Answer:
Correct Option: B
Step-by-step explanation:
Linear functions are the type of functions that are applied to model occurrences that rise or fall at a constant proportion. These sorts of functions are polynomial functions with a maximum exponent of one on the variable. The graphs of these kind of functions are in the form of a line.
Exponential functions are the type of functions that have the variable in exponent form. The growth rate or decline rate is either slow than quick or quick than slow.
Quadratic functions are of the form f (x) = ax² + bx + c. The graph of this function is in the form of a parabola. The graph first increases, hit a maximum, then decreases or decreases, hit a minimum, then increases.
From the provided graphs it can be seen that, the exponential function grows at approximately the same rate over the interval 0 ≤ x ≤ 1 as the quadratic function.
Answer:
bbb
Step-by-step explanation:
Please answer this question now
Answer:
541.4 m²
Step-by-step Explanation:
Step 1: find m < V
V = 180 - (50+63) (sum of the angles in ∆)
V = 67
Step 2: find side length of XW using the law of sines
[tex] \frac{XW}{sin(V)} = \frac{XV}{sin(W)} [/tex]
Where,
V = 67°
W = 63°
XV = 37 m
XW
[tex] \frac{XW}{sin(67)} = \frac{37}{sin(63)} [/tex]
Multiply both sides by sin(67) to solve for XW
[tex] \frac{XW}{sin(67)}*sin(67) = \frac{37}{sin(63)}*sin(67) [/tex]
[tex] XW = \frac{37*sin(67)}{sin(63)} [/tex]
[tex] XW = 38.2 m [/tex] (to nearest tenth)
Step 3: find the area using the formula, ½*XW*XV*sin(X)
area = ½*38.2*37*sin(50)
Area = 541.4 m² (rounded to the nearest tenth.
HELP URGENT PLEASE! The Lees have purchased a new home for $360,000, and put a down payment of $50,000 on it. They have a mortgage for the balance, amortized over 20 years at 5.25%. If the Lees pay off the mortgage at the end of the 20 years, how much interest will they have paid in total? USE TVM SOLVER
Answer:
$191,340.80
Step-by-step explanation:
Step 1
We find the amount that is paid monthly by the Lee's
We are told in the question that:
Cost of the house =$360,000
Down payment = $50,000
We are also told, the balance left after the down payment was made = Mortgage that is amortized at an
Interest rate of 5.25%
Time = 20 years
Hence, Mortgage amount = $360,000 - $50,000 = $310,000
Formula for monthly payment =
M= P[r(1+r)^n/((1+r)^n)-1)]
M = the total monthly mortgage payment.
P = the principal loan amount.
r = your monthly interest rate.
= rate/12
=5.25%/12 = 0.0525/12
= 0.004375
n = number of payments
= number of years × number of months
= 20 × 12 = 240 payments
Formula for monthly payment =
M= P[r(1+r)^n/((1+r)^n)-1)]
M = 310,000[0.004375(1 + 0.004375)^240/((1 + 0.004375)^240 ) - 1]
M = $2,088.92
Therefore, the monthly payment by the Lee's is $2,088.92
Step 2
We calculate the Total Amount paid by the Lee's in 20years because we are told in the question that they paid off their mortgage after 20 years
Total Amount paid = Monthly payments × Number of payments
= $2,088.92 × 240
= $501,340.80
Step 3
The third and final step is to calculate the Total interest paid for 20 years
Total Interest = Total amount paid - Mortgage amount
= $501,340.80 - $310,000
Total Interest: $191,340.80
Therefore,the interest will they have paid in total is $191,340.80
Which triangle’s area can be calculated using the trigonometric area formula?
Answer:
Triangle klm
Step-by-step explanation:
edg 2020
a sector with a radius of 12cm has an area of 60pi cm what is the central angle in radians
Answer:
5/6π.
Step-by-step explanation:
The following data were obtained from the question:
Radius (r) = 12 cm
Area (A) = 60π cm²
Centre angle in radian (∅) =...?
Since we are to look for the centre angle in radian, the area of the sector will be given by:
A = ½r²∅
Inputting the values of the area, A and radius, r, the centre angle, ∅ can be obtained as follow:
A = ½r²∅
60π = ½ × 12² × ∅
60π = ½ × 144 × ∅
60π = 72 × ∅
Divide both side by 72
∅ = 60π/72
∅ = 5/6π
Therefore, the centre angle measured in radian is 5/6π.
Figure G is rotated 90Degrees clockwise about the origin and then reflected over the x-axis, forming figure H. On a coordinate plane, triangle G has points (negative 3, 1), (negative 1, 2), (negative 2, 5). Triangle H has points (2, negative 1), (1, negative 3), (5, negative 2). Which sequence of transformations will produce the same results?
Answer:
The 1st selection is appropriate.
_____
2nd: the rotation would need to be 90° CCW
3rd, 4th: rotation or double reflection will give the original orientation. This figure is reflected an odd number of times, so has its orientation reversed.
Hope it helps.. Mark brainliest
The sequence of transformations are reflection over the y-axis and then a rotation 90 clockwise about the origin.
What is rotation rule of 90°?Here are the rotation rules: 90° clockwise rotation: (x, y) becomes (y, -x) 90° counterclockwise rotation: (x, y) becomes (-y, x) 180° clockwise and counterclockwise rotation: (x, y) becomes (-x,-y).
Given that, figure G is rotated 90° clockwise about the origin and then reflected over the x-axis, forming figure H.
Vertices of triangle G are (-3, 1), (-1, 2) and (-2, 5).
The reflection of point (x, y) across the y-axis is (-x, y).
On reflection over x-axis, we get coordinates as (3, 1), (1, 2) and (2, 5)
90° clockwise rotation: (x, y) becomes (y, -x)
On 90° clockwise rotation, we get coordinates as (1, -3), (2, -1) and (5, -2)
Triangle H has points (2, -1), (1, -3), (5, -2).
Hence, the sequence of transformations are reflection over the y-axis and then a rotation 90° clockwise about the origin.
Learn more about the rotation of 90° counterclockwise here:
brainly.com/question/1571997.
#SPJ6
There are 25 students in Mr. Jones’ art class. Mr. Jones is planning a project where each student needs 0.3 jar of paint. Exactly how much paint does Mr. Jones need for the art project?
Answer:
7.5 jars
Step-by-step explanation:
There are 25 students in the art class.
Mr Jones is planning that for the project, each of the 25 students will need 0.3 jar of paint.
The amount of paint Mr Jones needs for this project is therefore the product of the number of students in the class by the amount of paint each student needs.
That is:
25 * 0.3 = 7.5 jars of paint
Mr Jones needs 7.5 jars of paint for the art project.
Please answer this question now
Answer:
36°
Step-by-step explanation:
<U + < V + <W = 180° (sum of angles in a triangle)
<W = 54°
The tangent is always perpendicular to the radius drawn to the point of tangency...
therefore,
<U = 90°
90° + <V + 54° = 180°
144° + <V = 180°
<V = 180° - 144°
<V = 36°
Answer:
V=36
Step-by-step explanation:
tangent makes rigt angle with radius angle U=90
W+V+U=180
V=180-90-54
V=36
ANY JESUS HELPERS PLEASE HELP The incorrect work of a student to solve an equation 2(y + 4) = 4y is shown below: Step 1: 2(y + 4) = 4y Step 2: 2y + 6 = 4y Step 3: 2y = 6 Step 4: y = 3 Which of the following explains how to correct Step 2 and shows the correct value of y? The equation should be y + 4 = 4y after division by 2; y = 5 The equation should be y + 4 = 4y after division by 2; y = 2 2 should be distributed as 2y + 8; y = 4 2 should be distributed as 2y + 8; y = 2
Answer:
2 should be distributed as 2y + 8; y = 4
Step-by-step explanation:
2(y + 4) = 4y
Distribute
2y + 8 = 4y
Step 2 is incorrect because the added instead of multiplied
Continuing on to correct the problem
Subtract 2y from each side
2y+8-2y = 4y-2y
8 = 2y
Divide by 2
8/2 = 2y/2
4 =y
Answer:
2 should be distributed as 2y + 8; y = 4
Step-by-step explanation:
Step 2 is wrong.
2(y + 4) = 4y
The step to solve is to expand brackets or distribute 2, not divide both sides by 2.
2y + 8 = 4y
Subtract both sides by 2y.
8 = 2y
Divide both sides by 2.
4 = y
y=8-2x. What is the value of y when x = 8?
Answer:
y = -8
Step-by-step explanation:
Start by filling 8 in place of x
y = 8 - 2(8)
Multiply -2(8)
y = 8 - 16
Subtract 16 from 8
y = -8
Graph [tex]y=\frac{2}{3} x[/tex] Which of the following statements are true?
Answer:
A,C,D
Step-by-step explanation:
When b=0, there is a proportional relationship.
The slope in y=mx+b is the value next to x.
Using RISE/RUN when there is a change of 3 units in x, there is a change of 2 units in y.
Write an equation of the line that passes through the point (–4, 6) with slope –4.
Answer:
y = - 4x - 10
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Here m = - 4 , thus
y = - 4x + c ← is the partial equation
To find c substitute (- 4, 6) into the partial equation
6 = 16 + c ⇒ c = 6 - 16 = - 10
y = - 4x - 10 ← equation of line
Answer:
y = -4x+10
Step-by-step explanation:
Using the slope intercept form of a line
y = mx+b where m is the slope and b is the y intercept
y = -4x +b
Substituting the point in
6 = -4(-4) + b
6 = 16+b
Subtract 16 from each side
-10 =b
The equation is
y = -4x+10
multiply c^2(c^2-10c+25)
Step-by-step explanation:
c^2( c^2-10c+25)
=c^4 - 10c^3 + 25c^2
graph itttt plssssss
━━━━━━━☆☆━━━━━━━
▹ Answer
You can use a graphing calculator. Attached is a picture of it graphed.
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Sketch the graph of y=-3(x-3)2+4 and identify the axis of symmetry.
Answer:
The axis of symmetry of parabola is the equation where it cuts the middle of the graph.
So the axis of symmetry is x = 2 .
A regular admission for a movie is k8 per ticket seniors only pay k6 per ticket if the revenue for a movie totaled k1440 for an audience of 190 how many seniors attended?
Answer:
Step-by-step explanation: wjbsgstexrczlkcidgxtftwdcwdkfmw,d,f
Two different sizes of square metal duct are joined by a piece that is a frustum of a pyramid. Find the lateral surface area, if the small end is square with one side of length 17 in. and the larger square end is of length 19 in. on one side with a slant height of 2 in.
Answer:
288 in²
Step-by-step explanation:
The formula used to solve this question is :
Lateral Surface Area = s( P1 + P2)
Where s = slant height = 2 inches
P1 and P2 = Perimeter of the bases
Perimeter of base 1 = 4 × length of the end of the small square
4 × 17 inches = 68 inches
Perimeter of base 2 = 4 × length of the end of the large square
4 × 19 inches = 76 inches
Lateral Surface Area = 2 × (68 + 76)
= 2 × 144
= 288 in²
Find the greatest number of children to whom 125 pens 175 pencil can be divided equally.
Answer:
25 children
So , each child will get 25 pens and 7 pencils
You have to find the highest common factor of 125 and 175 which is 25 and then you have to multiply it by those two numbers to find how may pens and pencils will be given to 1 child
Hope this helps and pls mark as brianliest :)
Sophia‘s favorite homemade cookie recipe requires one cup of chocolate chips for 10 servings if the number of cups required for multiple batches is proportional to the number of servings being made how many cups of chocolate chips will she need to make enough cookies for 30 servings
Answer:
3 cups
Step-by-step explanation:
We can use a proportion to find how many cups of chocolate chips she needs for 30 servings. Assuming c = cups of chocolate chips and b = batches
[tex]\frac{c}{b}[/tex]
[tex]\frac{1}{10} = \frac{c}{30}[/tex]
We can now multiply the diagonal values that don't include the missing variable (30 and 1) and then divide it by the value that is diagonal to the variable (10)
[tex]30 \cdot 1 = 30\\30 \div 10 = 3[/tex]
Therefore, she needs 3 cups of chocolate chips to make 30 servings.
Answer:
3 cups
Step-by-step explanation:
We can use ratios to solve
1 cup x cups
---------------- = ----------------
10 servings 30 servings
Using cross products
1*30 = 10x
Divide by 10
30/10 = x
3 =x
3 cups
two regular polygons are such that the ratio of the measures of their interior angles is 4:3 and the ratio between their number of sides is 2:1 find the number of sides of each polygon
hey mate, here is ur answer in the attachment!
A right prism has a base in the shape of an octagon. The side length of the octagon is 4 inches. The length of the apothem is 4.83 inches. The height of the prism is 12 inches. What is the volume of the prism? Round your answer to the nearest whole number. cubic inches
Answer:
927 cubic inches
Step-by-step explanation:
The area of the octagonal base is ...
A = (1/2)Pa
where P is the perimeter, and 'a' is the apothem. Using the given numbers, the base area is ...
A = (1/2)(8·4)(4.83) = 77.28 . . . square inches
The volume of the prism is given by ...
V = Bh
where B represents the area of the base, and h is the height.
V = (77.28 in^2)(12 in) = 927.36 in^3
The volume of the prism is about 927 cubic inches.
the answer on edg is 927
Find f o g and g o f to determine if f and g are inverse functions. If they are not inverses, pick the function that would be the inverse with f(x). F(x) = -4x + 1; g(x) = (x+1)/4 Choices: a. G(x) has to be: (1-x)/4 b. Inverses c. G(x) has to be: 1/(4 - x) d. G(x) has to be: x/4
Answer:
G(x) = (1 - x)/4
is the inverse function required.
Step-by-step explanation:
Given F(x) = -4x + 1
Let y = F(x)
Then y = -4x + 1
=> y - 1 = -4x
4x = 1 - y
x = (1 - y)/4
That is, the inverse is (1 - x)/4
Therefore, G(x) has to be (1 - x)/4
which line segment could be a midsegment of ∆abc
Answer:
[tex]\overline{DF}[/tex] could be a midsegment of ∠ABC.
Step-by-step explanation:
A midsegment of a triangle must be two things:
1. Parallel to the 3rd side, in this case, [tex]\overline{AD}[/tex].
2. Half the length of the 3rd side, in this case, [tex]\overline{AD}[/tex].
Since we don't know the lengths, we can only go off of 1. There is only one line that is parallel to [tex]\overline{AD}[/tex] and it is [tex]\overline{DF}[/tex].
Hope this helped!
Find the value of x in the
following parallelogram:
2x - 10
2x + 50
Answer:
The value of x is 35
Step-by-step explanation:
In order to calculate the value of x in the following parallelogram: 2x - 10
2x + 50, we would have to calculate the following formula:
m<QPS+m<PQR=180°
According to the given data we have the following:
m<QPS=2x - 10
m<PQR=2x + 50
Therefore, 2x - 10+2x + 50=180
4x+40=180
x=140/4
x=35
7. The radius of a cylinder whose curved surface area is 2640 2 and height 21 cm is _________. (a) 100 ° (b) 50° (c) 80° (d) 90°
Answer:
The answer is 21.25cm
Step-by-step explanation:
Hope i am marked as brainliest
Area of a triangle is 1400 cm² the base of the triangle is 5 times the height what is the height of the triangle
Answer:
≈23.66
Step-by-step explanation:
Height ---> x
base ---> 5x
Formula for area of triangle: (base*height)/2
((5x)(x))/2 = 1400
[tex]5x^{2}[/tex]/2 = 1400
[tex]5x^{2}[/tex] = 1400 · 2 = 2800
[tex]x^2[/tex] = 2800/5 = 560
x= √560 ≈ 23.66
Campus rentals rent 2 and 3 bedroom apartments for 700$ and 900$ a month respectively. Last month they had six vacant apartments and reported $4600 in lost rent. How many of each type of apartment were vacant?
Answer:
2 - bedroom apartment = 4
3 - bedroom apartment = 2
Step-by-step explanation:
Given the following :
2 - bedroom apartment = $700 / month
3 - bedroom apartment = $900 / month
Last month:
Number of vacant apartment = 6
Amount of Lost rent = $4600
Let a = 2 - bedroom apartment and b = 3 - bedroom apartment
Vacant apartment :
a + b = 6 - - - (1)
Lost rent :
700a + 900b = 4600 - - - (2)
From (1),, a = 6 - b
Substitute a = 6 - b into (2)
700(6 - b) + 900b = 4600
4200 - 700b + 900b = 4600
4200 + 200b = 4600
200b = 4600 - 4200
200b = 400
b = 400/200
b = 2
From (1) ;
a + b = 6
a + 2 = 6
a = 6 - 2
a = 4
a = 2 - bedroom apartment = 4
b = 3 - bedroom apartment = 2
Mark the absolute maximum point of the graph.
is the absolute maximum point (-3,5)?
What are the square roots of; (note: i think there are supposed to be 2 each) 36 12 1.96 0.64 400 25/36
Answer:
36 : 6 and -6
12 = [tex]2\sqrt{3} , -2\sqrt{3}[/tex]
1.96 =1.4 and -1.4
0.64 : 0.8 and -0.8
400 : 20 and -20
25/36 = 5/6 and -5/6
Step-by-step explanation:
we know that
(-x)^2 = x^2
ALSO
(x)^2 = x^2
thus, square of both negative and positive number is same positive number.
_________________________________________________
36 = 6*6
36 = -6*-6
hence
square roots of 36 is both -6 and 6
12 = 4*3 = [tex]2^2*\sqrt{3} *\sqrt{3}[/tex]
[tex]\sqrt{12} = 2\sqrt{3}[/tex]
also
12 = [tex]-2\sqrt{3} *-2\sqrt{3}[/tex]
[tex]\sqrt{12} = -2\sqrt{3}[/tex]
___________________________________
1.96 = 196/100 = (14/10)^2
1.96 = 196/100 = (-14/10)^2
hence
[tex]\sqrt{1.96} = 14/10 \ or -14/10[/tex]
_______________________________
0.64 = 64/100 = (8/10)^2 = 0.8^2
0.64 = 64/100 = (-8/10)^2 = (-0.8)^2
Thus, square root of 0.64 = 0.8 and -0.8
_________________________________
400 = 20^2
400 = (-20)^2
[tex]\sqrt{400} = 20\\\sqrt{400} = -20\\[/tex]
__________________________________
25/36 = (5/6)^2
25/36 = (-5/6)^2
[tex]\sqrt{ 25/36} = 5/6 \\\sqrt{ 25/36} = (-5/6[/tex]
Check all that apply. If tan theta = 15/8 then:
Answer:
B, C, D
Step-by-step explanation:
if tan theta = 15/8 then the hypotenuse is 17
therefore the correct answers are B, C, D
will mark brainliest!!!plz helppp
Answer:
(5,-6)
Step-by-step explanation:
ONE WAY:
If [tex]f(x)=x^2-6x+3[/tex], then [tex]f(x-2)=(x-2)^2-6(x-2)+3[/tex].
Let's simplify that.
Distribute with [tex]-6(x-2)[/tex]:
[tex]f(x-2)=(x-2)^2-6x+12+3[/tex]
Combine the end like terms [tex]12+3[/tex]:
[tex]f(x-2)=(x-2)^2-6x+15[/tex]
Use [tex](x-b)^2=x^2-2bx+b^2[/tex] identity for [tex](x-2)^2[/tex]:
[tex]f(x-2)=x^2-4x+4-6x+15[/tex]
Combine like terms [tex]-4x-6x[/tex] and [tex]4+15[/tex]:
[tex]f(x-2)=x^2-10x+19[/tex]
We are given [tex]g(x)=f(x-2)[/tex].
So we have that [tex]g(x)=x^2-10x+19[/tex].
The vertex happens at [tex]x=\frac{-b}{2a}[/tex].
Compare [tex]x^2-10x+19[/tex] to [tex]ax^2+bx+c[/tex] to determine [tex]a,b,\text{ and } c[/tex].
[tex]a=1[/tex]
[tex]b=-10[/tex]
[tex]c=19[/tex]
Let's plug it in.
[tex]\frac{-b}{2a}[/tex]
[tex]\frac{-(-10)}{2(1)}[/tex]
[tex]\frac{10}{2}[/tex]
[tex]5[/tex]
So the [tex]x-[/tex] coordinate is 5.
Let's find the corresponding [tex]y-[/tex] coordinate by evaluating our expression named [tex]g[/tex] at [tex]x=5[/tex]:
[tex]5^2-10(5)+19[/tex]
[tex]25-50+19[/tex]
[tex]-25+19[/tex]
[tex]-6[/tex]
So the ordered pair of the vertex is (5,-6).
ANOTHER WAY:
The vertex form of a quadratic is [tex]a(x-h)^2+k[/tex] where the vertex is [tex](h,k)[/tex].
Let's put [tex]f[/tex] into this form.
We are given [tex]f(x)=x^2-6x+3[/tex].
We will need to complete the square.
I like to use the identity [tex]x^2+kx+(\frac{k}{2})^2=(x+\frac{k}{2})^2[/tex].
So If you add something in, you will have to take it out (and vice versa).
[tex]x^2-6x+3[/tex]
[tex]x^2-6x+(\frac{6}{2})^2+3-(\frac{6}{2})^2[/tex]
[tex](x+\frac{-6}{2})^2+3-3^2[/tex]
[tex](x+-3)^2+3-9[/tex]
[tex](x-3)^2+-6[/tex]
So we have in vertex form [tex]f[/tex] is:
[tex]f(x)=(x-3)^2+-6[/tex].
The vertex is (3,-6).
So if we are dealing with the function [tex]g(x)=f(x-2)[/tex].
This means we are going to move the vertex of [tex]f[/tex] right 2 units to figure out the vertex of [tex]g[/tex] which puts us at (3+2,-6)=(5,-6).
The [tex]y-[/tex] coordinate was not effected here because we were only moving horizontally not up/down.