal to 0.55 U.S. dollars. So, the amount we will get in U.S dollars is the same as $5000×0.55 because 0.55 US dollars is equal to one peso!
5000×0.55=2750
Therefore, you will receive $2750.
Have a wonderful day!
find the area of the triangle shown
Answer
B. 27
firist divide 9÷2=4.5
the formula
=1/2×4.5×6
=13.5
cause there are 2 triangles. let's multiply 13.5 with 2
13.5×2= 27²
Really need help on question 10.
Answer:
44 degrees
Step-by-step explanation:
4 multiplied by 7 is 28.
28 + 2 = 30
angle ABC = 30 degrees
3 multiplied by 7 is 21
21 - 7 = 14.
angle CBD = 14 degrees.
30 + 14 = 44.
The answer is ABD = 44 degrees
There are 45 balloons: 15 are blue; 20 are green; 10 are red. 3 balloons are selected for the float. Leaving your answers in combinatorics format, how many ways can all 3 be selected such that they are the same color.
Answer: Required number of ways = 1715
Step-by-step explanation:
Given, there are 45 balloons: 15 are blue; 20 are green; 10 are red.
3 balloons are selected for the float.
Number of combinations to select r things out of n things : [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]
So, the number of ways to select 3 ballons such that they are the same color = (Ways to select all blue ) x (Ways to select all green ) x (Ways to select all red)
[tex]^{15}C_3+^{20}C_3+^{10}C_3\\\\=\dfrac{15!}{12!\times3!}+\dfrac{20!}{17!\times3!}+\dfrac{10!}{7!\times3!}\\\\=\dfrac{15\times14\times13}{6}+\dfrac{20\times19\times18}{6}+\dfrac{10\times9\times8}{6}\\\\=455+1140+120\\\\=1715[/tex]
Hence, Required number of ways = 1715
a beetle sets out on a journey. on the first day it crawls 1m in a straight line. on the second day it makes a right-angled turn (in either direction) and crawls 2m in a straight line. on the third day it makes a right-angled turn (in either direction) and crawls 3m in a straight line. this continues each day with the beetle making a right-angled turn ( in either direction and crawling 1m further than it did the day before. what is the least number of days before the beetle could find itself stopped at its starting point?
Answer:
7
Step-by-step explanation:
The signed sum of sequential odd numbers must be zero, as must the signed sum of sequential even numbers.
The minimum number of sequential even numbers that have a sum of 0 is 3: 2+4-6 = 0.
The minimum number of sequential odd numbers with a sum of zero is 4: 1-3-5+7=0.
Since we start with an odd number, we can get these sets of numbers in 7 days. The attached diagram shows one possible route.
Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
x2 + y2 = (4x2 + 2y2 − x)2
(0, 0.5)
(cardioid)
Answer:
y = x + 0.5
Step-by-step explanation:
This is a very trivial exercise, follow the steps below:
Step 1: Perform the implicit differentiation of the given equation
[tex]x^2 + y^2 = (4x^2 + 2y^2 - x)^2[/tex]
[tex]2x + 2y \frac{dy}{dx} = 2(4x^2 + 2y^2 - x) ( 8x + 4y\frac{dy}{dx} - 1)\\\\[/tex]
Step 2: Make dy/dx the subject of the formula, this will be the slope of the curve:
[tex]x + y \frac{dy}{dx} = (4x^2 + 2y^2 - x) ( 8x + 4y\frac{dy}{dx} - 1)\\\\x + y \frac{dy}{dx} = 32x^3 + 16x^2y \frac{dy}{dx} - 4x^2 + 16xy^2 + 8y^3\frac{dy}{dx} - 2y^2 - 8x^2 - 4xy\frac{dy}{dx} + x \\\\\frac{dy}{dx}(y + 4xy - 8y^3) = 32x^3 - 12x^2 + 16xy^2 - 2y^2\\\\\frac{dy}{dx} = \frac{32x^3 - 12x^2 + 16xy^2 - 2y^2}{y + 4xy - 8y^3}[/tex]
Step 3: Find dy/dx at the point (0, 0.5)
[tex]\frac{dy}{dx}|(0,0.5) = \frac{32(0)^3 - 12(0)^2 + 16(0)(0.5)^2 - 2(0.5)^2}{(0.5) + 4(0)(0.5) - 8(0.5)^3}\\\\\frac{dy}{dx}|(0,0.5) =\frac{-0.5}{-0.5} \\\\\frac{dy}{dx}|(0,0.5) =1\\\\m = \frac{dy}{dx}|(0,0.5) =1[/tex]
Step 4: The equation of the tangent line to a curve at a given point is given by the equation:
[tex]y - y_1 = m(x-x_1)\\\\y - 0.5 = 1(x - 0)\\\\y = x + 0.5[/tex]
Farmers Jay, Peter, and Sam own rectangular farms, as indicated in the figure. Jay owns 2 acres of land, Peter owns 4 acres and Sam owns 6 acres. Find the area of the common pasture. PLEASE HELP ASAP!
Answer:
Area of the common pasture = 12 acres
Step-by-step explanation:
Let the dimensions of the farm owned by Jay are 'a' units and 'b' units.
Area of the farm = ab = 2 acres
Similarly, areas of the farm owned by Peter with dimensions 'a' unit and 'c' unit = ac = 4 acres
And area of the farm owned by Sam with dimensions 'b' and 'd' units = bd = 6 acres
Now, [tex]\frac{ab}{ac}=\frac{2}{4}[/tex]
[tex]\frac{b}{c}=\frac{1}{2}[/tex] ---------(1)
[tex]\frac{ab}{bd}=\frac{2}{6}[/tex]
[tex]\frac{a}{d}=\frac{1}{3}[/tex] ---------(2)
[tex]\frac{b}{c}\times \frac{a}{d}=\frac{1}{2}\times \frac{1}{3}[/tex]
[tex]\frac{ab}{cd}=\frac{1}{6}[/tex]
cd = 6(ab)
cd = 6 × 2 [Since ab = 2 acres]
= 12 acres
Therefore, area of the common pasture will be 12 acres.
The summer has ended and it’s time to drain the swimming pool. 20 minutes after pulling the plug, there is still 45 000L of water in the pool. The pool is empty after 70 minutes.
Calculate the rate that the water is draining out of the pool.
b) Calculate how much water was in the pool initially.
c) Write an equation for this relationship.
d) Use your equation to calculate how much water is in the pool at
62 minutes.
Answer:
a) -900 L/min
b) 63000 L
c) v = -900t +63000
d) 7200 L
Step-by-step explanation:
a) You are given two points on the curve of volume vs. time:
(t, v) = (20, 45000) and (70, 0)
The rate of change is ...
Δv/Δt = (0 -45000)/(70 -20) = -45000/50 = -900 . . . . liters per minute
__
b) In the first 20 minutes, the change in volume was ...
(20 min)(-900 L/min) = -18000 L
So, the initial volume was ...
initial volume -18000 = 45000
initial volume = 63,000 . . . . liters
__
c) Since we have the slope and the intercept, we can write the equation in slope-intercept form:
v = -900t +63000
__
d) Put the number in the equation and do the arithmetic.
When t=62, the amount remaining is ...
v = -900(62) +63000 = -55800 +63000 = 7200
7200 L remain after 62 minutes.
What is the scale factor of ABC to DEF?
Answer:
B.3
Step-by-step explanation:
to get the scale factor divide a side from the bigger triangle by the equivalent in the small one
15/5 = 3
A congressman wants to measure the level of support in his district for campaign finance reform and determine if there is a gender gap among voters with respect to this issue. One aid suggests that they find separate confidence intervals for the percent of men and the percent of women who favor reform and then see if the intervals overlap. Another aid suggests that they find a confidence interval for the difference in the proportions of men and women who favor reform. The question is: Is there a gender gap
Answer:
Campaign Finance Reform
Gender Gap among Voters in the District
There is a gender gap among women and men who favor campaign finance reform.
Step-by-step explanation:
In issues such as the above, a gender gap always exist between women and men who think that there is the need to reform the campaign finance. Women ordinarily favor a reduction in the campaign finance. On the other hand, men do not mind so much about the candidate expenditure in campaigns. Reducing the huge campaign finance will ensure that political campaigns and aspiration to political offices are not left to money bags. Many women would like to get involved, but they are limited by funding. So, anytime the issue of reforming the whole electoral system, especially with respect to campaigns, women favor the reforms more than men. The gap is always there. The main issue is how would this gap be measured?
DIRECTIONS: Road the question and select the best respons
A right prism of height 15 cm has bases that are right triangles with legs 5 cm and 12 cm. Find the total
surface area of the prism,
OA 315 cm square
OB, 480 cm square
Oc. 510 cm square
OD. 570 cm square
Please explain how to get the answer
Answer:
C. 510 cm^2
Step-by-step explanation:
Well to find TSA or Total Surface Area,
We need to find the area of al the triangles and rectangles.
Let's start with the 2 rectangles facing forwards.
They both have dimensions of 5*15 and 12*15,
75 + 180
= 255 cm ^2
Now let's do the back rectangle which has dimensions of 15 and 13.
15*13 = 195 cm^2
Now we can do the top and bottom triangles,
Since we don't have height we can use the following formula,
[tex]A = \sqrt{S(S-a)(S-b)(S-c)}[/tex]
S is [tex]S = \frac{1}{2} (A+B+C)[/tex]
S= 15
Now with s we can plug that in,
[tex]A = \sqrt{15(15-5)(15-13)(15-12)}[/tex]
The a b and c are the sides of the triangle.
So let's solve,
15 - 5 = 10
15 - 13 = 2
15 - 12 = 3
10*2*3 = 60
60*15 = 900
[tex]\sqrt{900}[/tex] = 30 cm^2
Since there is 2 triangles with the same dimensions their areas combined is 60 cm^2
60 + 255 + 195 = 510 cm^2
Thus,
the TSA of the right triangular prism is C. 510 cm^2.
Hope this helps :)
Answer:
C) 510 square centimetres
Step-by-step explanation:
The surface area of a prism is given as:
A = bh * pL
where b = base length of the prism = 12 cm
h = base width = 5 cm
p = b + h + c
where c = slant height = 13 cm
L = height of the prism = 15 cm
Therefore, the surface area of the prism is:
A = (12 * 5) + (12 + 5 + 13) * 15
A = 60 + (30 * 15)
A = 60 + 450
A = 510 square centimetres
That is the surface area of the prism.
Find the value of y.
Answer:
[tex] \sqrt{55} [/tex]Step-by-step explanation:
∆ BCD ~ ∆ DCA
[tex] \frac{bc}{dc} = \frac{dc}{ac} [/tex]
Plug the values:
[tex] \frac{5}{y} = \frac{y}{6 + 5} [/tex]
[tex] \frac{5}{y} = \frac{ y}{11} [/tex]
Apply cross product property
[tex]y \times y = 11 \times 5[/tex]
Calculate the product
[tex] {y}^{2} = 55[/tex]
[tex]y = \sqrt{55} [/tex]
Hope this helps...
Good luck on your assignment..
A young Greek by the name of Zeno is riding his horse to his friends house which is two miles away. He travels half the distance in one hour. But his horse gets tired, and only travels half the remaining distance the second hour, and, again, only half the remaining distance in the third hour. How many miles did Zeno travel in those three hours?
Answer:
1.75 miles
Step-by-step explanation:
Zeno's friend's house is two miles away. He travels half the distance in one hour.
0.5 × 2 = 1
The second hour, his horse travels half the remaining distance.
0.5 × 1 = 0.5
The third hour, his horse travels half the remaining distance.
0.5 × 0.5 = 0.25
1 + 0.5 + 0.25 = 1.75
Zeno travels 1.75 miles in three hours.
Hope this helps.
What is the quotient matches 22/33 divided by 6/9
Hey there! I'm happy to help!
When you divide fractions, you are technically multiplying by the reciprocal, which is the numerator and denominator flipped. This means that 22/33 divided by 6/9 is equal to 22/33 multiplied by 9/6.
If we multiply these together, we get an answer of 1.
I hope that this helps! Have a wonderful day!
The calculated division of the numbers 22/33 divided by 6/9 is 1
How to calculate the division of the numbersFrom the question, we have the following parameters that can be used in our computation:
22/33 divided by 6/9
When represented as an equation, we have
22/33 divided by 6/9 = 22/33 ÷ 6/9
Represent as a product expression
So, we have
22/33 divided by 6/9 = 22/33 * 9/6
So, we have the following result
22/33 divided by 6/9 = 1
Using the above as a guide, we have the following:
the result is 1
Read more about quotient at
brainly.com/question/11418015
#SPJ6
Find the general solution of the differential equation and check the result by differentiation. (Use C for the constant of integration.)
1. dy/dt = 35t^4
2. dy/dx = 5x^(5/7)
Answer:
1. Y= 7t^5 +C
2. Y= 35/12x^(12/7)+C
Step-by-step explanation:
The general solution will be determined by integrating the equations as the integration is a simple integration.
For dy/dt = 35t^4
The general solution y
= integral (35t^4)dt
The general solution y
=( 35/(4+1))*t^(4+1)
= 35/5t^5
= 7t^5 +C
To prove by differentiating the above.
Y= 7t^5 +C
Dy/Dt= (5*7)t^(5-1) +0
Dy/Dt= 35t^4
For dy/dx = 5x^(5/7)
Y=integral 5x^(5/7)Dx
Y= 5/(5/7 +1)*x^(5/7+1)
Y= 5/(12/7) *x^(12/7)
Y= 35/12x^(12/7)+C
To prove by differentiating
Y= 35/12x^(12/7)+C
Dy/Dx= (35/12)*(12/7) x^(12/7-1) +0
Dy/Dx=(35/7)x^(5/7)
Dy/Dx= 5x^(5/7)
The volume of a cylinder varies jointly with the base (area) and the height. The volume is 40 inches^3 when the base (area) is 6 inches^2 and the height is 20 inches. Find the volume of the cylinder (after finding the variation constant) when the base (area) is 8 inches^2 and the height is 12 inches.
Answer: K = ¹/₃, V = 32in³
Step-by-step explanation:
Volume of s cylinder (V) = πr²h where πr² is the base area.
Now from the question,
V ∞ πr²h
V = kπr²h where k is the constant of proportionality which is also the variation constant.
40 = 6 x 20 x k
40 = 120k and
k = ⁴⁰/₁₂₀
= ¹/₃.
Now to find the volume when base area is 8in² and h is 12,
V = 8 x 12 x ¹/₃
V = 32in³
Can you help me solve this question? (Also explain me how is it possible)
Answer:
Answer B) (2 times )
Step-by-step explanation:
Let's start with the person that shook hands more (Dora), so we already know how four of this connections took place See attached image.
step 1:
D is connected to A, B, C, and E
Step 2:
Now proceed with the connections for the second greatest (C who shook hands with 3 people). Notice that C is already connected with D, and can connect with B and with E, but NOT with A (since this person shook hands only once - with D. So C is connected to B, D, and E completing the three handshakes.
step 3: Now just corroborate that B is already connected to two people (C and D). So just count the number of connections that E is left with: 2 handshakes.
Answer:
( E ) 0
Step-by-step explanation:
Solution:-
- There can be two ways in solving this question. Either we lay-out a map of every person ( Alan, Bella, Claire, Dora, and Erik ) shaking hands with each other.
- We will use an intuitive way of tackling this problem.
- We have a total of 5 people who greeted each other at the party.
- Each of the 5 people shook hands exactly " once "! We can give this a technical term of " shaking hands - without replacement ".
- We will define our event as shaking hands. It takes 2 people to shake hands.
- We will try to determine the total number of unique "combinations" that would result in each person shaking hands exactly one time.
- We have a total of 5 people and we will make unique combinations of 2 people shaking hands. This can be written as:
5C2 = 10 possible ways.
- So there are a total of 10 possible ways for 5 people to greet each other exactly once at the party.
- We are already given the data for how many handshakes were made by each person as follows:
Name Number of handshakes
Alan 1
Bella 2
Claire 3
Dora 4
=======================================
Total 10
=======================================
- So from the data given. 10 unique hand-shakes were already done by the time it was " Eriks " turn to go and greet someone. This also means that Erik has already met all 4 people in that party. So he doesn't have to approach anyone to shake hands and know someone. He is already been introduced to rest of 4 people in the group.
Answer: Erik does not need to shake hands with anyone! He is known and greeted rest of the 4 people on the group.
WILL MAKE BRAINLIST----- Describe both rotational symmetry and reflection symmetry. Find four examples of symmetry in your classroom.
Answer:
When an obect has rotational symmetry, that means the object will look the same after a certain amount of rotating. When an object has reflection symmetry, it means the object mirrors itself at the midpoint.
Step-by-step explanation:
Using the unit circle, determine the value of cos(945°).
========================================================
Explanation:
The angle 945 degrees is not between 0 and 360. We need to adjust it so that we find a coterminal angle in this range. To do this, subtract off 360 repeatedly until we get into the right range
945 - 360 = 585, not in range, so subtract again
585 - 350 = 225, we're in range now
Since 945 and 225 are coterminal angles, this means cos(945) = cos(225)
From here, we use the unit circle. Your unit circle should show the angle 225 in quadrant 3, which is the lower left quadrant. The terminal point here at this angle is [tex]\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)[/tex]
The x coordinate of this terminal point is the value of cos(theta). Therefore [tex]\cos(225^{\circ}) = -\frac{\sqrt{2}}{2}[/tex] and this is also the value of cos(945) as well
Using the periodic property of cos function, you can evaluate the value of cos(945°).
The value of cos(945°) is given by:
[tex]cos(945^\circ) = -\dfrac{1}{\sqrt{2}}[/tex]
Given that:To find the value of cos(945°) using the unit circle.What are periodic functions?
A function returning to same value at regular intervals of specific length(called period of that function).
It is [tex]2\pi[/tex]
Thus, we have:
[tex]cos(x) = cos(2\pi +x) \: \forall \: x \in \mathbb R[/tex]
Using the periodic property of cosine:[tex]cos(945^\circ) = cos(2 \times 360^\circ + 225^\circ) = cos(2\pi + 2\pi + 225)\\ cos(945^\circ) = cos(2\pi) + 225) = cos(225^\circ)[/tex]
There is a trigonometric identity that:[tex]cos(\pi + \theta) = -cos(\theta)[/tex]
Thus:
[tex]cos(945^\circ) = cos(225^\circ) = cos(180^\circ + 45^\circ) = -cos(45^\circ) = -\dfrac{1}{\sqrt{2}}\\ cos(945^\circ) = -\dfrac{1}{\sqrt{2}}[/tex]
Note that wherever i have used [tex]\pi[/tex], it refers to [tex]\pi ^ \circ[/tex] (in degrees).
Thus, the value of cos(945°) is given by:
[tex]cos(945^\circ) = -\dfrac{1}{\sqrt{2}}[/tex]
Learn more about periodicity of trigonometric functions here:
https://brainly.com/question/12502943
what is the answer 2×3+4×100-50+10
Answer:
366
Step-by-step explanation:
2×3+4×100-50+10
PEMDAS says multiply and divide from left to right
6 + 400 - 50 +10
Then add and subtract
406-50+10
356+10
366
Answer:
[tex]\boxed{366}[/tex]
Step-by-step explanation:
[tex]2 \times 3+4 \times 100-50+10[/tex]
Multiplication is first.
[tex]6+400-50+10[/tex]
Add or subtract the numbers.
[tex]350+10+6[/tex]
[tex]366[/tex]
A cube 4 units on each side is composed of 64 unit cubes. Two faces of the larger cube that share an edge are painted blue, and the cube is disassembled into 64 unit cubes. Two of the unit cubes are selected uniformly at random. What is the probability that one of two selected unit cubes will have exactly two painted faces while the other unit cube has no painted faces?
Answer:
P = 0.0714
Step-by-step explanation:
If two faces of the larger cube that share and edge are painted blue, it means that 28 of the 64 unit cubes are painted in at least one side and 36 cubes have no painting faces.
Additionally, from the 28 cubes painted only 4 have exactly two painted faces.
Then, to calculate the number of ways in which we can select x elements from a group of n, we can use the following equation:
[tex]nCx=\frac{n!}{x!(n-x)!}[/tex]
So, the probability that one of two selected unit cubes will have exactly two painted faces while the other unit cube has no painted faces is:
[tex]P=\frac{4C1*36C1}{64C2}=0.0714[/tex]
Because there are 64C2 ways to select 2 cubes from the 64, and from that, there are 4C1*36C1 ways to select one cube with exactly two painted faces and one cube with no painted faces.