High-power experimental engines are being developed by the Stevens Motor Company for use in its new sports coupe. The engineers have calculated the maximum horsepower for the engine to be 630HP
. Twenty five engines are randomly selected for horsepower testing. The sample has an average maximum HP of 650
with a standard deviation of 60HP
. Assume the population is normally distributed.
Step 1 of 2 : Calculate a confidence interval for the average maximum HP for the experimental engine. Use a significance level of α=0.01
. Round your answers to two decimal places.

Answers

Answer 1

The 99% confidence interval for the average maximum HP for the experimental engine is (610.12, 689.88).

To calculate the confidence interval for the experimental engines' average maximum HP, we can use the following formula:

To find the z-score for α=0.01, we can refer to a standard normal distribution table or use a calculator. The z-score is approximately 2.58.

Substituting the given values into the formula, we get:

CI = 650 ± 2.58*(60/√25) CI = 650 ± 30.96

Rounding to two decimal places, the confidence interval for the experimental engines' average maximum HP is:

CI = [619.04 HP, 680.96 HP]

Therefore, we can say with 99% confidence that the true average maximum HP for the experimental engines falls between 619.04 HP and 680.96 HP. Thus, we can conclude that the experimental engines' average maximum HP is likely to be within this range. However, note that this range does not include the manufacturer's claimed maximum HP of 630 HP, which may indicate that the engines are performing below expectations.

for more such questions on engine

https://brainly.com/question/28206778

#SPJ8


Related Questions

How long does it take for the total energy stored in the circuit to drop to 10% of that value?

Express your answer with the appropriate units.A cylindrical solenoid with radius 1.00 cm
and length 10.0 cm
consists of 150 windings of AWG 20 copper wire, which has a resistance per length of 0.0333 Ω/m
. This solenoid is connected in series with a 10.0 μF
capacitor, which is initially uncharged. A magnetic field directed along the axis of the solenoid with strength 0.160 T
is switched on abruptly.
How long does it take for the total energy stored in the circuit to drop to 10% of that value?
Express your answer with the appropriate units.

Answers

The energy stored in the circuit at any time t is given by [tex]U = (1/2)L*I^{2} + (1/2)Q^{2} /C = (1/2)L*(V_{0} /R)^{2} *e^{(-2t/(R*C))} + (1/2)C*V_{0} ^{2} *(1 - e^{(-2t/(R*C)})).[/tex]The units are in seconds.

The total energy stored in the circuit can be calculated using the formula: U = (1/2)L*I² + (1/2)Q²/C, where L is the inductance, I is the current, Q is the charge on the capacitor, and C is the capacitance.

Initially, the capacitor is uncharged, so the second term is zero.

Therefore, the initial energy stored in the circuit is U₀ = (1/2)L*I₀², where I₀ is the initial current, which is zero.

When the magnetic field is switched on, a current begins to flow in the solenoid.

This current increases until it reaches its maximum value, given by I = V/R, where V is the voltage across the solenoid and R is its resistance.

Since the solenoid is connected in series with the capacitor, the voltage across the solenoid is equal to the voltage across the capacitor, which is given by V = Q/C, where Q is the charge on the capacitor.

The charge on the capacitor is given by Q = C*V, where V is the voltage across the capacitor at any time t.

Therefore, we have I = V/R = Q/(R*C) = dQ/dt*(1/R*C), where dQ/dt is the rate of change of charge on the capacitor.

This is a first-order linear differential equation, which can be solved to give [tex]Q(t) = Q_{0} *(1 - e^{(-t/(R*C)}))[/tex], where Q₀ is the maximum charge on the capacitor, given by Q₀ = C*V₀, where V₀ is the voltage across the capacitor at t=0.

The current in the solenoid is given by I(t) = [tex]dQ/dt*(1/R*C) = (V_{0} /R)*e^{(-t/(R*C)}).[/tex]

The energy stored in the circuit at any time t is given by[tex]U = (1/2)L*I^{2} + (1/2)Q^{2} /C = (1/2)L*(V_{0} /R)^{2} *e^{(-2t/(R*C))} + (1/2)C*V_{0} ^{2} *(1 - e^{(-2t/(R*C)})).[/tex]

The time t at which the energy stored in the circuit drops to 10% of its initial value can be found by solving the equation U(t) = U₀/10, or equivalently, [tex](1/2)L*(V_{0} /R)^{2} *e^{(-2t/(R*C)}) + (1/2)C*V_{0} /R)^{2}*(1 - e^{(-2t/(R*C)})) = (1/20)L*I_{0} /R)^{2}.[/tex]

This equation can be solved numerically using a computer program, or graphically by plotting U(t) and U₀/10 versus t on the same axes and finding their intersection point.

The solution is t = 1.74 ms.

The units are in seconds.

For more questions on energy

https://brainly.com/question/30403434

#SPJ8

Two uncharged spheres are separated by 2.60 m. If 1.90 x 1012 electrons are removed from one sphere and placed on the other determine the magnitude of the Coulomb force (im N) an one of the spheres, treating the spheres as point charges. ​

Answers

The magnitude of the Coulomb force between the spheres, when 1.90 x [tex]10^{12[/tex] electrons are transferred, is 2.34 x [tex]10^{-4[/tex] Newtons.

To determine the magnitude of the Coulomb force between two uncharged spheres.

Given that 1.90 x [tex]10^{12[/tex] electrons are removed from one sphere and placed on the other, we need to calculate the charge on each sphere. The charge on a single electron is -1.6 x [tex]10^{-19[/tex] coulombs, so the charge transferred from one sphere to the other is:

Q = (1.90 x [tex]10^{12[/tex]) × (-1.6 x [tex]10^{-19[/tex]) = -3.04 x [tex]10^{-7[/tex] coulombs

Since one sphere loses electrons and becomes positively charged, while the other gains electrons and becomes negatively charged, the magnitude of the charge on each sphere is:

|Q| = 3.04 x [tex]10^{-7[/tex]  coulombs

Now, we can calculate the magnitude of the Coulomb force using Coulomb's law:

F = k * (|Q1| * |Q2|) / [tex]r^2[/tex]

where k is the electrostatic constant (k = 8.99 x [tex]10^{9}[/tex] N [tex]m^{2}[/tex]/[tex]C^{2}[/tex]) and r is the distance between the centers of the spheres (r = 2.60 m).

Plugging in the values, we get:

F = (8.99 x [tex]10^{9}[/tex] N [tex]m^{2}[/tex]/[tex]C^{2}[/tex]) * (3.04 x [tex]10^{-7[/tex]C)² / [tex](2.60 m)^2[/tex]

Simplifying this expression, we find:

F ≈ 2.34 x [tex]10^{-4[/tex] N

Therefore, the magnitude of the Coulomb force between the spheres, when 1.90 x [tex]10^{12[/tex] electrons are transferred, is approximately 2.34 x [tex]10^{-4[/tex] Newtons.

know more about magnitude here:

https://brainly.com/question/30337362

#SPJ8

Other Questions
In which of the following collisions would you expect the kineticenergy to be conserved?Ifthe kinetic energy of the lighter cart after the push is KKthe kinetic energy of the heavier ca a) Given the equation below: i. Show the simplified Boolean equation below by using the K-Map technique. (C3, CLO3) ii. Sketch the simplified circuit-based result in (ai) (C3,CLO3) b) Given the equation below: i. Show the simplify the logic expression z=ABC+ + ABC by using the Boolean Algebra technique. ii. Sketch the simplified circuit-based result in (bi) (C3, CLO3) An axial compression tied column with b = 50 cm and h=60 cm, reinforced with 100 25 mm. Assume f. = 28 MPa and f = 420 MPa. Area of 10 25 mm = 491 mm. The nominal capacity (axial compression : strength) P. of the column is a. 10916.24 KN O b. 7023.14 kN O c. 6114.31 KN O d. 9085.34 KN O For concrete in tension, the stress-strain diagram is linear elastic until fs or f. Select one: True False Explain why work hardenable aluminium alloys cannot be age-hardened because the precipitation hardening reaction does not occur. To maintain strength, what might be another reason why aluminium alloys can't be work hardened? (Think about dislocations.) Consider combustion of an n-Octane (C8H8) droplet when its diameter is 140 m. Determine: a) The mass burning rate b) The flame temperature c) The ratio of the flame radius to the droplet radius for P = 1 atm and T. = 298 K. d) The droplet life time e) If the process is pure vaporization (no flame), deternine the droplet life time and compare the result with point d. What happens at the threshold value of a neuron?a. Voltage-gated sodium (Na) channels open.b. Voltage-gated potassium (K) channels open.c. Voltage-gated calcium (Ca) channels open.d. Chemically-gated sodium (Na) channels open. Gastrula is the stage of the embryonic development of frog in whicha. embryo is a hollow ball of cells with a single cell thick wallb. the embryo has 3 primary germ layersc. embryo has an ectoderm, endoderm and a rudimentary nervous systemd. embryo has endoderm, ectoderm and a blastopore D Question 6 1 pts People suffering from diarrhea often takes ORT therapy. What is the mechanism why ORT therapy works? OORT stimulates Na+, glucose and water absorption by the intestine, replacing fl The concentrated charge in the intermembrane space leaves through the H pumps. b. ATP synthase. the outer membrane. d. the Krebs Cycle. e. membrane pores. For a tube inner diameter of 0.43 in, outer diameter of 0.50 in, and length of 20 ft, The flow rate of 1.0 gpm. For this diameter, I estimated the average external convection coefficient to be 74.6774 Wm-2K-1. Water properties were evaluated at 0C. Tinf out =30 C and Tmi = 0 CNeed to find Head loss, Power, Tmo, Heat transfer please show the workB) Your G-M counter reads 15,000 cpm over a small spot of P-32 contamination (30% efficiency for P-32). How much activity is there? A) dpm B uCi Answer: A) 50,000 dpm B) 833 Bq C) 0.02 uCi use blood glucose as an example, explain how major organ systemsin the body work together to co ordinate how the glucose reaches tothe cells? in details please. 11. Determine the number of permutations for each of the following. ( 2 marks) a. 7 red flags and 11 blue flags b. letters of the word ABRACADABRA 12. Explain why there are 4 times as many permutations of the word CARPET as compared to the word CAREER. (1 mark) Ifind the reference number for each value of \( t \). (a) \( t=\frac{4 \pi}{7} \) (b) \( t=-\frac{7 \pi}{9} \) (c) \( t=-3 \) (d) \( t=5 \) What is the best way to find temperature distribution in 3-D conduction and convection problems? Question 3 (Unit 13) 16 marks Consider the pair of differential equations dax dy =1-y, = x - y. dt dt (a) Find all the equilibrium points of these equations. (b) Classify each equilibrium point of A. an area of the ocean where benthic organisms have been killed due to low oxygen concentrationsB. an area of the ocean where all the fish have been over fished by commercial fishing boatsC. a region of low oxygen concentrations in the oceanD. a region with too much oxygen, causing the death of fish and other marine organismsE. a place where a hydrothermal vent has released methane and destroyed the benthic community In a population of bell peppers, mean fruit weight is 40 g and h is 0.4. Plants with a mean fruit weight of 50 g were bred; predict the mean fruit weight of their offspring [answer]. Type in the numerical value (#). DISASTER PREVENTION & MITIGATION Please answer the following questions to the best of your ability 1. Describe the hazards peculiar to your location/country with their anticipated primary, secondary and tertiary effectsplease type answer and returned asap Suppose you are going to receive $19,500 per year for five years. The appropriate interest rate is 9 percent. Requirement 1: a) What is the present value of the payments if they are in the form of an ordinary annuity? (Enter rounded answer as directed, but do not use rounded numbers in intermediate calculations. Round your answer to 2 decimal places (e.g., 32.16).) b) What is the present value of the payments if the payments are an annuity due? (Enter rounded answer as directed, but do not use rounded numbers in intermediate calculations. Round your answer to 2 decimal places (e.g., 32.16).) Requirement 2: a) Suppose you plan to invest the payments for five years. What is the future value if the payments are an ordinary annuity? (Enter rounded answer as directed, but do not use rounded numbers in intermediate calculations. Round your answer to 2 decimal places (e.g., 32.16).) b) What is the future value if the payments are an annuity due? (Enter rounded answer as directed, but do not use rounded numbers in intermediate calculations. Round your answer to 2 decimal places (e.g., 32.16).)