Answer:
11/36
Step-by-step explanation:
Find the probability that neither dice shows a 5 (also means the dice can show any number except 5- where there are 5 possible choices out of 6):
= 5/6 x 5/6
=25/36
If we subtract the probability that neither dice shows a 5, we can obtain the probability that at least 1 dice shows a 5- (either one of them is 5, or both of them is 5)
1- 25/36
=11/36
In a class full of men and women, 5 9 of the class are women. What is the ratio of men to women in its simplest form?
What is the image of the point by (-5,3) under a 270 rotation about the point (-7,-3)
Step-by-step explanation:
here, the given point is (-7,-3)
now, by the formula,
p(x,y)= p-1 (-y+a+b,x-a+b) ( p-1 is p das)
p(-5,3)= p-1 (-13,-1) is answer.
hope it helps..
Helpppp asapppppp....
Answer:
C.
Step-by-step explanation:
So, here's what you need to remember:
If we have a function f(x) and a factor k:
k(f(x)) will be a vertical stretch if k is greater than 1, and a vertical compression if k is greater than zero but less than 1.
f(kx) will be a horizontal compression if k is greater than 1, and a horizontal stretch if k is greater than zero but less than 1.
We are multiplying 0.5 to the function. In other words: 0.5f(x).
This is outside the function, so it's vertical.
0.5 is less than 1, so this would be a vertical compression
F(n)=6.5n+4.5 find the 5th term of the sequence defined by the given rule
Answer:
37
Step-by-step explanation:
To find the fifth term , we have to take the value of n as 5
So, F(5)= 6.5 (5) +4.5
= 32.5 + 4.5
= 37
Look at the number pattern shown below:3 × 17 = 5133 × 167 = 5511333 × 1667 = 555111What will be 33333 × 166667?
Answer:
33333 x 166667 = 5555511111
I think that is the answer you wanted
Step-by-step explanation:
166667
x 33333
5555511111
A factory manufactures chairs and tables, each requiring the use of three operations: cutting, assembly, and finishing. The first operation can use at most 40 hours; the second at most 42 hours; and the third at most 25 hours. A chair requires 1 hour of cutting, 2 hours of assembly, and 1 hour of finishing; a table needs 2 hours of cutting, 1 hour of assembly, and 1 hour of finishing. If the profit is $20 per unit for a chair and $30 for a table, what is the maximum revenue? Round your answer to the nearest whole number. Do not include a dollar sign or comma in your answer.
Answer:
z(max) = 650 $
x₁ = 10 units
x₂ = 15 units
Step-by-step explanation:
That is a linear programming problem, we will use a simplex method to solve it
Formulation:
Let´s call x₁ number of chairs and x₂ number of tables then :
Item (in hours) cutting assembly finishing Profit ($)
Chairs (x₁) 1 2 1 20
Tables (x₂) 2 1 1 30
Availability 40 42 25
Objective Function
z = 20*x₁ + 30x₂ ( to maximize) subject to:
x₁ + 2x₂ ≤ 40
2x₁ + x₂ ≤ 42
x₁ + x₂ ≤ 25
x₁ , x₂ >= 0
Using excel or any other software we find:
z(max) = 650
x₁ = 10
x₂ = 15
The chairs and tables manufactured by the factory is an illustration of linear programming, where the maximum revenue is 674
Let x represent chairs, and y represent tables
So, the given parameters are:
Cutting:
Chairs: 1 hourTable: 2 hoursHour available: 40So, the constraint is:
[tex]\mathbf{x + 2y \le 40}[/tex]
Assembly:
Chairs: 2 hoursTable: 1 hourHour available: 42So, the constraint is:
[tex]\mathbf{2x + y \le 42}[/tex]
Finishing:
Chairs: 1 hourTable: 1 hourHour available: 25So, the constraint is:
[tex]\mathbf{x + y \le 25}[/tex]
The unit profit on the items are:
Chairs: $20Table: $30So, the objective function to maximize is:
[tex]\mathbf{Max\ z = 20x + 30y}[/tex]
And the constraints are:
[tex]\mathbf{x + 2y \le 40}[/tex]
[tex]\mathbf{2x + y \le 42}[/tex]
[tex]\mathbf{x + y \le 25}[/tex]
[tex]\mathbf{x,y \ge 0}[/tex]
Using graphical method (see attachment for graph), we have the following feasible points:
[tex]\mathbf{(x,y) = \{(10,15),\ (17,8),\ (14.67, 12.67)\}}[/tex]
Calculate the objective function using the feasible points.
[tex]\mathbf{z = 20 \times 10 + 30 \times 15}[/tex]
[tex]\mathbf{z = 650}[/tex]
[tex]\mathbf{z = 20 \times 17 + 30 \times 8}[/tex]
[tex]\mathbf{z = 580}[/tex]
[tex]\mathbf{z = 20 \times 14.67+ 30 \times 12.67}[/tex]
[tex]\mathbf{z = 673.5}[/tex]
Approximate
[tex]\mathbf{z = 674}[/tex]
Hence, the maximum revenue is 674
Read more about linear programming at:
https://brainly.com/question/14225202
Solve 2x2 – 6x + 10 = 0 by completing the square.
Answer: x = 6.32 or -0.32
Step-by-step explanation:
2x² - 6x + 10 = 0
No we divide the expression by 2 to make the coefficient of x² equals 1
We now have
x² - 3x + 5 = 0
Now we remove 5 to the other side of the equation
x² - 3x = -5
we add to both side square of half the coefficient of x which is 3
x² - 3x + ( ⁻³/₂)² = -5 + (⁻³/₂)²
(x - ³/₂)² = -5 + ⁹/₄
Resolve into fraction
(x - ³/₂)² = ⁻¹¹/4
Take the roots of the equation
x - ³/₂ = √¹¹/₄
x - ³/₂ = √11/₂
x = ³/₂ ± 3.32/₂
= 3+ 3.32 or 3 - 3.32
= 6.32 or - 0.32
The Fine Line Pen Company makes two types of ballpoint pens: a silver model and a gold model. The silver model requires 1 minute in a grinder and 3 minutes in a bonder. The gold model requires 3 minutes in a grinder and 4 minutes in a bonder. Because of maintenance procedures, the grinder can be operated no more than 30 hours per week and the bonder no more than 50 hours per week. The company makes $5 on each silver pen and $7 on each gold pen. How many of each type of pen should be produced and sold each week to maximize profits?
Answer:
Optimal production = 600 gold pens
Revenue = 600*7 = $4200 gold pens
Step-by-step explanation:
The Fine Line Pen Company makes two types of ballpoint pens: a silver model and a gold model.
A. The silver model requires 1 minute in a grinder and 3 minutes in a bonder.
B. The gold model requires 3 minutes in a grinder and 4 minutes in a bonder.
Because of maintenance procedures,
C. the grinder can be operated no more than 30 hours per week and
D. the bonder no more than 50 hours per week.
The company makes
E. $5 on each silver pen and
F. $7 on each gold pen.
How many of each type of pen should be produced and sold each week to maximize profits?
Solution:
We will solve the problem graphically, with number of silver pens, x, on the x axis, and number of gold pens, y, on the y axis, i.e.
1. From A and C, the maximum number of silver pens
x <= 30*60 / 1 = 1800 and
x <= 50*60 /3 = 1000 ....................(1) bonder governs
2. from A & D, the maximum number of gold pens
y <= 30*60 / 3 = 600 .....................(2) grinder governs
y <= 50*60 / 4 = 750
3. From D,
x + 3y <= 30*60 = 1800 ...................(limit of grinder) ..... (3)
3x + 4y <= 50*60 = 3000 .................(limit of bonder) .......(4)
Need to maximize profit,
Z(x,y) = 5x+7y, represented by parallel lines y = -5x/7 + k such that all constraints of (3) and (4) are satisfied.
The maximum is obtained when Z passes through (360,480), i.e. at intersection of constraints (3) and (4). Using slope intercept form,
(y-480) = -(5/7)(x-360)
or y=-(5/7)x + (737+1/7) [the purple line] which violates the red line, so not a solution.
Next try the point (0,600)
(y-600) = -(5/7)(x-0), or
y = 600 - (5/7)x [the black line]
As we can see all point on the black (in the first quadrant) satisfy the constraints, so it is a feasible solution, and is the optimal solution, with a revenue of
Revenue = 600*7 = 4200 gold pens
A small fruit basket with 6 apples and 6 oranges costs $7.50. A different fruit basket with 10 apples and 5 oranges costs $8.75. If x is the cost of one apple and y is the cost of one orange, the system of equations below can be used to determine the cost of one apple and one orange. 6x+6y=7.50 10x+5y=8.75 What is the cost of one apple?
Answer:
$0.50
Step-by-step explanation:
Let's remove common factors from the equations.
x + y = 1.25 . . . . divide the first equation by 62x +y = 1.75 . . . divide the second equation by 5Subtracting the first equation from the second, we find the cost of an apple:
(2x +y) -(x +y) = 1.75 -1.25
x = 0.50
The cost of one apple is $0.50.
Question 15 of 25
What is the solution to this equation?
X + 8 = -3
Answer:
x=-11
Step-by-step explanation:
x+8=-3
x=-3-8 :- collect like term
since we are adding two negative numbers, we will let the number be negative but add them.
x=-11
Hope it helps :)
Answer:
x=-11
Step-by-step explanation:
x+8=-3
collect like terms;
x=-3-8
x=-11
what equals 1+1= Why can't I see any answers help i logged off etc is it just me?
Answer:
1 + 1 = 2
Step-by-step explanation:
^
Answer:
no , it's happening to everyone , even I can't see it .
In a random sample of 40 refrigerators, the mean repair cost was $150. Assume the population standard deviation is $15.50. Construct a 99% confidence interval for the population mean repair cost. Then change the sample size to n = 60. Which confidence interval has the better estimate?
Answer: ($143.69, $156.31)
Step-by-step explanation:
Confidence interval to estimate population mean :
[tex]\overline{x}\ \pm z\dfrac{\sigma}{\sqrt{n}}[/tex]
, where [tex]\sigma[/tex] = population standard deviation
n= sample size
[tex]\overline{x}=[/tex] Sample mean
z= critical value.
As per given,
n= 40
[tex]\sigma[/tex] = $15.50
[tex]\overline{x}=[/tex] $150
Critical value for 99% confidence level = 2.576
Then, 99% confidence interval for the population mean:
[tex]150\pm(2.576)\dfrac{15.50}{\sqrt{40}}\\\\\Rightarrow\ 150\pm6.31 \ \ (approx)\\\\\Rightarrow(150-6.31,150+6.31)=(143.69,156.31)[/tex]
Hence, the required confidence interval : ($143.69, $156.31)
A catering company is catering a large wedding reception. The host of the reception has
asked the company to spend a total of $454 on two types of meat: chicken and beef. The
chicken costs $5 per pound, and the beef costs $ 7 per pound. If the catering company
buys 25 pounds of chicken, how many pounds of beef can they buy?
The answer is 47 pounds
Explanation:
1. First, let's calculate the amount of money that was spent on chicken
$5 per pound of chicken x 25 pounds = $125
2. Calculate the amount of money left to buy beef by subtracting the total spend on chicken to the total of the budget.
$454 (total) - $125 (chicken) = $329
3. Calculate how many pounds of beef you can buy with the money left by dividing the money into the price for one pound.
$329 / $7 = 47 pounds
Type the correct answer in the box. Use numerals instead of words. What is the missing value in the inverse variation given in the table?
Answer:
48
Step-by-step explanation:
If x varies inversely as y, we have:
[tex]x \propto \frac{1}{y} \\\implies x = \frac{k}{y}[/tex]
When x=2, y=96
[tex]2 = \frac{k}{96}\\k=192[/tex]
When x=8, y=24
[tex]8 = \frac{k}{24}\\k=192[/tex]
Therefore, the constant of proportionality, k=192.
The equation connecting x and y is:
[tex]x = \frac{192}{y}[/tex]
When x=4
[tex]4 = \frac{192}{y}\\4y=192\\y=48[/tex]
The missing value in the inverse variation given in the table is 48.
The state of CT claims that the average time on death row is 15 years. A random survey of 75 death row inmates revealed that the average length of time on death row is 17.8 years with a standard deviation of 5.9 years. Conduct a hypothesis to test the state of CT's claim. What type of test should be run? t-test of a mean z-test of a proportion The alternative hypothesis indicates a right-tailed test left-tailed test two-tailed test Calculate the p-value. What is the decision? We reject the claim that the average time on death row is 15 years We fail to reject the claim that the average time on death row is 15 years
Answer:
a)The calculated value t = 4.111 > 1.9925 at 5 % level of significance
Null hypothesis is rejected
The claim that the average time on death row is not 15 years
b) The p-value is 0.000101<0.05
we reject Null hypothesis
The claim that the average time on death row is not 15 years
Step-by-step explanation:
Step(i):-
Sample size 'n' =75
Mean of the sample x⁻ = 17.8
standard deviation of the sample (S) = 5.9
Mean of the Population = 15
Null hypothesis:H₀:μ = 15 years
Alternative Hypothesis :H₁:μ≠15 years
Step(ii):-
Test statistic
[tex]t = \frac{x^{-} -mean}{\frac{S}{\sqrt{n} } }[/tex]
[tex]t = \frac{x^{-} -mean}{\frac{S}{\sqrt{n} } }=\frac{17.8-15}{\frac{5.9}{\sqrt{75} } }[/tex]
t = 4.111
Degrees of freedom
ν = n-1 = 75-1=74
t₀.₀₂₅ = 1.9925
The calculated value t = 4.111 > 1.9925 at 5 % level of significance
Null hypothesis is rejected
The claim that the average time on death row is not 15 years
P-value:-
The p-value is 0.000101<0.05
we reject Null hypothesis
The claim that the average time on death row is not 15 years
PLEASE ANSWER FAST I WILL MARK BRAINLEIST AMD 20 POINTSBased on the figure below what is the value of X
Answer:
[tex]\boxed{9}[/tex]
Step-by-step explanation:
The two angles are complementary to each other.
That means they add up to 90 degrees.
[tex]5x+15+30=90[/tex]
[tex]5x+45=90[/tex]
[tex]5x=45[/tex]
[tex]x=9[/tex]
Answer:
x = 9
Step-by-step explanation:
So you know that the total is 90 degrees.
What you need to do is create an equation.
5x + 15 + 30 = 90
Then, solve the equation like this.
5x + 15 + 30 = 90
5x + 45 = 90
5x = 90 - 45
5x = 45
x = 45 ÷ 5
x = 9
Hope this helps! :)
Amber says that the data set is left-skewed because the box is farther to the left on the number line. (A) Is Amber correct? (B) Explain your reasoning.
Find the slope of the line passing through the points (8,-4) and (4, -8).
Answer:
1
Step-by-step explanation:
We can find the slope using
m= ( y2-y1)/(x2-x1)
= ( -8 - -4)/( 4 - 8)
= ( -8 +4)/( 4 - 8)
= -4 / -4
= 1
Answer:
slope equals 1
Step-by-step explanation:
To do this you would need to do an equation that is [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1}}[/tex] so in this case -8 would be y2 and -4 would be y1 and 4 would be x2 and 8 would b e x1 so if you plug it into the equation we would get [tex]\frac{-8-(-4)}{4-8}[/tex] and if we simplify we get [tex]\frac{-4}{-4}[/tex] which simplifies to 1 so the slope would equal 1
For the functions f(x)=8 x 2 +7x and g(x)= x 2 +2x , find (f+g)(x) and (f+g)(3)
Answer:
(f+g)(x)= 9x² + 9x
(f+g)(3) = 108
Step-by-step explanation:
f(x)=8x² +7x
g(x)= x² +2x
(f+g)(x) = f(x) + g(x) = 8x² +7x +x² +2x = 9x² + 9x
(f+g)(x)= 9x² + 9x
(f+g)(3)= 9*3² + 9*3 = 108
helpppppppppppppppppppppppppppppppppppppppppppppppppppppp
Answer:
4
Step-by-step explanation:
Answer:
1/8 < 1/6
Step-by-step explanation:
The top is divided into 8 and 1 part is shaded so 1/8
The bottom is divided into 6 and 1 part is shaded so 1/6
Comparing
1/8 < 1/6
A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five. The study involved a large random sample of mothers and children and was conducted over several years. What is the population of interest in this survey
Answer: Parents and children ( till the age of 5) of Norway
Step-by-step explanation:
The population in a survey is the group of people sharing common features or characteristics as per the researcher point of view.Here, A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five.
Since the study involved a large random sample of mothers and children and was conducted over several years.
So, the population of interest in this survey is "Parents and children ( till the age of 5) of Norway".
Can someone Give me the answer?
Answer:
(0,5)
Step-by-step explanation:
The solution to the system is where the two graphs intersect
From the graph, the graphs intersect at x = 0 and y =5
Step-by-step explanation:
I have trouble with these types of questions as well, but hopefully this might help.
4. Simplify the following.
3
a. 2-X5-:11
3
x5
5
6
7
Answer:
[tex]1 \frac{1}{4} [/tex]Step-by-step explanation:
[tex]2 \frac{3}{7} \times 5\frac{5}{6} \div 11 \frac{1}{3} [/tex]
Convert the mixed number to an improper fraction
[tex] \frac{17}{7} \times \frac{35}{6} \div \frac{34}{3} [/tex]
To divide by a fraction, multiply the reciprocal of that fraction
[tex] \frac{17}{7} \times \frac{35}{6} \times \frac{3}{34} [/tex]
Reduce the number with the G.C.F 7
[tex]17 \times \frac{5}{6} \times \frac{3}{34} [/tex]
Reduce the numbers with the G.C.F 17
[tex] \frac{5}{6} \times \frac{3}{2} [/tex]
Reduce the numbers with the G.C.F 3
[tex] \frac{5}{2} \times \frac{1}{2} [/tex]
Multiply the fraction
[tex] \frac{5}{4} [/tex]
In mixed fraction:
[tex]1 \frac{1}{4} [/tex]
Hope this helps..
Good luck on your assignment...
The measure of minor arc JL is 60°. Circle M is shown. Line segments M J and M L are radii. Tangents J K and L K intersect at point K outside of the circle. Arc J L is 60 degrees. What is the measure of angle JKL? 110° 120° 130° 140°
Answer:
angle JKL = 120 degrees
Step-by-step explanation:
Since arc JL is 60 degrees, the central angle is also 60 degrees.
Point K is the intersection of tanges at J and L, therefore KJM and KLM are 90 degrees.
Consider quadrilateral JKLM whose sum of internal angles = 360.
Therefore
angle JKL + angle KLM + angle LMJ + angle MJK = 360 degrees
angle JKL + 90 + 60 + 90 = 360
angle JKL = 360 - 90 - 60 -90 = 120 degrees
Answer:
120 degrees
Step-by-step explanation:
Since arc JL is 60 degrees, the central angle is also 60 degrees.
Point K is the intersection of tanges at J and L, therefore KJM and KLM are complementary or equal 90 degrees.
look at quadrilateral JKLM whose sum of internal angles = 360.
Therefore
angle JKL plus angle KLM plus angle LMJ plus angle MJK = 360 degrees
angle JKL + 90 + 60 + 90 = 360
1. Manuel quiere fabricar banderitas chilenas para venderlas en los partidos de la selección nacional. Si se demora 1 hora en hacer 45 banderitas y trabaja 5 horas diarias. ¿Cuántos días se demorará en fabricar 1800 banderitas?
Answer:
[tex]\large \boxed{\text{Eight days}}[/tex]
Step-by-step explanation:
1. Calculate the hours
[tex]\text{Hours} = \text{1800 flags} \times \dfrac{\text{1 h}}{\text{45 flags}} = \textbf{40 h}[/tex]
2. Calculate the days
[tex]\text{Days} = \text{40 h} \times \dfrac{\text{1 da}}{\text{5 h}} = \text{8 da}\\\\\text{It will take $\large \boxed{\textbf{eight days}}$ to make 4500 flags.}[/tex]
Suppose that you have $100. You have two options for investing your money.
Option 1: Increase by $10 each year
Year
Amount
1
100
110
Type:
a =
b =
Answer:
Option One:
type : linear growth
a : 120
b : 130
Option 2:
type: linear growth
d : 121
e : 133
Step-by-step explanation:
its right on EDG 2020
Option One:
type: linear growth
a: 120
b: 130
Option 2:
type: linear growth
d: 121
e: 133
What is linear and exponential growth?Linear growth occurs with the aid of including an equal amount in each unit of time. An exponential increase happens while a preliminary population will increase by the same percent or issue over the same time increments or generations.
What is the distinction between linear and exponential?Linear and exponential relationships vary within the way the y-values change whilst the x-values increase with the aid of a steady quantity: In linear dating, the y-values have identical variations. In an exponential relationship, the y-values have identical ratios.
Learn more about Linear growth here: brainly.com/question/4025726
#SPJ2
A bag contains a collection of distinguishable marbles. The bag has two red marbles, three green ones, one lavender one, two yellows, and two orange marbles. HINT [See Example 7.] How many sets of four marbles include exactly two green marbles
Answer:
63
Step-by-step explanation:
Given that;
The bag has two red marbles, n(red) =2
three green ones marbles, n(green) = 3
one lavender one marbles, n(lavender) = 1
two yellows marbles, n(yellow ) = 2
two orange marbles. n(orange) = 2
number of non green marbles = 2+1+2+2 = 7
The objective is to find out how many sets of four marbles include exactly two green marbles
Since sets of four marbles contain exactly two green marbles, then N(select 2 from 3 marbles and 2 from 7 marbles)
= [tex]^3C_2 \times ^{7}C _2[/tex]
= [tex]\dfrac{3!}{2!(3-2)!} \times \dfrac{7!}{2!(7-2)!}[/tex]
= [tex]\dfrac{3*2!}{2!} \times \dfrac{7*6*5!}{2!(5)!}[/tex]
= [tex]3 \times 7\times 3[/tex]
= 63
(SAT Prep) Find the value of x.
Answer:
x = 65°
Step-by-step explanation:
Naming the sides of the parallelogram formed ABCD as shown in the attached image to this solution.
Angle A = 2x (vertically opposite angles are equal)
Angle A = Angle C (opposite angles of a parallelogram are equal)
Angle A = Angle C = 2x
(Angle C) + 50° = 180° (Sum of angles on a straight line is 180°)
2x + 50° = 180°
2x = 180° - 50° = 130°
x = (130°/2) = 65°
Hope this Helps!!!
Answer:
65 degrees
Step-by-step explanation:
Graph a line that contains the point (-7,-4)and has a slope of - 2/3
Hi there! :)
Answer:
Given the information, we can write an equation in slope-intercept form
(y = mx + b) to graph the line:
Plug in the slope for 'm', the y-coordinate of the point given for 'y', and the
x-coordinate given for 'x':
-4 = -2/3(-7) + b
-4 = 14/3 + b
Solve for b:
-12/3 = 14/3 + b
-12/3 - 14/3 = b
-26/3 = b
Therefore, the equation of the line is y = -2/3x - 26/3 (Graphed below)
Some points on the line include:
(-7, -4)
(-4, -6)
(0, -26/3)
(2, -10)
(5, -12)
20
When converting from inches to feet, the measurement in inches, m, of an object varies directly with its measurement
in feet, f, with the constant of variation being 12.
What is the equation relating these two quantities?
Answer:
[tex]m=12f[/tex]
Step-by-step explanation:
The measurement in inches =m
The measurement in feet = f
We are told that: m varies directly with f
Written mathematically:
[tex]m\propto f[/tex]
Introducing the constant of variation, we have:
[tex]m=k f[/tex]
Given that: k=12
The equation relating these two quantities is:
[tex]m=12f[/tex]