Answer: 5 km per hour
Explanation:
if in 10 km there is 2 hours, then 10 divided by 2 is 5.
types of wave interactions include
What is the importance of using locally available resources in creating art?
Answer:
please give me brainlist and follow
Explanation:
Using locally available resources for art help in the preservation of environment. A significant and practical aspects of art is material significance. The items used by artists while making an art piece affects both the form and the material. Every material delivers something special in the creative process.
the higher the objects " ? ", the more kinetic energy
Pls quickly brainliest to the first to anwser
Answer:
8m/s^2
Explanation:
hope it helps........
Explanation:
you're supposed to know the formula of acceleration which is velocity of a time then you can solve the question
A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby weighs 20
kg. The carriage has
energy. Calculate it
Answer:
Energy in carriage (Potential energy) = 4,116 J
Explanation:
Given:
Mass of baby = 20 kg
Height = 21 m
Find:
Energy in carriage (Potential energy)
Computation:
The energy accumulated in an object as a result of its location relative to a neutral level is known as potential energy.
In carriage accumulated energy is potential energy.
Energy in carriage (Potential energy) = mgh
Energy in carriage (Potential energy) = (20)(9.8)(21)
Energy in carriage (Potential energy) = 4,116 J
A hand dryer blows heated air downwards out of the exit duct at a velocity of 4 m/s. The temperature and density of the ambient air at the inlet are 15 C and 1.23 kg/m3, while at the outlet it has temperature 35 C and density 1.15 kg/m3 The blower power is 10.0 W and the heater power is 715 W. Consider the inlet to be at the large mass of ambient air which has negligible velocity.
a) What is the pressure at the outlet? 4 m/s, 35 C
b) You will be applying the energy equation. Why can you ignore any height differences in this situation?
c) If the specific heat of air C-1000 J/(kg K), where Δυ-C Δ T, find the change in internal energy per unit mass from the inlet to outlet.
d) Find the mass flow rate through the dryer.
e) What is the power loss in the system?
f) What is the loss in the system?
g) What is the head loss in the system?
h) What is the total loss coefficient of the system, referred to the outlet velocity?
i) If there were no heater, would the temperature of gas at the outlet be higher, the same, or lower than the inlet? Explain why.
Answer:
nzkdjdksishdjsdjjdjnzkskejeoueeuieeoyrie ryrhdhcksodopdncndnszdkhfoeosheiwuef wokxkzdkjdoeehxjbxbdkeiehdhdhddjjddjdhhdhdhhhjdhfjdjjfjddhdheudiwiehdbejwowud
Explanation:
isos