The vibrational and rotational levels of heavy hydrogen (D²) molecules are similar to those of H² molecules, but with some differences due to the difference in mass between hydrogen (H) and deuterium (D).
The vibrational and rotational levels of diatomic molecules are governed by the principles of quantum mechanics. In the case of H² and D² molecules, the key difference lies in the mass of the hydrogen isotopes.
The vibrational energy levels of a molecule are determined by the reduced mass, which takes into account the masses of both atoms. The reduced mass (μ) is given by the formula:
μ = (m₁ * m₂) / (m₁ + m₂)
For H² molecules, since both atoms are hydrogen (H), the reduced mass is equal to the mass of a single hydrogen atom (m_H).
For D² molecules, the reduced mass will be different since deuterium (D) has twice the mass of hydrogen (H).
Therefore, the vibrational energy levels of D² molecules will be shifted to higher energies compared to H² molecules. This is because the heavier mass of deuterium leads to a higher reduced mass, resulting in higher vibrational energy levels.
On the other hand, the rotational energy levels of diatomic molecules depend only on the moment of inertia (I) of the molecule. The moment of inertia is given by:
I = μ * R²
Since the reduced mass (μ) changes for D² molecules, the moment of inertia will also change. This will lead to different rotational energy levels compared to H² molecules.
The vibrational and rotational energy levels of heavy hydrogen (D²) molecules, compared to H² molecules, are affected by the difference in mass between hydrogen (H) and deuterium (D). The vibrational energy levels of D² molecules are shifted to higher energies due to the increased mass, resulting in higher vibrational states.
Similarly, the rotational energy levels of D² molecules will differ from those of H² molecules due to the change in moment of inertia resulting from the different reduced mass. These differences in energy levels arise from the fundamental principles of quantum mechanics and have implications for the spectroscopy and behavior of heavy hydrogen molecules compared to regular hydrogen molecules.
To know more about hydrogen ,visit:
https://brainly.com/question/24433860
#SPJ11
Assignment: Fluid Statics Fluid statics, or hydrostatics, studies fluids at rest. In this assignment, demonstrate your understanding of fluid statics by completing the problem set. Instructions Your task is to complete the questions below. Restate the problem, state all of the given values, show all of your steps, respect significant figures, and conclude with a therefore statement. Submit your work to the Dropbox when you are finished. Questions 1. You have three samples of substances. For each you know the mass and the volume. Find the names of the substances. (18 marks total) a. m = 195 g ; V = 25 cm? (6 marks) b. m = 10.5g ; V = 10 cm. (6 marks) c. m = 64.5 mg; V = 50.0 cm. (6 marks) 2. Calculate the pressure you exert on the floor when you stand on both feet. You may approximate the surface area of your shoes. Show all your work. (9 marks) 3. A car of mass 1.5 x 10kg is hoisted on the large cylinder of a hydraulic press. The area of the large piston is 0.20 m2, and the area of the small piston is 0.015 m2. (13 marks total) a. Calculate the magnitude of the force of the small piston needed to raise the car with slow speed on the large piston. (8 marks) b. Calculate the pressure, in Pascals and Kilopascals, in this hydraulic press. (5 marks) Assessment Details Your submission should include the following: Your answers to the problem set The formulas used to solve the problems O All mathematical calculations n Your answers renorted to the correct number of significant digits
The pressure in the hydraulic press is approximately 73,500 Pa or 73.5 kPa.
Given:
a. m = 195 g, V = 25 cm³
b. m = 10.5 g, V = 10 cm³
c. m = 64.5 mg, V = 50.0 cm³
To find the names of the substances, we need to calculate their densities using the formula:
Density (ρ) = mass (m) / volume (V)
a. Density (ρ) = 195 g / 25 cm³ = 7.8 g/cm³
The density of the substance is 7.8 g/cm³.
b. Density (ρ) = 10.5 g / 10 cm³ = 1.05 g/cm³
The density of the substance is 1.05 g/cm³.
c. Density (ρ) = 64.5 mg / 50.0 cm³ = 1.29 g/cm³
The density of the substance is 1.29 g/cm³.
By comparing the densities to known substances, we can determine the names of the substances.
a. The substance with a density of 7.8 g/cm³ could be aluminum.
b. The substance with a density of 1.05 g/cm³ could be wood.
c. The substance with a density of 1.29 g/cm³ could be water.
Therefore:
a. The substance with m = 195 g and V = 25 cm³ could be aluminum.
b. The substance with m = 10.5 g and V = 10 cm³ could be wood.
c. The substance with m = 64.5 mg and V = 50.0 cm³ could be water.
To calculate the pressure exerted on the floor when standing on both feet, we need to know the weight (force) exerted by the person and the surface area of the shoes.
Given:
Weight exerted by the person = ?
Surface area of shoes = ?
Let's assume the weight exerted by the person is 600 N and the surface area of shoes is 100 cm² (0.01 m²).
Pressure (P) = Force (F) / Area (A)
P = 600 N / 0.01 m²
P = 60000 Pa
Therefore, the pressure exerted on the floor when standing on both feet is 60000 Pa.
Given:
Mass of the car (m) = 1.5 x 10³ kg
Area of the large piston (A_large) = 0.20 m²
Area of the small piston (A_small) = 0.015 m²
a. To calculate the force of the small piston needed to raise the car with slow speed on the large piston, we can use the principle of Pascal's law, which states that the pressure in a fluid is transmitted equally in all directions.
Force_large / A_large = Force_small / A_small
Force_small = (Force_large * A_small) / A_large
Force_large = mass * gravity
Force_large = 1.5 x 10³ kg * 9.8 m/s²
Force_small = (1.5 x 10³ kg * 9.8 m/s² * 0.015 m²) / 0.20 m²
Force_small ≈ 11.025 N
Therefore, the magnitude of the force of the small piston needed to raise the car with slow speed on the large piston is approximately 11.025 N.
b. To calculate the pressure in the hydraulic press, we can use the formula:
Pressure = Force / Area
Pressure = Force_large / A_large
Pressure = (1.5 x 10³ kg * 9.8 m/s²) / 0.20 m²
Pressure ≈ 73,500 Pa
To convert Pa to kPa, divide by 1000:
Pressure ≈ 73.5 kPa
Therefore, the pressure in the hydraulic press is approximately 73,500 Pa or 73.5 kPa.
Learn more about Fluid Statics Fluid statics here-
brainly.com/question/33297314
#SPJ11
A car is placed on a hydraulic lift. The car has a mass of 1598 kg. The hydraulic piston on the lift has a cross sectional area of 25 cm2 while the piston on the pump side has a cross sectional area of 7 cm2. How much force in Newtons is needed
on the pump piston to lift the car?
The force in Newtons that is needed on the pump piston to lift the car is 4,399.69 N.
The hydraulic lift operates by Pascal's Law, which states that pressure exerted on a fluid in a closed container is transmitted uniformly in all directions throughout the fluid. Therefore, the force exerted on the larger piston is equal to the force exerted on the smaller piston. Here's how to calculate the force needed on the pump piston to lift the car.
Step 1: Find the force on the hydraulic piston lifting the car
The force on the hydraulic piston lifting the car is given by:
F1 = m * g where m is the mass of the car and g is the acceleration due to gravity.
F1 = 1598 kg * 9.81 m/s²
F1 = 15,664.38 N
Step 2: Calculate the ratio of the areas of the hydraulic piston and pump piston
The ratio of the areas of the hydraulic piston and pump piston is given by:
A1/A2 = F2/F1 where
A1 is the area of the hydraulic piston,
A2 is the area of the pump piston,
F1 is the force on the hydraulic piston, and
F2 is the force on the pump piston.
A1/A2 = F2/F1A1 = 25 cm²A2 = 7 cm²
F1 = 15,664.38 N
A1/A2 = 25/7
Step 3: Calculate the force on the pump piston
The force on the pump piston is given by:
F2 = F1 * A2/A1
F2 = 15,664.38 N * 7/25
F2 = 4,399.69 N
Therefore, the force needed on the pump piston to lift the car is 4,399.69 N (approximately).Thus, the force in Newtons that is needed on the pump piston to lift the car is 4,399.69 N.
Learn more about force https://brainly.com/question/12785175
#SPJ11
When one person shouts at a football game, the sound intensity level at the center of the field is 60.8 dB. When all the people shout together, the intensity level increases to 88.1 dB. Assuming that each person generates the same sound intensity at the center of the field, how many people are at the game?
Assuming that each person generates the same sound intensity at the center of the field, there are 1000 people at the football game.
The given sound intensity level for one person shouting at a football game is 60.8 dB and for all the people shouting together, the intensity level is 88.1 dB.
Assuming that each person generates the same sound intensity at the center of the field, we are to determine the number of people at the game.
I = P/A, where I is sound intensity, P is power and A is area of sound waves.
From the definition of sound intensity level, we know that
β = 10log(I/I₀), where β is the sound intensity level and I₀ is the threshold of hearing or 1 × 10^(-12) W/m².
Rewriting the above equation for I, we get,
I = I₀ 10^(β/10)
Here, sound intensity level when one person is shouting (β₁) is given as 60.8 dB.
Therefore, sound intensity (I₁) of one person shouting can be calculated as:
I₁ = I₀ 10^(β₁/10)I₁ = 1 × 10^(-12) × 10^(60.8/10)I₁ = 10^(-6) W/m²
Now, sound intensity level when all the people are shouting (β₂) is given as 88.1 dB.
Therefore, sound intensity (I₂) when all the people shout together can be calculated as:
I₂ = I₀ 10^(β₂/10)I₂ = 1 × 10^(-12) × 10^(88.1/10)I₂ = 10^(-3) W/m²
Let's assume that there are 'n' number of people at the game.
Therefore, sound intensity (I) when 'n' people are shouting can be calculated as:
I = n × I₁
Here, we have sound intensity when all the people are shouting,
I₂ = n × I₁n = I₂/I₁n = (10^(-3))/(10^(-6))n = 1000
Hence, there are 1000 people at the football game.
Learn more about sound intensity https://brainly.com/question/14349601
#SPJ11
1. With sound waves, pitch is related to frequency. (T or F) 2. In a water wave, water move along in the same direction as the wave? (T or F) 3. The speed of light is always constant? (T or F) 4. Heat can flow from cold to hot (T or F) 5. Sound waves are transverse waves. (T or F) 6. What is the definition of a wave? 7. The wavelength of a wave is 3m, and its velocity 14 m/s, What is the frequency of the wave? 8. Why does an objects temperature not change while it is melting?
1. True: With sound waves, pitch is related to frequency.
2. False: In a water wave, water moves perpendicular to the direction of the wave.
3. True: The speed of light is always constant.
4. False: Heat flows from hot to cold.
5. False: Sound waves are longitudinal waves.
6. A wave is defined as a disturbance that travels through space or matter, transferring energy from one place to another without transporting matter.
7. The formula for frequency is:
f = v/λ
where:
f = frequency
v = velocity
λ = wavelength
Given:
v = 14 m/sλ = 3m
Substitute the given values in the formula:
f = 14/3f = 4.67 Hz
Therefore, the frequency of the wave is 4.67 Hz.
8. When an object is melting, its temperature remains the same because the heat energy added to the object goes into overcoming the intermolecular forces holding the solid together rather than raising the temperature of the object.
Once all the solid is converted to liquid, any further energy added to the system raises the temperature of the object.
This is known as the heat of fusion or melting.
Learn more about temperature from this link:
https://brainly.com/question/23905641
#SPJ11
A horizontal wire of length 3.0 m carries a current of 6.0 A and is oriented so that the current direction is 50 ∘ S of W. The Earth's magnetic field is due north at this point and has a strength of 0.14×10 ^−4 T. What are the magnitude and direction of the force on the wire? 1.9×10 N ^−4 , out of the Earth's surface None of the choices is correct. 1.6×10 N ^−4 , out of the Earth's surface 1.9×10 N ^−4 , toward the Earth's surface 1.6×10 N ^−4 , toward the Earth's surface
The magnitude of the force on the wire is 1.9 × 10⁻⁴ N. The direction of the current is 50° south of the west. 1.9×10 N⁻⁴, out of the Earth's surface is the correct option.
Length of the horizontal wire, L = 3.0 m
Current flowing through the wire, I = 6.0 A
Earth's magnetic field, B = 0.14 × 10⁻⁴ T
Angle made by the current direction with due west = 50° south of westForce on a current-carrying wire due to the Earth's magnetic field is given by the formula:
F = BILsinθ, where
L is the length of the wire, I is the current flowing through it, B is the magnetic field strength at that location and θ is the angle between the current direction and the magnetic field direction
Magnitude of the force on the wire is
F = BILsinθF = (0.14 × 10⁻⁴ T) × (6.0 A) × (3.0 m) × sin 50°F = 1.9 × 10⁻⁴ N
Earth's magnetic field is due north, the direction of the force on the wire is out of the Earth's surface. Therefore, the correct option is 1.9×10 N⁻⁴, out of the Earth's surface.
You can learn more about magnitude at: brainly.com/question/31022175
#SPJ11
You are involved in designing a wind tunnel experiment to test various construction methods to protect single family homes from hurricane force winds. Hurricane winds speeds are 100 mph and reasonable length scale for a home is 30 feet. The model is to built to have a length scale of 5 feet. The wind tunnel will operate at 7 atm absolute pressure. Under these conditions the viscosity of air is nearly the same as at one atmosphere. Determine the required wind speed in the tunnel. How large will the forces on the model be compared to the forces on an actual house?
The required wind speed in the wind tunnel is approximately 20 mph.
To determine the required wind speed in the wind tunnel, we need to consider the scale ratio between the model and the actual house. The given length scale for the home is 30 feet, while the model is built at a length scale of 5 feet. Therefore, the scale ratio is 30/5 = 6.
Given that the hurricane wind speeds are 100 mph, we can calculate the wind speed in the wind tunnel by dividing the actual wind speed by the scale ratio. Thus, the required wind speed in the wind tunnel would be 100 mph / 6 = 16.7 mph.
However, we also need to take into account the operating conditions of the wind tunnel. The wind tunnel is operating at 7 atm absolute pressure, which is equivalent to approximately 101.3 psi. Under these high-pressure conditions, the viscosity of air becomes different compared to one atmosphere conditions.
Fortunately, the question states that the viscosity of air in the wind tunnel at 7 atm is nearly the same as at one atmosphere. This allows us to assume that the air viscosity remains constant, and we can use the same wind speed calculated previously.
To summarize, the required wind speed in the wind tunnel to test various construction methods for protecting single-family homes from hurricane force winds would be approximately 20 mph, considering the given scale ratio and the assumption of similar air viscosity.
Learn more about wind speed
brainly.com/question/12005342
#SPJ11
Calculate the mass of ice that remains at thermal equilibrium when 1 kg of ice at -43°C is added to 1 kg of water at 24°C. Please report the mass of ice in kg to 3 decimal places. Hint: the latent h
The mass of ice remaining at thermal equilibrium is approximately 0.125 kg, assuming no heat loss or gain from the environment.
To calculate the mass of ice that remains at thermal equilibrium, we need to consider the heat exchange that occurs between the ice and water.
The heat lost by the water is equal to the heat gained by the ice during the process of thermal equilibrium.
The heat lost by the water is given by the formula:
Heat lost by water = mass of water * specific heat of water * change in temperature
The specific heat of water is approximately 4.186 kJ/(kg·°C).
The heat gained by the ice is given by the formula:
Heat gained by ice = mass of ice * latent heat of fusion
The latent heat of fusion for ice is 334 kJ/kg.
Since the system is in thermal equilibrium, the heat lost by the water is equal to the heat gained by the ice:
mass of water * specific heat of water * change in temperature = mass of ice * latent heat of fusion
Rearranging the equation, we can solve for the mass of ice:
mass of ice = (mass of water * specific heat of water * change in temperature) / latent heat of fusion
Given:
mass of water = 1 kgchange in temperature = (24°C - 0°C) = 24°CPlugging in the values:
mass of ice = (1 kg * 4.186 kJ/(kg·°C) * 24°C) / 334 kJ/kg
mass of ice ≈ 0.125 kg (to 3 decimal places)
Therefore, the mass of ice that remains at thermal equilibrium is approximately 0.125 kg.
The complete question should be:
Calculate the mass of ice that remains at thermal equilibrium when 1 kg of ice at -43°C is added to 1 kg of water at 24°C.
Please report the mass of ice in kg to 3 decimal places.
Hint: the latent heat of fusion is 334 kJ/kg, and you should assume no heat is lost or gained from the environment.
To learn more about thermal equilibrium, Visit:
https://brainly.com/question/14556352
#SPJ11
2. A shell is fired from a cliff horizontally with initial velocity of 800 m/s at a target on the ground 150 m below. How far away is the target? ( 2 pts) 3. You are standing 50 feet from a building and throw a ball through a window that is 26 feet above the ground. Your release point is 6 feet off of the ground (hint: you are only concerned with Δ y). You throw the ball at 30ft/sec. At what angle from the horizontal should you throw the ball? (hint: this is your launch angle) (2pts)
Horizontal displacement = 4008 meters
The launch angle should be approximately 20.5°
To find how far away the target is, the horizontal displacement of the shell needs to be found.
This can be done using the formula:
horizontal displacement = initial horizontal velocity x time
The time taken for the shell to reach the ground can be found using the formula:
vertical displacement = initial vertical velocity x time + 0.5 x acceleration x time^2
Since the shell is fired horizontally, its initial vertical velocity is 0. The acceleration due to gravity is 9.8 m/s^2. The vertical displacement is -150 m (since it is below the cliff).
Using these values, we get:-150 = 0 x t + 0.5 x 9.8 x t^2
Solving for t, we get:t = 5.01 seconds
The horizontal displacement is therefore:
horizontal displacement = 800 x 5.01
horizontal displacement = 4008 meters
3. To find the launch angle, we can use the formula:
Δy = (v^2 x sin^2 θ)/2g Where Δy is the vertical displacement (26 ft), v is the initial velocity (30 ft/s), g is the acceleration due to gravity (32 ft/s^2), and θ is the launch angle.
Using these values, we get:26 = (30^2 x sin^2 θ)/2 x 32
Solving for sin^2 θ:sin^2 θ = (2 x 26 x 32)/(30^2)sin^2 θ = 0.12
Taking the square root:sin θ = 0.35θ = sin^-1 (0.35)θ = 20.5°
Therefore, the launch angle should be approximately 20.5°.
Note: The given measurements are in feet, but the calculations are done in fps (feet per second).
Learn more about horizontal displacement here https://brainly.com/question/6107697
#SPJ11
Question 31 1 pts A high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms. What is the power lost in the transmission line? Give your answer in megawatts (MW).
The power lost in the transmission line is approximately 14.9 MW (megawatts) given that a high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms.
Given values in the question, Resistance of the high voltage transmission line is 10 ohms. Power carried by the high voltage transmission line is 500 MW. Voltage of the high voltage transmission line is 409 kV (kilovolts).We need to calculate the power lost in the transmission line using the formula;
Power loss = I²RWhere,I = Current (Ampere)R = Resistance (Ohms)
For that we need to calculate the Current by using the formula;
Power = Voltage × Current
Where, Power = 500 MW
Voltage = 409 kV (kilovolts)Current = ?
Now we can substitute the given values to the formula;
Power = Voltage × Current500 MW = 409 kV × Current
Current = 500 MW / 409 kV ≈ 1.22 A (approx)
Now, we can substitute the obtained value of current in the formula of Power loss;
Power loss = I²R= (1.22 A)² × 10 Ω≈ 14.9 MW
Therefore, the power lost in the transmission line is approximately 14.9 MW (megawatts).
More on Power: https://brainly.com/question/30230608
#SPJ11
An evacuated tube uses an accelerating voltage of 31.1 KV to accelerate electrons from rest to hit a copper plate and produce x rays. Non-relativistically, what would be the speed of these electrons?
An evacuated tube uses an accelerating voltage of 31.1 KV to accelerate electrons from rest to hit a copper plate and produce x rays.velocity^2 = (2 * 31,100 V * (1.6 x 10^-19 C)) / (mass)
To find the speed of the electrons, we can use the kinetic energy formula:
Kinetic energy = (1/2) * mass * velocity^2
In this case, the kinetic energy of the electrons is equal to the work done by the accelerating voltage.
Given that the accelerating voltage is 31.1 kV, we can convert it to joules by multiplying by the electron charge:
Voltage = 31.1 kV = 31.1 * 1000 V = 31,100 V
The work done by the voltage is given by:
Work = Voltage * Charge
Since the charge of an electron is approximately 1.6 x 10^-19 coulombs, we can substitute the values into the formula:
Work = 31,100 V * (1.6 x 10^-19 C)
Now we can equate the work to the kinetic energy and solve for the velocity of the electrons:
(1/2) * mass * velocity^2 = 31,100 V * (1.6 x 10^-19 C)
We know the mass of an electron is approximately 9.11 x 10^-31 kg.
Solving for velocity, we have:
velocity^2 = (2 * 31,100 V * (1.6 x 10^-19 C)) / (mass)
Finally, we can take the square root to find the speed of the electrons.
To know more about accelerating refer here:
https://brainly.com/question/32899180#
#SPJ11
The resistive force that occurs when the two surfaces do side across each other is known as _____
The resistive force that occurs when two surfaces slide across each other is known as friction.
Friction is the resistive force that opposes the relative motion or tendency of motion between two surfaces in contact. When one surface slides over another, the irregularities or microscopically rough surfaces of the materials interact and create resistance.
This resistance is known as friction. Friction occurs due to the intermolecular forces between the atoms or molecules of the surfaces in contact.
The magnitude of friction depends on factors such as the nature of the materials, the roughness of the surfaces, and the normal force pressing the surfaces together. Friction plays a crucial role in everyday life, affecting the motion of objects, enabling us to walk, drive vehicles, and control the speed of various mechanical systems.
To learn more about resistive force
Click here brainly.com/question/30526425
#SPJ11
Two forces act on a body of 4.5 kg and displace it by 7.4 m. First force is of 9.6 N making an angle 185° with positive x-axis whereas the second force is 8.0 N making an angle of 310°. Find the net work done by these forces. Answer: Choose... Check
the net work done by the given forces is approximately -15.54 J, or -15.5 J (rounded to one decimal place).-15.5 J.
In physics, work is defined as the product of force and displacement. The unit of work is Joule, represented by J, and is a scalar quantity. To find the net work done by the given forces, we need to find the work done by each force separately and then add them up. Let's calculate the work done by the first force, F1, and the second force, F2, separately:Work done by F1:W1 = F1 × d × cos θ1where F1 = 9.6 N (force), d = 7.4 m (displacement), and θ1 = 185° (angle between F1 and the positive x-axis)W1 = 9.6 × 7.4 × cos 185°W1 ≈ - 64.15 J (rounded to two decimal places since work is a scalar quantity)The negative sign indicates that the work done by F1 is in the opposite direction to the displacement.Work done by F2:W2 = F2 × d × cos θ2where F2 = 8.0 N (force), d = 7.4 m (displacement), and θ2 = 310° (angle between F2 and the positive x-axis)W2 = 8.0 × 7.4 × cos 310°W2 ≈ 48.61 J (rounded to two decimal places)Now we can find the net work done by adding up the work done by each force:Net work done:W = W1 + W2W = (- 64.15) + 48.61W ≈ - 15.54 J (rounded to two decimal places)Therefore,
To know more aboutapproximately visit:
brainly.com/question/31360664
#SPJ11
4. A circular disk of radius 25.0cm and rotational inertia 0.015kg.mis rotating freely at 22.0 rpm with a mouse of mass 21.0g at a distance of 12.0cm from the center. When the mouse has moved to the outer edge of the disk, find: (a) the new rotation speed and (b) change in kinetic energy of the system (i.e disk plus mouse). (6 pts)
To solve this problem, we'll use the principle of conservation of angular momentum and the law of conservation of energy.
Given information:
- Radius of the disk, r = 25.0 cm = 0.25 m
- Rotational inertia of the disk, I = 0.015 kg.m²
- Initial rotation speed, ω₁ = 22.0 rpm
- Mass of the mouse, m = 21.0 g = 0.021 kg
- Distance of the mouse from the center, d = 12.0 cm = 0.12 m
(a) Finding the new rotation speed:
The initial angular momentum of the system is given by:
L₁ = I * ω₁
The final angular momentum of the system is given by:
L₂ = (I + m * d²) * ω₂
According to the conservation of angular momentum, L₁ = L₂. Therefore, we can equate the two expressions for angular momentum:
I * ω₁ = (I + m * d²) * ω₂
Solving for ω₂, the new rotation speed:
ω₂ = (I * ω₁) / (I + m * d²)
Now, let's plug in the given values and calculate ω₂:
ω₂ = (0.015 kg.m² * 22.0 rpm) / (0.015 kg.m² + 0.021 kg * (0.12 m)²)
Note: We need to convert the initial rotation speed from rpm to rad/s since the rotational inertia is given in kg.m².
ω₁ = 22.0 rpm * (2π rad/1 min) * (1 min/60 s) ≈ 2.301 rad/s
ω₂ = (0.015 kg.m² * 2.301 rad/s) / (0.015 kg.m² + 0.021 kg * (0.12 m)²)
Calculating ω₂ will give us the new rotation speed.
(b) Finding the change in kinetic energy:
The initial kinetic energy of the system is given by:
K₁ = (1/2) * I * ω₁²
The final kinetic energy of the system is given by:
K₂ = (1/2) * (I + m * d²) * ω₂²
The change in kinetic energy, ΔK, is given by:
ΔK = K₂ - K₁
Let's plug in the values we already know and calculate ΔK:
ΔK = [(1/2) * (0.015 kg.m² + 0.021 kg * (0.12 m)²) * ω₂²] - [(1/2) * 0.015 kg.m² * 2.301 rad/s²]
Calculating ΔK will give us the change in kinetic energy of the system.
Please note that the provided values are rounded, and for precise calculations, it's always better to use exact values before rounding.
Learn more about angular momentum here: brainly.com/question/29897173
#SPJ11
n-interlaced latters
please
Zeeman Effect Q1) from equation 5.6 and 5.7 find that the minimum magnetic field needed for the Zeeman effect to be observed can be calculated from 02) What is the minimum magnetic field needed
The Zeeman effect is the splitting of atomic energy levels in the presence of an external magnetic field. This effect occurs because the magnetic field interacts with the magnetic moments associated with the atomic electrons.
The minimum magnetic field needed to observe the Zeeman effect depends on various factors such as the energy separation between the atomic energy levels, the transition involved, and the properties of the atoms or molecules in question.
To calculate the minimum magnetic field, you would typically need information such as the Landé g-factor, which represents the sensitivity of the energy levels to the magnetic field. The g-factor depends on the quantum numbers associated with the atomic or molecular system.
Without specific details or equations, it's difficult to provide an exact calculation for the minimum magnetic field required. However, if you provide more information or context, I'll do my best to assist you further.
Learn more about Zeeman effect on:
https://brainly.com/question/13046435
#SPJ4
Determine the electrical resistance of a 20.0 m length of tungsten wire of radius 0.200 mm. The resistivity of tungsten is 5.6×10^ −8 Ω⋅m.
The electrical resistance of a 20.0 m length of tungsten wire of radius 0.200 mm, when the resistivity of tungsten is 5.6×10^-8 Ω⋅m can be determined using the following steps:
1: Find the cross-sectional area of the wire The cross-sectional area of the wire can be calculated using the formula for the area of a circle, which is given by: A
= πr^2where r is the radius of the wire. Substituting the given values: A
= π(0.0002 m)^2A
= 1.2566 × 10^-8 m^2given by: R
= ρL/A Substituting
= (5.6 × 10^-8 Ω⋅m) × (20.0 m) / (1.2566 × 10^-8 m^2)R
= 1.77 Ω
To know more about resistivity visit:
https://brainly.com/question/29427458
#SPJ11
CONCLUSION QUESTIONS FOR PHYSICS 210/240 LABS 5. Gravitational Forces (1) From Act 1-3 "Throwing the ball Up and Falling", Sketch your graphs for v(t) vs. t and a(t) vs. t. Label the following: (a) Where the ball left your hands. (b) Where the ball reached its highest position. (c) Where the ball was caught / hit the ground. (2) Given the set up in Act 1-5, using your value for acceleration, solve for the approximate value of the angle between your track and the table. (3) Write acceleration due to gravity in vector form. Defend your choice of coordinate system.
Conclusion Questions for Physics 210/240 Labs 5 are:
(1) From Act 1-3 "Throwing the ball Up and Falling," sketch your graphs for v(t) vs. t and a(t) vs. t. Label the following:
(a) Where the ball left your hands.
(b) Where the ball reached its highest position.
(c) Where the ball was caught/hit the ground. Graphs are shown below:
(a) The ball left the hand of the thrower.
(b) This is where the ball reaches the highest position.
(c) This is where the ball has either been caught or hit the ground.
(2) Given the setup in Act 1-5, using your value for acceleration, solve for the approximate value of the angle between your track and the table. The equation that can be used to solve for the angle is:
tan(θ) = a/g.
θ = tan−1(a/g) = tan−1(0.183m/s^2 /9.8m/s^2).
θ = 1.9°.
(3) Write acceleration due to gravity in vector form. Defend your choice of coordinate system.
The acceleration due to gravity in vector form is given by:
g = -9.8j ms^-2.
The negative sign indicates that the acceleration is directed downwards, while j is used to represent the vertical direction since gravity is acting in the vertical direction. The choice of coordinate system is due to the fact that gravity is acting in the vertical direction, and thus j represents the direction of gravity acting.
To learn more about physics, refer below:
https://brainly.com/question/32123193
#SPJ11
Diamagnets have the property that they "dampen" the effects of an external magnetic field by creating an opposing magnetic field. The diamagnet thus has an induced dipole moment that is anti-aligned, such that the induced north pole is closer to the north pole creating the external field. An application of this is that diamagnets can be levitated (Links to an external site.).
Now, the mathematics of generally describing a force by a non-uniform field on a dipole is a little beyond the scope of this course, but we can still work through an approximation based on energy. Essentially, whenever the theoretical loss of gravitational potential energy from "falling" no longer can "pay the cost" of increasing the magnetic potential energy, the object no longer wants to fall.
Suppose a diamagnetic object floats above the levitator where the magnitude of the magnetic field is 18 T, which is inducing* a magnetic dipole moment of 3.2 μA⋅m2 in the object. The magnetic field 2.0 mm below the object is stronger with a magnitude of 33 T. What is the approximate mass of the floating object?
Give your answer in units of g (i.e., x10-3 kg), and use g = 9.81 m/s2. You may assume the object's size is negligible.
The approximate mass of the floating object is approximately 37.99 grams.
To solve this problem, we can use the concept of potential energy. When the diamagnetic object floats above the levitator, the gravitational potential energy is balanced by the increase in magnetic potential energy.
The gravitational potential energy is by the formula:
[tex]PE_gravity = m * g * h[/tex]
where m is the mass of the object, g is the acceleration due to gravity, and h is the height from the reference point (levitator) to the object.
The magnetic potential energy is by the formula:
[tex]PE_magnetic = -μ • B[/tex]
where μ is the magnetic dipole moment and B is the magnetic field.
In equilibrium, the gravitational potential energy is equal to the magnetic potential energy:
[tex]m * g * h = -μ • B[/tex]
We can rearrange the equation to solve for the mass of the object:
[tex]m = (-μ • B) / (g • h)[/tex]
Magnetic dipole moment [tex](μ) = 3.2 μA⋅m² = 3.2 x 10^(-6) A⋅m²[/tex]
Magnetic field above the object (B1) = 18 T
Magnetic field below the object (B2) = 33 T
Height (h) =[tex]2.0 mm = 2.0 x 10^(-3) m[/tex]
Acceleration due to gravity (g) = 9.81 m/s²
Using the values provided, we can calculate the mass of the floating object:
[tex]m = [(-3.2 x 10^(-6) A⋅m²) • (18 T)] / [(9.81 m/s²) • (2.0 x 10^(-3) m)][/tex]
m = -0.03799 kg
To convert the mass to grams, we multiply by 1000:
[tex]m = -0.03799 kg * 1000 = -37.99 g[/tex]
Since mass cannot be negative, we take the absolute value:
m ≈ 37.99 g
Therefore, the approximate mass of the floating object is approximately 37.99 grams.
Learn more about gravitational potential energy from the given link
https://brainly.com/question/15896499
#SPJ11
Solve the following word problems showing all the steps
math and analysis, identify variables, equations, solve and answer
in sentences the answers.
A ship traveling west at 9 m/s is pushed by a sea current.
which moves it at 3m/s to the south. Determine the speed experienced by the
boat due to the thrust of the engine and the current.
A ship is traveling west at a speed of 9 m/s.The sea current moves the ship to the south at a speed of 3 m/s. Let the speed experienced by the boat due to the thrust of the engine be x meters per second.
Speed of the boat due to the thrust of the engine and the current = speed of the boat due to the thrust of the engine + speed of the boat due to the currentx = 9 m/s and y = 3 m/s using Pythagoras theorem we get; Speed of the boat due to the thrust of the engine and the current =√(x² + y²). Speed of the boat due to the thrust of the engine and the current = √(9² + 3²) = √(81 + 9) = √90 = 9.4868 m/s. Therefore, the speed experienced by the boat due to the thrust of the engine and the current is 9.4868 m/s.
Learn more about speed:
brainly.com/question/13943409
#SPJ11
The diameter of an oxygen (2) molecule is approximately 0.300 nm.
For an oxygen molecule in air at atmospheric pressure and 18.3°C, estimate the total distance traveled during a 1.00-s time interval.
The oxygen molecule is estimated to travel approximately 0.94248 nm during a 1.00-second time interval in air at atmospheric pressure and 18.3°C.
To estimate the total distance traveled by an oxygen molecule during a 1.00-second time interval,
We need to consider its average speed and the time interval.
The average speed of a molecule can be calculated using the formula:
Average speed = Distance traveled / Time interval
The distance traveled by the oxygen molecule can be approximated as the circumference of a circle with a diameter of 0.300 nm.
The formula for the circumference of a circle is:
Circumference = π * diameter
Given:
Diameter = 0.300 nm
Substituting the value into the formula:
Circumference = π * 0.300 nm
To calculate the average speed, we also need to convert the time interval into seconds.
Given that the time interval is 1.00 second, we can proceed with the calculation.
Now, we can calculate the average speed using the formula:
Average speed = Circumference / Time interval
Average speed = (π * 0.300 nm) / 1.00 s
To estimate the total distance traveled, we multiply the average speed by the time interval:
Total distance traveled = Average speed * Time interval
Total distance traveled = (π * 0.300 nm) * 1.00 s
Now, we can approximate the value using the known constant π and convert the result to a more appropriate unit:
Total distance traveled ≈ 0.94248 nm
Therefore, the oxygen molecule is estimated to travel approximately 0.94248 nm during a 1.00-second time interval in air at atmospheric pressure and 18.3°C.
Learn more about Oxygen from the given link :
https://brainly.com/question/4030823
#SPJ11
Fifteen identical particles have various speeds. One has a speed of 4.00 m/s, two have a speed of 5.00 m/s, three have a speed of 7.00 m/s, four have a speed of 5.00 m/s, three have a speed of 10.0 m/s and two have a speed of 14.0 m/s. Find (a) the average speed, (b) the rms speed, and (c) the most probable speed of these particles. (a) 7.50 m/s; (b) 8.28 m/s; (c) 14.0 m/s (a) 7.50 m/s; (b) 8.28 m/s; (c) 5.00 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 14.0 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 5.00 m/s Page 24 of 33
The correct answers are (a) 7.53 m/s, (b) 8.19 m/s, and (c) 5.00 m/s. The average speed is calculated as follows: v_avg = sum_i v_i / N
where v_avg is the average speed
v_i is the speed of particle i
N is the number of particles
Plugging in the given values, we get
v_avg = (4.00 m/s + 2 * 5.00 m/s + 3 * 7.00 m/s + 4 * 5.00 m/s + 3 * 10.0 m/s + 2 * 14.0 m/s) / 15
= 7.53 m/s
The rms speed is calculated as follows:
v_rms = sqrt(sum_i (v_i)^2 / N)
Plugging in the given values, we get
v_rms = sqrt((4.00 m/s)^2 + 2 * (5.00 m/s)^2 + 3 * (7.00 m/s)^2 + 4 * (5.00 m/s)^2 + 3 * (10.0 m/s)^2 + 2 * (14.0 m/s)^2) / 15
= 8.19 m/s
The most probable speed is the speed at which the maximum number of particles are found. In this case, the most probable speed is 5.00 m/s.
Learn more about rms speed here:
brainly.com/question/33262591
#SPJ11
You fire a cannon horizontally off a 50 meter tall wall. The cannon ball lands 1000 m away. What was the initial velocity?
To determine the initial velocity of the cannonball, we can use the equations of motion under constant acceleration. The initial velocity of the cannonball is approximately 313.48 m/s.
Since the cannonball is fired horizontally, the initial vertical velocity is zero. The only force acting on the cannonball in the vertical direction is gravity.
The vertical motion of the cannonball can be described by the equation h = (1/2)gt^2, where h is the height, g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time of flight.
Given that the cannonball is fired from a 50-meter-tall wall and lands 1000 m away, we can set up two equations: one for the vertical motion and one for the horizontal motion.
For the vertical motion: h = (1/2)gt^2
Substituting h = 50 m and solving for t, we find t ≈ 3.19 s.
For the horizontal motion: d = vt, where d is the horizontal distance and v is the initial velocity.
Substituting d = 1000 m and t = 3.19 s, we can solve for v: v = d/t ≈ 313.48 m/s.
Therefore, the initial velocity of the cannonball is approximately 313.48 m/s.
Learn more about initial velocity here; brainly.com/question/31023940
#SPJ11
A patient of mass X kilograms is spiking a fever of 105 degrees F. It is imperative to reduce
the fever immediately back down to 98.6 degrees F, so the patient is immersed in an ice bath. How much ice must melt for this temperature reduction to be achieved? Use reasonable estimates of the patient's heat eapacity, and the value of latent heat for ice that is given in the OpenStax
College Physics textbook. Remember, convert temperature from Fahrenheit to Celsius or Kelvin.
It is necessary to calculate the amount of ice that must melt to reduce the fever of the patient. In order to do this, we first need to find the temperature difference between the patient's initial temperature and the final temperature in Celsius as the specific heat and the latent heat is given in the SI unit system.
In the given problem, it is necessary to convert the temperature from Fahrenheit to Celsius. Therefore, we use the formula to convert Fahrenheit to Celsius: T(Celsius) = (T(Fahrenheit)-32)*5/9.Using the above formula, the initial temperature of the patient in Celsius is found to be 40.6 °C (approx) and the final temperature in Celsius is found to be 37 °C.Now, we need to find the heat transferred from the patient to the ice bath using the formula:Q = mcΔTHere,m = mass of the patient = X kgc = specific heat of the human body = 3470 J/(kg C°)ΔT = change in temperature = 3.6 C°Q = (X) * (3470) * (3.6)Q = 44.13 X JThe amount of heat transferred from the patient is the same as the amount of heat gained by the ice bath. This heat causes the ice to melt.
Let the mass of ice be 'm' kg and the latent heat of fusion of ice be L = 3.34 × 105 J/kg. The heat required to melt the ice is given by the formula:Q = mLTherefore,mL = 44.13 X Jm = 44.13 X / L = 0.1321 X kgThus, 0.1321 X kg of ice must melt to reduce the temperature of the patient from 40.6 °C to 37 °C.As per the above explanation and calculations, the amount of ice that must melt for this temperature reduction to be achieved is 0.1321 X kg.
To know more about SI unit system visit:
https://brainly.com/question/9496237
#SPJ11
a heat engine exhausts 22,000 J of energy to the envioement while operating at 46% efficiency.
1. what is the heat input?
2. this engine operates at 68% of its max efficency. if the temp of the cold reservoir is 35°C what is the temp of the hot reservoir
The temperature of the hot reservoir is 820.45°C.Given data:Amount of energy exhausted, Q
out = 22,000 J
Efficiency, η = 46%1. The heat input formula is given by;
η = Qout / Qin
where,η = Efficiency
Qout = Amount of energy exhausted
Qin = Heat input
Therefore;
Qin = Qout / η= 22,000 / 0.46= 47,826.09 J2.
The efficiency of the engine at 68% of its maximum efficiency is;
η = 68% / 100%
= 0.68
The temperatures of the hot and cold reservoirs are given by the Carnot's formula;
η = 1 - Tc / Th
where,η = Efficiency
Tc = Temperature of the cold reservoir'
Th = Temperature of the hot reservoir
Therefore;Th = Tc / (1 - η)
= (35 + 273.15) K / (1 - 0.68)
= 1093.60 K (Temperature of the hot reservoir)Converting this to Celsius, we get;Th = 820.45°C
Therefore, the temperature of the hot reservoir is 820.45°C.
To know more about temperature visit:
https://brainly.com/question/7510619
#SPJ11
Moving at its maximum safe speed, an amusement park carousel takes 12 S to complete a revolution. At the end of the ride, it slows down smoothly, taking 3.3 rev to come to a stop. Part A What is the magnitude of the rotational acceleration of the carousel while it is slowing down?
The magnitude of the rotational acceleration of the carousel while it is slowing down is π/36 rad/s². This is determined by calculating the angular velocity of the carousel at its maximum safe speed and using the equation that relates the final angular velocity, initial angular velocity, angular acceleration, and total angular displacement.
To find the magnitude of the rotational acceleration of the carousel while it is slowing down, let's go through the steps in detail.
We have,
Time taken for one revolution (T) = 12 s
Total angular displacement (θ) = 3.3 rev
⇒ Calculate the angular velocity (ω) of the carousel at its maximum safe speed.
Using the formula:
Angular velocity (ω) = 2π / T
ω = 2π / 12
ω = π / 6 rad/s
⇒ Determine the angular acceleration (α) while the carousel is slowing down.
Using the equation:
Final angular velocity (ω_f)² = Initial angular velocity (ω_i)² + 2 * Angular acceleration (α) * Total angular displacement (θ)
Since the carousel comes to a stop (ω_f = 0) and the initial angular velocity is ω, the equation becomes:
0 = ω² + 2 * α * (2π * 3.3)
Simplifying the equation, we have:
0 = (π/6)² + 2 * α * (2π * 3.3)
0 = π²/36 + 13.2πα
⇒ Solve for the angular acceleration (α).
Rearranging the equation, we get:
π²/36 = -13.2πα
Dividing both sides by -13.2π, we obtain:
α = -π/36
The magnitude of the rotational acceleration is given by the absolute value of α:
|α| = π/36 rad/s²
Therefore, the magnitude of the rotational acceleration of the carousel while it is slowing down is π/36 rad/s².
To know more about rotational acceleration, refer here:
https://brainly.com/question/30238727#
#SPJ11
A scuba diver is swimming 17. 0 m below the surface of a salt water sea, on a day when the atmospheric pressure is 29. 92 in HG. What is the gauge pressure, on the diver the situation? The salt water has a density of 1.03 g/cm³. Give your answer in atmospheres.
The gauge pressure on a scuba diver swimming at a depth of 17.0 m below the surface of a saltwater sea can be calculated using the given information.
To find the gauge pressure on the diver, we need to consider the pressure due to the depth of the water and subtract the atmospheric pressure.
Pressure due to depth: The pressure at a given depth in a fluid is given by the equation P = ρgh, where P is the pressure, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the depth.
In this case, the depth is 17.0 m, and the density of saltwater is 1.03 g/cm³.
Conversion of units: Before substituting the values into the equation, we need to convert the density from g/cm³ to kg/m³ and the atmospheric pressure from in HG to atmospheres.
Density conversion: 1.03 g/cm³ = 1030 kg/m³Atmospheric pressure conversion: 1 in HG = 0.0334211 atmospheres (approx.)
Calculation: Now we can substitute the values into the equation to find the pressure due to depth.P = (1030 kg/m³) * (9.8 m/s²) * (17.0 m) = 177470.0 N/m²
Subtracting atmospheric pressure: To find the gauge pressure, we subtract the atmospheric pressure from the pressure due to depth.
Gauge pressure = Pressure due to depth - Atmospheric pressure
Gauge pressure = 177470.0 N/m² - (29.92 in HG * 0.0334211 atmospheres/in HG)
To learn more about gauge pressure click here.
brainly.com/question/30698101
#SPJ11
Determine the Schwartzschild radius of a black hole equal to the mass of the entire Milky Way galaxy (1.1 X 1011 times the mass of the Sun).
The Schwarzschild radius of a black hole with a mass equal to the mass of the entire Milky Way galaxy is approximately 3.22 × 10^19 meters.
To determine the Schwarzschild radius (Rs) of a black hole with a mass equal to the mass of the entire Milky Way galaxy (1.1 × 10^11 times the mass of the Sun), we can use the formula:
Rs = (2 * G * M) / c^2,
where:
Rs is the Schwarzschild radius,G is the gravitational constant (6.67 × 10^-11 N m^2/kg^2),M is the mass of the black hole, andc is the speed of light (3.00 × 10^8 m/s).Let's calculate the Schwarzschild radius using the given mass:
M = 1.1 × 10^11 times the mass of the Sun = 1.1 × 10^11 * (1.99 × 10^30 kg).
Rs = (2 * 6.67 × 10^-11 N m^2/kg^2 * 1.1 × 10^11 * (1.99 × 10^30 kg)) / (3.00 × 10^8 m/s)^2.
Calculating this expression will give us the Schwarzschild radius of the black hole.
Rs ≈ 3.22 × 10^19 meters.
Therefore, the Schwarzschild radius of a black hole with a mass equal to the mass of the entire Milky Way galaxy is approximately 3.22 × 10^19 meters.
To learn more about Milky Way galaxy, Visit:
https://brainly.com/question/30278445
#SPJ11
Protein centrifugation is a technique commonly used to separate proteins according to size. In this technique proteins are spun in a test tube with some high rotational frequency w in a solvent with high density p (and viscosity n). For a spherical particle of radius R and density Ppfind the drift velocity (vdrift) of the particle as it moves through the fluid due to the centrifugal force. Hint: the particle's drag force (Fdrag = bnRv drift) is equal to the centrifugal force (Fcent = mw?r, where r is the molecule's distance from the rotation axis).
vdrift = (mω^2r) / (bnR)
The drift velocity (vdrift) of the particle as it moves through the fluid due to the centrifugal force is given by the equation above.
To find the drift velocity (vdrift) of a spherical particle moving through a fluid due to the centrifugal force, we need to equate the drag force and the centrifugal force acting on the particle.
The drag force (Fdrag) acting on the particle can be expressed as:
Fdrag = bnRvdrift
where b is a drag coefficient, n is the viscosity of the fluid, R is the radius of the particle, and vdrift is the drift velocity.
The centrifugal force (Fcent) acting on the particle can be expressed as:
Fcent = mω^2r
where m is the mass of the particle, ω is the angular frequency of rotation, and r is the distance of the particle from the rotation axis.
Equating Fdrag and Fcent, we have:
bnRvdrift = mω^2r
Simplifying the equation, we can solve for vdrift:
vdrift = (mω^2r) / (bnR)
Therefore, the drift velocity (vdrift) of the particle as it moves through the fluid due to the centrifugal force is given by the equation above.
Learn more about centrifugal force:
https://brainly.com/question/954979
#SPJ11
A normal person has a near point at 25 cm and a far point at infinity. Suppose a nearsighted person has a far point at 157 cm. What power lenses would prescribe?
To correct the nearsightedness of a person with a far point at 157 cm, lenses with a power of approximately -0.636 diopters (concave) should be prescribed. Consultation with an eye care professional is important for an accurate prescription and fitting.
To determine the power of lenses required to correct the nearsightedness of a person, we can use the formula:
Lens Power (in diopters) = 1 / Far Point (in meters)
Given that the far point of the nearsighted person is 157 cm (which is 1.57 meters), we can substitute this value into the formula:
Lens Power = 1 / 1.57 = 0.636 diopters
Therefore, a nearsighted person with a far point at 157 cm would require lenses with a power of approximately -0.636 diopters. The negative sign indicates that the lenses need to be concave (diverging) in nature to help correct the person's nearsightedness.
These lenses will help diverge the incoming light rays, allowing them to focus properly on the retina, thus improving distance vision for the individual. It is important for the individual to consult an optometrist or ophthalmologist for an accurate prescription and proper fitting of the lenses based on their specific needs and visual acuity.
To learn more about lenses
https://brainly.com/question/28039799
#SPJ11
Two blocks with equal mass m are connected by a massless string and then,these two blocks hangs from a ceiling by a spring with a spring constant as
shown on the right. If one cuts the lower block, show that the upper block
shows a simple harmonic motion and find the amplitude of the motion.
Assume uniform vertical gravity with the acceleration g
When the lower block is cut, the upper block connected by a massless string and a spring will exhibit simple harmonic motion. The amplitude of this motion corresponds to the maximum displacement of the upper block from its equilibrium position.
The angular frequency of the motion is determined by the spring constant and the mass of the blocks. The equilibrium position is when the spring is not stretched or compressed.
In more detail, when the lower block is cut, the tension in the string is removed, and the only force acting on the upper block is its weight. The force exerted by the spring can be described by Hooke's Law, which states that the force exerted by an ideal spring is proportional to the displacement from its equilibrium position.
The resulting equation of motion for the upper block is m * a = -k * x + m * g, where m is the mass of each block, a is the acceleration of the upper block, k is the spring constant, x is the displacement of the upper block from its equilibrium position, and g is the acceleration due to gravity.
By assuming that the acceleration is proportional to the displacement and opposite in direction, we arrive at the equation a = -(k/m) * x. Comparing this equation with the general form of simple harmonic motion, a = -ω^2 * x, we find that ω^2 = k/m.
Thus, the angular frequency of the motion is given by ω = √(k/m). The amplitude of the motion, A, is equal to the maximum displacement of the upper block, which occurs at x = +A and x = -A. Therefore, when the lower block is cut, the upper block oscillates between these positions, exhibiting simple harmonic motion.
Learn more about Harmonic motion here :
brainly.com/question/30404816
#SPJ11
M 87 an elliptical galaxy has the angular measurement of 8.9' by 5.8', what is the classification of this galaxy.
Based on the given angular measurements of 8.9' by 5.8', M87 can be classified as an elongated elliptical galaxy due to its oval shape and lack of prominent spiral arms or disk structures.
Elliptical galaxies are characterized by their elliptical or oval shape, with little to no presence of spiral arms or disk structures. The classification of galaxies is often based on their morphological features, and elliptical galaxies typically have a smooth and featureless appearance.
The ellipticity, or elongation, of the galaxy is determined by the ratio of the major axis (8.9') to the minor axis (5.8'). In the case of M87, with a larger major axis, it is likely to be classified as an elongated or "elongated elliptical" galaxy.
To know more about elliptical galaxy refer here:
https://brainly.com/question/30799703
#SPJ11