Answer:
[tex]\boxed{x = 15}[/tex]
Step-by-step explanation:
Let the number be x
Condition:
[tex]2x - \frac{2}{3} x = 20[/tex]
Multiplying 3 to both sides
=> 3(2x) - 2x = 3(20)
=> 6x - 2x = 60
=> 4x = 60
Dividing both sides by 4
=> x = 15
Answer:
15
Step-by-step explanation:
Let x be that number.
2/3 of x subtracted from twice of x is 20.
2x - 2/3x = 20
Solve for x.
Combine like terms.
4/3x = 20
Multiply both sides by 3/4
x = 60/4
x = 15
The number is 15.
Construct a frequency distribution and a frequency histogram for the given data set using the indicated number of classes. Describe any patterns.
Number of classes: 8
Data set: Reaction times (in milliseconds) of 30 adult females to an auditory stimulus.
430 386 352 301 450 291 429 467 454 385 380
373 386 307 321 336 310 413 306 357 514 443
442 326 508 424 386 429 412 418
Answer:
The histogram for the data is attached below.
Step-by-step explanation:
Arrange the data in ascending order as follows:
S = {291 , 301 , 306 , 307 , 310 , 321 , 326 , 336 , 352 , 357 , 373 , 380 , 385 , 386 , 386 , 386 , 412 , 413 , 418 , 424 , 429 , 429 , 430 , 442 , 443 , 450 , 454 , 467 , 508 , 514}
Compute the range:
[tex]Range=Max.-Min.\\=514-291\\=223[/tex]
Compute the class width:
[tex]Class\ Width =\frac{Range}{No.\ of\ classes}=\frac{223}{8}=27.875\approx 28[/tex]
The classes are as follows:
290 - 318
319 - 347
348 - 376
377 - 405
406 - 434
435 - 463
464 - 492
493 - 521
Compute the frequency distribution as follows:
Class Interval Frequency
290 - 318 5
319 - 347 3
348 - 376 3
377 - 405 5
406 - 434 7
435 - 463 4
464 - 492 1
493 - 521 2
The histogram for the data is attached below.
Please HELP best answer will receive a BRAINLIEST. Given the probability density function f ( x ) = 1/3 over the interval [ 4 , 7 ] , find the expected value, the mean, the variance and the standard deviation.
Answer:
[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]
[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]
Now we can find the second moment with this formula:
[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]
[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]
And the variance for this case would be:
[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]
And the standard deviation is:
[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]
Step-by-step explanation:
For this case we have the following probability density function
[tex] f(x)= \frac{1}{3}, 4 \leq x \leq 7[/tex]
And for this case we can find the expected value with this formula:
[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]
[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]
Now we can find the second moment with this formula:
[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]
[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]
And the variance for this case would be:
[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]
And the standard deviation is:
[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]
Please help, much needed. A lot of points
Answer:
A. -9
Step-by-step explanation:
If one of the variables were negative than, it would not be able to equal 2/7.
15 POINTS+BRAINLIEST (Hurry now) A train goes past you in 10 seconds and goes past a 100 meter long bridge in 30 seconds. What is the length (in meters) and the speed (inm/s) of the train?
Answer:
speed=3.33m/s
Step-by-step explanation:
speed= distance÷time
3.33 m/s
length = ?
Answer:
Length : 50m
Speed : 5 m / s
im sorry if im too late :'(
find the coordinates of Q' after a reflection across parallel lines; first across the line y= -2 and then across the x-axis
Answer: new Q = (-4, 5)
Step-by-step explanation:
Given: Q = (-4, 1)
Reflected across y = -2:
Q is 3 units above y = -2 so a reflection is 3 units below y = -2 --> Q' = (-4, -5)
Reflected across x-axis:
Q' is 5 units below x-axis so a reflection is 5 units above x-axis --> Q'' = (-4, 5)
A crew clears brush at a rate 2/3 acre in 2 days. How long will it take the same crew to clear the entire plot of 4 acres?
Answer:
It takes the crew 12 days to clear the bush.
Step-by-step explanation:
Given clears 2/3 acres / 2 days, or 1/3 acre per day
Time to clear 4 acres
= 4 / (1/3)
= 4 * (3/1)
= 12 days
Data was collected for a sample of organic snacks. The amount of sugar (in mg) in each snack is summarized in the histogram below. 2 4 6 8 10 amount of sugar (mg) 180 182 184 186 188 190 192 194 Frequency What is the sample size for this data set?
Answer:
The sample size is 30.
Step-by-step explanation:
The sample size of a histogram can be calculated by summing up all the frequencies of all the occurrences in the data set
From the question the frequency is given as
Frequency = 2 4 6 8 10
The sample size n =
2 + 4 + 6 + 8 + 10
= 30
Therefore the sample size n of the data set = 30
50 points + brainliest!
Answer:
( x+2) ^2 = 11
x =1.32,-5.32
Step-by-step explanation:
x^2 + 4x -7 = 0
Add the constant to each side
x^2 + 4x -7+7 = 0+7
x^2 + 4x = 7
Take the coefficient of the x term
4
Divide by 2
4/2 =2
Square it
2^2 = 4
Add this to each side
x^2 + 4x +4 = 7+4
Take the 4/2 as the term inside the parentheses
( x+2) ^2 = 11
Take the square root of each side
sqrt( ( x+2) ^2) =±sqrt( 11)
x+2 = ±sqrt( 11)
Subtract 2 from each side
x = -2 ±sqrt( 11)
To the nearest hundredth
x =1.32
x=-5.32
Answer:
[tex](x+2)^2=11[/tex]
[tex]x=-2 \pm \sqrt{11}[/tex]
Step-by-step explanation:
[tex]x^2+4x-7=0[/tex]
[tex]x^2+4x=7[/tex]
[tex]x^2+4x+4=7+4[/tex]
[tex](x+2)^2=11[/tex]
[tex]x+2=\pm\sqrt{11}[/tex]
[tex]x=-2 \pm \sqrt{11}[/tex]
If x = 2, y = 8, find (i) x³+y³ (ii) ∛y
Answer:
(i) 520
(ii) 2
Step-by-step explanation:
(i) x³ + y³
Plug x as 2, and y as 8.
(2)³ + (8)³
Solve for exponents.
8 + 512
Add.
= 520
(ii) ∛y
Plug y as 8.
∛(8)
Solve for cube root.
= 2
Answer:
( i ) 520
( ii ) 2
Step-by-step explanation:
We can find this solution by plugging in known values -
If x = 2, y = 8
x³+y³ = ( 2 )³ + ( 8 )³ = 8 + 512
= 520
Know let us move on to the second half -
We only need one part of this information now, y = 8. If so,
∛y = ∛8
2 x 2 x 2 = 8 - and thus 2 should be our solution for this portion.
QUESTION 4 (10 MARKS)
A retired couple requires an annual return of $2,000 from investment of $20,000. There are 3
options available:
(A) Treasury Bills yielding 9%;
(B) Corporate bonds 11%;
Junk Bonds. 130%
How much should be invested in each to achieve their goal? Give 3 sets of options that can
achieve their goal.[10 Marks]
Answer:
(T, C, J) = (in dollars)
(10000, 10000, 0),
(15000, 4915.97, 84.03),
(18181.82, 1680.67, 137.51)
Step-by-step explanation:
There are a number of ways to approach this question. We have chosen an approach that determines the investments required to achieve interest rate targets.
__
For an overall interest rate of I, the proportion that must be invested at rate I1 < I < I2 is ...
proportion at I1 = (I2 -I)/(I2 -I1)
Similarly, the proportion that must be invested at I2 is what's left over. It can be computed similarly:
proportion at I2 = (I -I1)/(I2 -I1)
__
We want an overall interest rate of $2000/$20000 = 10%.
Given available interest rates of 9%, 11%, and 130%, we need to have investments at a rate lower than 10% and at a rate higher than 10%.
If we use only the options for 9% and 11% (no junk bonds), then we can compute ...
proportion at 9% = (11 -10)/(11 -9) = 1/2
proportion at 11% = (10 -9)/(11 -9) = 1/2
1st Option:
$10,000 in treasury bills; $10,000 in corporate bonds
__
Suppose we want to achieve a 13% return on our investments at 11% and 130%. Then the proportion invested at 9% will use this value for I2:
proportion at 9% = (13 -10)/(13 -9) = 3/4
Of the remaining 1/4 of the money, we can achieve a 13% return by mixing the investments like this:
proportion at 11% = (130 -13)/(130 -11) = 117/119
proportion at 130% = (13 -11)/(130 -11) = 2/119
2nd option:
$20,000 × 3/4 = $15,000 in treasury bills
$5000 × 117/119 = $4,915.97 in corporate bonds
The remaining amount, $84.03 in junk bonds
__
Let's suppose we want a 20% return on our investment in junk bonds and corporate bonds. Then the proportion of the money invested at 9% will be ...
proportion at 9% = (20 -10)/(20 -9) = 10/11
And the proportion at 11% will be ...
proportion at 11% = (130 -20)/(130 -11) = 110/119 . . . (of the remaining 1/11 of the funds)
3rd option:
$20,000 × 10/11 = $18,181.82 in treasury bills
$1,818.18 × 110/119 = $1,680.67 in corporate bonds
The remaining amount, $137.51 in junk bonds
_____
Additional comment
The most that could be invested in Junk Bonds is $165.29. If the remainder is invested in Treasury Bills, then the overall return will be $2000. (You could consider this to be a 4th option.)
In a survey of 2257 adults, 716 say they believe in UFOs.
Construct a 99% confidence interval for the population proportion of adults who believe in UFOs.
A 99% confidence interval for the population proportion is (0.292.0.3427)
(Round to three decimal places as needed.)
Interpret your results. Choose the correct answer below.
O A. With 99% confidence, it can be said that the sample proportion of adults who believe in UFOs is between the endpoints of the given confidence interval.
OB. The endpoints of the given confidence interval shows that 99% of adults believe in UFOs.
C. With 99% confidence, it can be said that the population proportion of adults who believe in UFOs is between the endpoints of the given confidence interval.
XD. With 99% probability, the population proportion of adults who do not believe in UFOs is between the endpoints of the given confidence interval.
Answer:
C. With 99% confidence, it can be said that the population proportion of adults who believe in UFOs is between the endpoints of the given confidence interval.
Step-by-step explanation:
A confidence interval let us make an inference about a population parameter from a sample statistic. In this case, a sample proportion let us infere aout the population proportion with a certain degree of confidence.
With this confidence interval, we are 99% confident that the polpulation proportion falls within this interval. This means that there is 99% chances of having the population proportion within this interval.
To estimate the population proportion of adults who do not believe in UFO's we should have to construct another confidence interval with the proportion (1-p), but this parameter can not be estimated from the confidence interval for p.
Check whether these statements are wff or not:(a) (p˅q) ∧∼r
Answer:
It is a well formed formula
Step-by-step explanation:
1 - p,q,r are well formed formulas.
2 - [tex]p \ \lor \ q[/tex] is a well formed formula as well.
3 - [tex]\neg r[/tex] is a well formula as well
4 - [tex](\ p \ \lor \ q) \ \land \ \neg r[/tex] is a well formula as well.
Help ASAP it’s Math I need this rightnow 31 points
Answer:
AC (b)
Step-by-step explanation:
Since 10 is half of 20, you have to find the variable closest to the middle. Which in this case, is C. So, your awnser is B. (AC)
Answer:
[tex]\boxed{\sf C}[/tex]
Step-by-step explanation:
The whole segment is [tex]\sf \sqrt {20}[/tex], we can see that AD is approximately 75% of the segment AE.
[tex]75\%*\sqrt{20} = 3.354102[/tex]
[tex]\sqrt{10}= 3.162278[/tex]
AC is almost half of AE.
[tex]\frac{\sqrt{20} }{2} = 2.2360679775[/tex]
[tex]\sqrt{10} = 3.16227766017[/tex]
It isn’t close to the option C.
The winery sold 81 cases of wine this week. If twice
as many red cases were sold than white, how many
white cases were sold this week?
A. 32 cases
B. 61 cases
C. 27 cases
D. 54 cases
Answer:
Option (C)
Step-by-step explanation:
Let the red cases sold = r
and the number of white cases sold = w
Total number of cases sold by the winery = 81
r + w = 81 -------(1)
If number of red cases sold is twice of white cases sold,
r = 2w ------- (2)
By substituting the value of r from equation (2) to equation (1),
2w + w = 81
3w = 81
w = 27 cases
From equation (1),
r + 27 = 81
r = 54 cases
Therefore, number of white cases sold are 27 cases
Option (C) is he answer.
Tosh. Inc.'s bonds currently sell for $980 and have a par value of $1,000. They pay a $95 annual coupon and have a 12-year maturity, but they can be called in 3 years at $1,150. What is their yield to call (YTC)?
Answer:
14.24%
Step-by-step explanation:
We have found that the yield to call (YTC) formula is:
YTC = [C + (F-P) / N] / [(F + P) / 2]
Where:
C = Periodic coupon amount = 95
P = Current Price = 980
F = Redemption amount = 1150
N = time left to redemption = 3
We replace:
YTC = [95 + (1150-980) / 3] / [(1150 + 980) / 2]
YTC = 0.1424
In other words, the yield to call (YTC) is equal to 14.24%
NEED HELP ASAP!!
What is the equation of the line that is parallel to the
given line and has an x-intercept of -3?
O y = x + 3
O y = ?X + 2
Oy=-3x + 3
y=-3x+2
Answer:
B
Step-by-step explanation:
The equation of the line that is parallel to the given line and has an x-intercept of -3 is y= 2/3x + 2.
What is Slope?A line's slope is determined by how its y coordinate changes in relation to how its x coordinate changes. y and x are the net changes in the y and x coordinates, respectively. Therefore, it is possible to write the
change in y coordinate with respect to the change in x coordinate as,
m = Δy/Δx where, m is the slope
We have a graph.
So, slope of line in graph is
= (-1-1)/ (0.-3)
= -2/ (-3)
= 2/3
and, we know that two parallel line have same slope.
so, the slope of parallel line is 2/3 and the x intercept is -3.
So, the Equation line is y= 2/3 x + b
0 = 2/3 (-3) +b
b= 2
Thus, the required equation is y= 2/3x + 2.
Learn more about Slope here:
https://brainly.com/question/2863474
#SPJ5
At a deli counter, there are sandwiches with meat and vegetarian sandwiches. Kira is at the counter buying sandwiches for a picnic. In how many ways can she choose sandwiches if fewer than must be vegetarian sandwiches
Answer:
The number ways to choose between meat and vegetarian sandwiches can be computed using computation technique.
Step-by-step explanation:
There are two types of sandwiches available at the deli counter. The possibility of combinations can be found by computation technique of statistic. It is assumed that order does not matter and sandwiches will be selected at random. The sandwiches can be arranged in any order and number ways can be found by 2Cn.
amanda teaches the art of quilling to 4 students. These students each teach art of quilling to 4 other students. If this process continues for 5 generation after amanda, BLANK people other than amanda will know the art of qiulling
Answer:
1024
Step-by-step explanation:
4 * 4 * 4 * 4 * 4
A rectangle has a width of 3/4 inches and a length of 9/10 inches. Another rectangle
is larger but still proportional to the first rectangle. It has a width of 30 inches and a length of 36 what proportion could model this situation
Answer:
Bigger size / smaller size = 40
Step-by-step explanation:
Notice that we
36 / (9/10) = 30 / (3/4) = 40
Therefore the proportion model would be
Bigger size / smaller size = 40
Solve the given systems of equations:
x-y+z=1
-3x+2y+z=1
2x-3y+4z=3
Answer:
x = 3/2
y = 2
z = 3/2
Step-by-step explanation:
There are multiple methods to solve these. Message me for the method you need to see step by step.
The valve was tested on 240240 engines and the mean pressure was 7.57.5 pounds/square inch (psi). Assume the population standard deviation is 1.01.0. The engineer designed the valve such that it would produce a mean pressure of 7.67.6 psi. It is believed that the valve does not perform to the specifications. A level of significance of 0.10.1 will be used. Find the P-value of the test statistic. Round your answer to four decimal places.
Answer:
z = 1.55
Step-by-step explanation:
The answer is attached.
A candy store called "Sugar" built a giant hollow sugar cube out of wood to hang above the entrance to their store. It took 13.5\text{ m}^213.5 m 2 13, point, 5, start text, space, m, end text, squared of material to build the cube. What is the volume inside the giant sugar cube?
Answer:
3.375
Step-by-step explanation:
Answer:
3.375
Step-by-step explanation:
Had it on Khan
conditinal probability question. please help! :)
Answer:
P(A|B) = 1 / 6
Step-by-step explanation:
Assuming two fair sided dice with faces numbered 1 to 6.
By intuition, there can only be 6 possible outcomes, so probability is 1/6.
Illustration how to use conditional probability.
Given two events A, B, following is the equation of conditional probability
that A happens given B has already happened and observed.
P(A|B) = P( A intersect B ) / P(B)
In the given problem,
A = casting a double-six
B = casting a double
P(A) = (1 / 6) * (1 / 6) = 1/36
P(B) = (6/6) * (1/6) = 1/6
P(A|B) = 1/36 / (1/6) = 1/6
Find the value of annuity if the periodic deposit is $400 at 4% compounded monthly for 18 years
Answer:
~820.8$
Step-by-step explanation:
The total money (M) after 18 years could be calculated by:
M = principal x (1 + rate)^time
with
principal = 400$
rate = 4% compounded monthly = 0.04/12
time = 18 years = 18 x 12 = 216 months (because of compounded monthly rate)
=> M = 400 x (1 + 0.04/12)^216 = ~820.8$
PLEASE HELP!!! Find the area of the shaded polygon:
Answer:
147
Step-by-step explanation:
Find the missing length
Answer:
x = 25
Step-by-step explanation:
We have 2 similar triangles:
1) with hypotenuse 15 and short leg 9,
2) with hypotenuse x and short leg 15.
For similar triangles we can write a proportion for corresponding sides.
hypotenuse 1: leg1 = hypotenuse 2 : leg 2
15 : 9 = x : 15
9x = 15 * 15
x = 15*15/9
x = 25
Pls help asap What is the number of degrees in the acute angle formed by the hands of a clock at 6:44?
Answer:
264 degree angle
Step-by-step explanation:
If jimmy has 15 apples and give 7 to gohn how many does jimmy have?
Answer:
Hey there!
Jimmy has 15-7, or 8 apples left.
Hope this helps :)
Find m2WXY
59
X
D
24°
A 250
B. 26
C. 81
D. 839
Answer: d. 83
Step-by-step explanation: 59+ 24 = 83
Answer:
D. 83 degrees
Step-by-step explanation:
Angle WXY is made up of two angles, angle WXD and angle YXD.
Therefore, angle WXY will be equal to the sum of angle WXD and YXD.
So, we can add angles WXD and YXD together to find out what the measure of angle WXY is.
<WXY= <WXD + <YXD
We know that angle WXD is 24 degrees and angle YXD is 59 degrees.
<WXD= 24
<YXD= 59
<WXY= 24+59
Add 24 and 59
<WXY=83
The measure of angle WXY is 83 degrees, so choice D is correct.
Help!! It’s much appreciated in this time
Answer: D. y = (x - 3)² + 2
Step-by-step explanation:
Inverse is when you swap the x's and y's and solve for y.
y = [tex]\sqrt{x-2}[/tex] + 3
Swap: x = [tex]\sqrt{y-2}[/tex] + 3
Solve: x - 3 = [tex]\sqrt{y-2}[/tex]
(x - 3)² = [tex](\sqrt{y-2})^2[/tex]
(x - 3)² = y - 2
(x - 3)² + 2 = y