Answer:
1) [tex](a+ib)(a-ib)[/tex]
2) [tex]a^2+i^2b[/tex]
Step-by-step explanation:
1) [tex]a^2+b^2[/tex]
=> [tex]a^2 - (-1)b^2[/tex] (We know that -1 = [tex]i^2[/tex] )
=> [tex]a^2-i^2b^2[/tex]
=> [tex](a)^2-(ib)^2[/tex]
Using Formula [tex]a^2 -b^2 = (a+b)(a-b)[/tex]
=> [tex](a+ib)(a-ib)[/tex]
2) [tex]a^2-b[/tex]
=> [tex]a^2+(-1)b[/tex] (We know that -1 = [tex]i^2[/tex] )
=> [tex]a^2+i^2b[/tex] (It cannot be simplified further)
Answer:
[tex]\boxed{(a+ib)(a-ib)}[/tex]
[tex]\boxed{a^2+i^2b}[/tex]
Step-by-step explanation:
[tex]a^2 + b^2[/tex]
Rewrite expression.
[tex]a^2- (-1)b^2[/tex]
Use identity : [tex]-1=i^2[/tex]
[tex]a^2- i^2 b^2[/tex]
Factor out square.
[tex]a^2-(ib)^2[/tex]
Apply difference of two squares formula : [tex]a^2-b^2 =(a+b)(a-b)[/tex]
[tex](a+ib)(a-ib)[/tex]
[tex]a^2-b[/tex]
Rewrite expression.
[tex]a^2+(-1)b[/tex]
Use identity : [tex]-1=i^2[/tex]
[tex]a^2+i^2b[/tex]
Find the solution(s) of the quadratic equation 2x2 – 3x – 35 = 0
Answer: x = 5, x = -7/2
Step-by-step explanation:
2x² - 3x - 35 = 0
Step 1: Find two values whose product = 2(-35) and sum = -3: -10 & 7
Step 2: Replace the b-value of -3x with -10x + 7x:
2x² - 10x + 7x - 35 = 0
Step 3: Factor the first two terms and the second two terms:
2x(x - 5) +7(x - 5) = 0
Step 4: Write the factored form:
Notice that the parenthesis are identical. This is one of the factors. The outside values are the other factor:
Parenthesis: (x - 5)
Outside: (2x + 7)
Factored form: (x - 5)(2x + 7) = 0
Step 5: Set each factor each to zero and solve for x:
x - 5 = 0 2x + 7 = 0
x - 5 [tex]x=-\dfrac{7}{2}[/tex]
The solutions of the quadratic equation given as 2x² - 3x - 35 = 0 are x=5 and x =-3.5.
Given that:
2x² - 3x - 35 = 0
This is a quadratic equation.
It is required to find the solutions of this equation.
The solution of the quadratic equation of the form ax² + bx + c = 0 can be found using the quadratic formula:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
From the given equation:
a = 2
b = -3
c = -35
Substitute to the quadratic formula.
[tex]x=\frac{-(-3)\pm \sqrt{(-3)^2-4(2)(-35)}}{2(2)}[/tex]
[tex]=\frac{3\pm \sqrt{9+280}}{4}[/tex]
[tex]=\frac{3\pm \sqrt{289}}{4}[/tex]
[tex]=\frac{3\pm 17}{4}[/tex]
So, the solutions are:
[tex]x=\frac{3+ 17}{4}=5[/tex], and [tex]x=\frac{3-17}{4}=-3.5[/tex]
Hence, the solutions are x =5, -3.5.
Learn more about Quadratic Formula here :
https://brainly.com/question/22364785
#SPJ6
Translate the phrase into a variable expression. Use the letter sto name the
variable. If necessary, use the asterisk (*) for multiplication and the slash
(1) for division.
the product of 60 and the number of seconds...
Answer:
The statement
the product of 60 and the number of seconds is written as
60 * s
Hope this helps you
How does a reflection across the y-axis change the coordinates of a shape?
Answer:
When you reflect a shape avross the y-axis, the y-coordinates stay the same, but the x-coordinates turn into its opposites.
Step-by-step explanation:
EXAMPLES:
(3,6)---(reflected over y-axis)--> (-3,6)
(9,2)---(reflected over y-axis)--> (-9,2)
Hope this helped! Brainliest would be really appreciated :)
What value of x is I the solution set of 3(x-4)>5x+2
Answer:
-7 > x
Step-by-step explanation:
3(x-4)>5x+2
Distribute
3x-12>5x+2
Subtract 3x from each side
3x-12-3x>5x-3x+2
-12 > 2x+2
Subtract 2 from each side
-12-2>2x+2-2
-14 > 2x
Divide by 2
-14/2 > 2x/2
-7 > x
Answer:
[tex]\boxed{x<-7}[/tex]
Step-by-step explanation:
3(x-4)>5x+2
Expand brackets.
3x - 12 > 5x+2
Subtract 3x and 2 on both sides.
-12 - 2 > 5x - 3x
-14 > 2x
Divide both sides by 2.
-7 > x
Switch sides.
x < -7
Select the correct answer. Brad is planting flowers in a grid-like pattern in his garden. He is trying to determine the possible numbers of rows and columns in which he can plant his flowers. He determines that two possibilities are 8 rows and 25 columns or 10 rows and 20 columns. What is the constant of proportionality in this inverse variation?
Answer:
[tex]C.\ 200[/tex]
Step-by-step explanation:
Given
Let R represents rows and C represents Columns
When R = 8, C = 25
When R = 10, C = 20
Required
Given that there exist an inverse variation, determine the constant of proportionality;
We start by representing the variation;
[tex]R\ \alpha \ \frac{1}{C}[/tex]
Convert proportion to an equation
[tex]R\ = \ \frac{k}{C}[/tex]
Where k is the constant of proportion;
[tex]R * C\ = \ \frac{k}{C} * C[/tex]
Multiply both sides by C
[tex]R * C\ = k[/tex]
Reorder
[tex]k = R * C[/tex]
When R = 8, C = 25;
The equation [tex]k = R * C[/tex] becomes
[tex]k = 8 * 25[/tex]
[tex]k = 200[/tex]
When R = 10, C = 20;
The equation [tex]k = R * C[/tex] becomes
[tex]k = 10 * 20[/tex]
[tex]k = 200[/tex]
Hence, the concept of proportionality is 200
Integrate the following: ∫[tex]5x^4dx[/tex]
A. [tex]x^5+C[/tex]
B. [tex]x^5[/tex]
C. [tex]5x^5+C[/tex]
D. [tex]5x^5[/tex]
Answer:
A. [tex]x^5+C[/tex]
Step-by-step explanation:
This is a great question! The first thing we want to do here is to take the constant out of the expression, in this case 5. Doing so we would receive the following expression -
[tex]5\cdot \int \:x^4dx[/tex]
We can then apply the power rule " [tex]\int x^adx=\frac{x^{a+1}}{a+1}[/tex] ", where a = exponent ( in this case 4 ),
[tex]5\cdot \frac{x^{4+1}}{4+1}[/tex]
From now onward just simplify the expression as one would normally, and afterward add a constant ( C ) to the solution -
[tex]5\cdot \frac{x^{4+1}}{4+1}\\[/tex] - Add the exponents,
[tex]5\cdot \frac{x^{5}}{5}[/tex] - 5 & 5 cancel each other out,
[tex]x^5[/tex] - And now adding the constant we see that our solution is option a!
Answer:
Answer A
Step-by-step explanation:
Use the property of integrals. You now have [tex]5 x\int\limits\,x^{4}dx[/tex] where the first x next to the 5 stands for multiplication. Let's evaluate it. We get [tex]5 (\frac{x^{5} }{5})[/tex]. From here, we can simplify this into [tex]x^{5}[/tex]. Add the constant of integration, which will give you the answer of [tex]x^{5} + C[/tex].
Eighty percent of the light aircraft that disappear while in flight in a certain country are subsequently discovered. Of the aircraft that are discovered, 63% have an emergency locator, whereas 89% of the aircraft not discovered do not have such a locator. Suppose a light aircraft has disappeared. (Round your answers to three decimal places.) (a) If it has an emergency locator, what is the probability that it will not be discovered? (b) If it does not have an emergency locator, what is the probability that it will be discovered?
Answer:
a) P(B'|A) = 0.042
b) P(B|A') = 0.625
Step-by-step explanation:
Given that:
80% of the light aircraft that disappear while in flight in a certain country are subsequently discovered
Of the aircraft that are discovered, 63% have an emergency locator,
whereas 89% of the aircraft not discovered do not have such a locator.
From the given information; it is suitable we define the events in order to calculate the probabilities.
So, Let :
A = Locator
B = Discovered
A' = No Locator
B' = No Discovered
So; P(B) = 0.8
P(B') = 1 - P(B)
P(B') = 1- 0.8
P(B') = 0.2
P(A|B) = 0.63
P(A'|B) = 1 - P(A|B)
P(A'|B) = 1- 0.63
P(A'|B) = 0.37
P(A'|B') = 0.89
P(A|B') = 1 - P(A'|B')
P(A|B') = 1 - 0.89
P(A|B') = 0.11
Also;
P(B ∩ A) = P(A|B) P(B)
P(B ∩ A) = 0.63 × 0.8
P(B ∩ A) = 0.504
P(B ∩ A') = P(A'|B) P(B)
P(B ∩ A') = 0.37 × 0.8
P(B ∩ A') = 0.296
P(B' ∩ A) = P(A|B') P(B')
P(B' ∩ A) = 0.11 × 0.2
P(B' ∩ A) = 0.022
P(B' ∩ A') = P(A'|B') P(B')
P(B' ∩ A') = 0.89 × 0.2
P(B' ∩ A') = 0.178
Similarly:
P(A) = P(B ∩ A ) + P(B' ∩ A)
P(A) = 0.504 + 0.022
P(A) = 0.526
P(A') = 1 - P(A)
P(A') = 1 - 0.526
P(A') = 0.474
The probability that it will not be discovered given that it has an emergency locator is,
P(B'|A) = P(B' ∩ A)/P(A)
P(B'|A) = 0.022/0.526
P(B'|A) = 0.042
(b) If it does not have an emergency locator, what is the probability that it will be discovered?
The probability that it will be discovered given that it does not have an emergency locator is:
P(B|A') = P(B ∩ A')/P(A')
P(B|A') = 0.296/0.474
P(B|A') = 0.625
In an ESP experiment subjects must predict whether a number randomly generated by a computer will be odd or even. (Round your answer to four decimal places.) (a) What is the probability that a subject would guess exactly 18 correct in a series of 36 trials
Answer: The answer is 0.1350
Step-by-step explanation:
Given data
n=36
p=1/2
q=1/2
X=18
O=3
U = 18
a. With n = 36 and p = q = 1/2, you may use the normal approximation with µ = 18 and o = 3. X = 18 has real limits of 17.5 and 18.5 corresponding to z = -0.17 and z = +0.17. p = 0.1350.
The probability that a subject would guess exactly 18 correct in a series of 36 trials is 0.1350.
Given that,
ESP experiment subjects must predict whether a number randomly generated by a computer will be odd or even.
We have to determine,
What is the probability that a subject would guess exactly 18 correct in a series of 36 trials?
According to the question,
Number of trials n = 36
The probability must per whether a number randomly generated by a computer will be odd is 1/2 or even is 1/2.
By using the normal approximation,
[tex]\mu = 18 \ and \ \sigma = 3[/tex]
Therefore,
X = 18 has real limits of 17.5 and 18.5 corresponding to z = -0.17 and z = +0.17.
p = 0.1350
Hence, the probability that a subject would guess exactly 18 correct in a series of 36 trials is 0.1350.
To know more about Probability click the link given below.
https://brainly.com/question/17090368
Select the correct answer. Vincent wants to construct a regular hexagon inscribed in a circle. He draws a circle on a piece of paper. He then folds the paper circle three times to create three folds representing diameters of the circle. He labels the ends the diameters A, B, C, D, E, and F, and he uses a straightedge to draw the chords that form a hexagon. Which statement is true? A. Vincent’s construction method produces a hexagon that must be regular. B. Vincent’s construction method produces a hexagon that must be equilateral but may not be equiangular. C. Vincent’s construction method produces a hexagon that must be equiangular but may not be equilateral. D. Vincent’s construction method produces a hexagon that may not be equilateral and may not be equiangular.
Answer:
B.
Step-by-step explanation:
Vincent’s construction method produces a hexagon that may not be equilateral and may not be equiangular. The correct option is D.
What is a regular polygon?A regular polygon is a polygon that is equiangular and equilateral. Therefore, the measure of all the internal angles and the measure of all the sides of the polygon are equal to each other.
Given that Vincent wants to construct a regular hexagon inscribed in a circle. He draws a circle on a piece of paper. He then folds the paper circle three times to create three folds representing the diameters of the circle.
Now as it can be seen as the paper is folded as shown in the below image but it does not create a hexagon that is equilateral and equiangular.
Hence, Vincent’s construction method produces a hexagon that may not be equilateral and may not be equiangular.
Learn more about Regular Polygon:
https://brainly.com/question/10885363
#SPJ2
Enter a range of values of x
Answer:
[tex]-5<x<26[/tex].
Step-by-step explanation:
We know that if two corresponding sides of two triangles are equal, then third sides of the triangles depend on angle between equal sides.
Angle opposite to larger side is larger.
Since, 14 < 15, therefore
[tex]2x+10<62[/tex]
[tex]2x<62-10[/tex]
[tex]2x<52[/tex]
[tex]x<26[/tex] ...(1)
We know that, angle can not not negative.
[tex]2x+10>0[/tex]
[tex]2x>-10[/tex]
[tex]x>-5[/tex] ...(2)
From (1) and (2), we get
[tex]-5<x<26[/tex]
Therefore, the range of values of x is [tex]-5<x<26[/tex].
It took Malik 1 hour and 30 minutes to complete his English essay. He finished the essay at 5:30 pm. What time did he start working on the essay?
Answer:
4:00 pm
Step-by-step explanation:
To find the time it takes Malik to finish his English essay, let's start by subtracting one hour.
5:30 minus 1 hour is 4:30.
Now, subtract 30 minutes.
4:30 minus 30 minutes is 4:00.
Malik started working on his English essay at 4:00 pm.
Hope that helps.
Zoey wants to use her iPad throughout a 6-hour flight. Upon takeoff, she uses the iPad for 2 hoursand notices that the battery dropped by 25%, from 100% to 75%. How many total hours can Zoeyexpect from the iPad on a full battery charge?
Answer:
8 hours
Step-by-step explanation:
25%= 2 hrs
100%=8 hrs
brainliest plsssssssssssssssssssss
-zylynn
905,238 In a word form
Answer:
nine hundred five thousand two hundred thirty-eight
Solve the simultaneous equations 2x-y=7 3x+y=3
Answer:
( 2 , - 3 )Step-by-step explanation:
Using elimination method:
2x - y = 7
3x + y = 3
--------------
5x = 10
Divide both sides of the equation by 5
[tex] \frac{5x}{5} = \frac{10}{5} [/tex]
Calculate
[tex]x = 2[/tex]
Now, substitute the given value of X in the equation
3x + y = 3
[tex]3 \times 2 + y = 3[/tex]
Multiply the numbers
[tex]6 + y = 3[/tex]
Move constant to R.H.S and change it's sign
[tex]y = 3 - 6[/tex]
Calculate
[tex]y = - 3[/tex]
The possible solution of this system is the ordered pair ( x , y )
( x , y ) = ( 2 , -3 )---------------------------------------------------------------------
Check if the given ordered pair is the solution of the system of equation
[tex]2 \times 2 - ( - 3) = 7[/tex]
[tex]3 \times 2 - 3 = 3[/tex]
Simplify the equalities
[tex]7 = 7[/tex]
[tex]3 = 3[/tex]
Since all of the equalities are true, the ordered pair is the solution of the system
( x , y ) = ( 2 , - 3 )Hope this helps..
Best regards!!
The probability of a potential employee passing a drug test is 91%. If you selected 15 potential employees and gave them a drug test, how many would you expect to pass the test
Answer:
The number expected to pass that test is [tex]k = 14 \ employees[/tex]
Step-by-step explanation:
From the question we are told that
The probability of success is p = 0.91
The sample size is n = 15
The number of employee that will pass the test is mathematically represented as
[tex]k = n * p[/tex]
substituting values
[tex]k = 15 * 0.91[/tex]
[tex]k = 14 \ employees[/tex]
For each function, determine if it intersects or is parallel to the line y=−1.5x. If it intersects the line, find the intersection point. y=0.5x−6
Answer: the intersection point is (2.4, -4.8)
Step-by-step explanation:
A) we have the function:
y = 0.5*x - 6.
First we want to know if this function intersects the line y´ = -1.5*x
Now, first we can recall that two lines are parallel only if the slope is the same for both lines, here we can see that the slopes are different, so the lines are not parallel, which means that the lines must intersect at some point.
Now, to find the intersection point we asumme y = y´ and want to find the value of x.
0.5*x - 6 = -1.5*x
(0.5 + 1.5)*x - 6 = 0
2.5*x = 6
x = 6/2.5 = 2.4
Now, we evaluate one of the functions in this value of x.
y = 0.5*2.4 - 6 = -4.8
So the intersection point is (2.4, -4.8)
Help me fast please
give the coordinates of the
foci,vertices,and convertices of the ellipse with equation x²/169 + y²/25 = 1
Answer:
We can see that for this case the vertex is [tex] V= (0,0)[/tex]
The values for a and b are:
[tex] a = \sqrt{169}=13, b= \sqrt{25}=1[/tex]
Then the ellipse have the major axis on x.
In order to find the two foci we need to use the following formula:
[tex] c =\sqrt{a^2 -b^2}[/tex]
And replacing we got:
[tex] c =\sqrt{169-25}= \pm 12[/tex]
And then the two foci are (12,0) and (-12,0)
And the covertex are on this case (-13,0) (13,0) and (0,5) (0,-5) on the y axis
Step-by-step explanation:
For this problem we have the following equation given:
[tex]\frac{x^2}{169} + \frac{y^2}{25}= 1[/tex]
If we compare this with the general expression of an ellipse given by:
[tex] \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}= 1[/tex]
We can see that for this case the vertex is [tex] V= (0,0)[/tex]
The values for a and b are:
[tex] a = \sqrt{169}=13, b= \sqrt{25}=1[/tex]
Then the ellipse have the major axis on x.
In order to find the two foci we need to use the following formula:
[tex] c =\sqrt{a^2 -b^2}[/tex]
And replacing we got:
[tex] c =\sqrt{169-25}= \pm 12[/tex]
And then the two foci are (12,0) and (-12,0)
And the covertex are on this case (-13,0) (13,0) and (0,5) (0,-5) on the y axis
Determine whether each red path in the vector field is positive, negative, or zero
If the path is perpendicular to the field it is zero.
If the path is along the field it is positive or negative depending on it's direction.
See the attached picture.
Dan's mean average on 5 exams is 86 determine the sum of his score
Answer: 430
Step-by-step explanation:
An average of 5 scores can be found via: (the sum of the scores)*5. Thus, simply multiply 86*5 to get that the sum of his scores is 430
Hope it helps <3
One variable in a study measures how many serious motor vehicle accidents a subject has had in the past year. Explain why the mean would likely be more useful than the median for summarizing the responses of the 60 subjects.
Answer:
The mean is more useful in this case because it would give an average value of the accidents for example 3 accidents per year but the median would give the middle value which may be 5 or greater or much lesser than the average. It would not give an approximate value of occurrences.
Step-by-step explanation:
Mean is the averaage of all the values.
Median is the value of the data which gives an estimate of the middle value. Middle values can be different than the average values.
The mean is
1) rigorously defined by a mathematical formula.
2) based on all the observations of the data
3) affected by extreme values
The meadian is
1) computed for open end classes like income etc.
2) not rigorously defined
3) is located when the values are not capable of quantitative measurment.
4) is not affected by extreme values.
The mean is more useful in this case because it would give an average value of the accidents for example 3 accidents per year but the median would give the middle value which may be 5 or greater or much lesser than the average. It would not give an approximate value of occurrences.
PLEASE HELP!!! Select the three statements that give benefits of having a savings account. A. When I withdraw money from my savings account too many times, I can be charged a fee. B. When I put money in a savings account, the bank will pay me interest. C. If there were an emergency, I would have the money to cover expenses. D.When I use a savings account, my money is insured by the FDIC up to $250,000.
Answer:
answer is B
Step-by-step explanation:
In Sparrowtown, the use of landlines has been declining at a rate of 5% every year. If there are 20,000 landlines this year, how many will there be in 15 years? If necessary, round your answer to the nearest whole number.
Answer:
5,000
Step-by-step explanation:
If it decreases by 5% a year, it'll decrease by 75% in 15 years
i.e 1 year = 5%
15 years = x
Cross multiply
x = 75%
Therefore, since it decreases by 75%
100 - 75 x 20,000 = 5,000
100
Please answer this correctly without making mistakes
Answer:
d = 115.4 mi
Step-by-step explanation:
Since it gives us the distance in between the locations, we simply label the distances:
From the Garbage to the Hotel is 58.3 miles.
From the Hotel to the Hardware Store is 57.1 miles.
We are trying to find the distance from the Garbage to the Hardware Store, we simply add the distances between:
58.3 mi + 57.1 mi = 115.4 mi
What is x? The degree of the angle of x
Answer:
x = 60°
Step-by-step explanation:
All the angles in a triangle add up to 180°. So, you have this equation.
87° + 33° + x = 180°
120° + x = 180°
x = 60°
The measure of angle x is 60°.
Hope that helps.
solve the nonlinear system of equations. State the number of solutions.
Answer:
Step-by-step explanation:
Hello,
Question 15
We can search x such that:
[tex]x^2-4x+4=2x-5\\\\\text{*** subtract 2x-5 from both sides ***}\\ \\x^2-4x-2x+4+5=0\\ \\\text{*** simplify ***}\\ \\x^2-6x+9=0 \\ \\\text{*** we can notice a perfect square ***}\\ \\x^2 -2\cdot x \cdot 3 + 3^2=(x-3)^2=0\\\\\text{*** taking the root ***}\\\\x-3=0\\\\\large \boxed{\sf \ \ x=3 \ \ }[/tex]
There is 1 solution.
Question 16
Again, we search x such that:
[tex]x^2-8x+15=2x-6\\\\\text{*** subtract 2x-6 from both sides ***}\\\\x^2-8x-2x+15+6=0\\\\\text{*** simplify ***}\\\\x^2-10x+21=0 \\ \\\text{*** we are looking for two roots where the sum is 10 and the product is 21 = 7 x 3 ***} \\\\x^2-7x-3x+21=x(x-7)-3(x-7)=(x-3)(x-7)=0\\\\\large \boxed{\sf \ \ x= 3 \ or \ x =7 \ \ }[/tex]There are two solutions.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
please answer me question 3 solving part
Answer:
1. D
2. B
3. A
Step-by-step explanation:
Question 1:
The pair of <JKL and <LKM can be referred to as linear pairs. They are two adjacent angles that are formed from the intersecting of two lines.
Question 2:
Given that <KLM = x°
<KML = 50°
<JKL = (2x - 15)°
According to the exterior angle theorem, exterior ∠ JKL = <KLM + KML.
2x - 15 = x + 50
Solve for x
2x - x = 15 + 50
x = 65
Therefore, <KLM = 65°
QUESTION 3:
<JKL = 2x - 15
Plug in the value of x
<JKL = 2(65) - 15
= 130 - 15
<JKL = 115°
It takes four painters working at the same rate 1.25 work-days to finish a job. If only three painters are available, how many work-days will it take them to finish the job, working at the same rate? Express your answer as a mixed number.
Answer:
.9375 days
Step-by-step explanation:
1.25 / 4 = 0.3125
0.3125 x 3 - 0.9375
what is the area of the shaded region between the two z-scores indicated in the diagram? z=-1.24 and z= 0.84
Answer:
0.6921 (69.21%)
Step-by-step explanation:
The area of the shaded region between the two z-scores refer to the probability between the two z-scores value( The total area under a standard normal distribution curve is 1)
So the area we want to determine in this case is as follows;
P(-1.24<z<0.84) = P(z<0.84) - P(z<-1.24)
What we use to calculate this finally is the standard normal distribution table
We use this to get these values so we can calculate the probability.
Using the standard normal distribution table;
P(-1.24<z<0.84) = 0.69206 which is approximately 0.6921
How does the frequency of f(x) = cos(2x) relate to the frequency of the parent function cos x?
Answer:
The frequency of f(x) is two times the frequency of the parent function.
Step-by-step explanation:
We can say that the number that is beside the x is equal to [tex]2\pi *f[/tex], where f is the frequency.
Then, for the parent function, we get:
[tex]1 = 2\pi f_1[/tex]
or solving for [tex]f_1[/tex]:
[tex]f_1=\frac{1}{2\pi }[/tex]
At the same way, for f(x), we get:
[tex]2=2\pi f_2\\f_2=2(\frac{1}{2\pi })[/tex]
But [tex]\frac{1}{2\pi }[/tex] is equal to [tex]f_1[/tex], so we can write the last equation as:
[tex]f_2=2f_1[/tex]
It means that the frequency of f(x) is two times the frequency of the parent function.
What is 25÷5what is 25 / 5
Answer:
5
Step-by-step explanation:
25/5
=5✖️5=25
=5/1
Answer:
25÷5 = 5 and 25/5 = 125
Step-by-step explanation:
hope this helps!