Solution :
Taken moment about point B;
[tex]$\sum M_B = 0$[/tex]
[tex]$\left[(w)(4)(2)-N_A \sin 30^\circ (3)(\sin 30^\circ)-N_A \cos 30^\circ(3 \cos 30^\circ +4) \right] =0$[/tex]
[tex]$N_A = 1.2376w$[/tex]
[tex]$\sum F_x = 0$[/tex]
[tex]$N_A \sin 30^\circ - B_x = 0$[/tex]
[tex]$B_x = 1.2376w \times \sin 30^\circ$[/tex]
[tex]$B_x = 0.6188w$[/tex]
[tex]$\sum F_y = 0$[/tex]
[tex]$B_y+N_A \cos^\circ - (w \times 4) = 0$[/tex]
[tex]$B_y+(1.2376w) \cos 30^\circ - (w \times 4)=0 $[/tex]
[tex]$B_y = 2.9282w$[/tex]
Now calculating the resultant force at B,
[tex]$F_B= \sqrt{B_x^2+B_y^2}$[/tex]
[tex]$F_B= \sqrt{(0.6188w)^2+(2.9282w)^2}$[/tex]
= 2.9929w
For no failure,
[tex]$N_A<4 \ kN $[/tex]
2.9929 w < 4 kN
[tex]$w < 3.232 \ kN/m$[/tex]
And,
[tex]$F_B < 8 \ kN$[/tex]
2.9929 w < 8 kN
w < 2.673 kN/m
For the safe operation, w = 2.673 kN/m
Given that the skin depth of graphite at 100 (MHz) is 0.16 (mm), determine (a) the conductivity of graphite, and (b) the distance that a 1 (GHz) wave travels in graphite such that its field intensity is reduced by 30 (dB).
Answer:
the answer is below
Explanation:
a) The conductivity of graphite (σ) is calculated using the formula:
[tex]\delta=\frac{1}{\sqrt{\pi f \mu \sigma} }\\\\\sigma =\frac{1}{\pi f \mu \delta^2}[/tex]
where f = frequency = 100 MHz, δ = skin depth = 0.16 mm = 0.00016 m, μ = 0.0000012
Substituting:
[tex]\sigma =\frac{1}{\pi *10^6* 0.0000012*0.00016^2}=0.99*10^4\ S/m[/tex]
b) f = 1 GHz = 10⁹ Hz.
[tex]\alpha=\sqrt{\pi f \mu \sigma} = \sqrt{0.0000012*10^9*\pi*0.99*10^5}=1.98*10^4\ Np/m\\\\20log_{10} e^{-\alpha z}=-30\ dB\\\\(-\alpha z)log_{10} e=-1.5 \\\\z=\frac{-1.5}{log_{10} e*-\alpha} =1.75*10^{-4}\ m=0.175\ mm[/tex]
Compare and contrast the roles of agricultural and environmental scientists.
Answer:
HUHHHHHH BE SPECIFIC CHILE
Explanation:
ERM IRDK SORRY BOUT THAT
A work element in a manual assembly task consists of the following MTM-1 elements: (1) R16C, (2) G4A, (3) M10B5, (4) RL1, (5) R14B, (6) G1B, (7) M8C3, (8) P1NSE, and (9) RL1.
(a) Determine the normal times in TMUs for these motion elements.
(b) What is the total time for this work element in sec
Answer:
a)
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b) 3.1 secs
Explanation:
a) Determine the normal times in TMUs for these motion elements
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b ) Determine the total time for this work element in seconds
first we have to determine the total TMU = ∑ TMU = 86.4 TMU
note ; 1 TMU = 0.036 seconds
hence the total time for the work in seconds = 86.4 * 0.036 = 3.1 seconds