If the voltage amplitude across an 8.50-nF capacitor is equal to 12.0 V when the current amplitude through it is 3.33 mA, the frequency is closest to:

Answers

Answer 1
Answer:

5.19 x 10³Hz

Explanation:

The capacitive reactance, [tex]X_{C}[/tex], which is the opposition given to the flow of current through the capacitor is given by;

[tex]X_C = \frac{1}{2\pi fC }[/tex]

Where;

f = frequency of the signal through the capacitor

C = capacitance of the capacitor.

Also, from Ohm's law, the voltage(V) across the capacitor is given by the product of current(I) and the capacitive reactance. i.e;

V = I x [tex]X_{C}[/tex]             [Substitute the value of

=> V = I x [tex]\frac{1}{2\pi fC}[/tex]      [Make f the subject of the formula]

=> f = [tex]\frac{I}{2\pi VC}[/tex]                    ---------------------(i)

From the question;

I = 3.33mA = 0.00333A

C = 8.50nF = 8.50 x 10⁻⁹F

V = 12.0V

Substitute these values into equation (i) as follows;

f = [tex]\frac{0.00333}{2 * 3.142 * 12.0 * 8.50 * 10^{-9}}[/tex]            [Taking [tex]\pi[/tex] = 3.142]

f = 5.19 x 10³Hz

Therefore, the frequency is closest to f = 5.19 x 10³Hz


Related Questions

Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the spectrum is on the left and the red end of the spectrum is on the right. A B 5. (1 point) What is the name for this type of spectrum? 6. (1 point) Transition A is associated with an electron moving between the n= 1 and n= 3 levels. Transition B is associated with an electron moving between the n= 2 and n= 5 levels. Which transition is associated with a photon of longer wavelength?

Answers

Answer:

Explanation:

a )

This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .

b ) The wavelength of a photon  is inversely proportional to its energy .  Photon  due to transition between n = 1 and n = 3 will have higher energy than

that due to transition between n = 2 and n = 5 . So the later photon ( B)  will have greater wavelength or photon  due to transition between n = 2 and n = 5 will have greater wavelength .

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.
Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?
Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?
Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar.

Answers

Answer:

a) 6738.27 J

b) 61.908 J

c)  [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex]

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

[tex]I[/tex] =  [tex]\frac{1}{2}[/tex][tex]*11*1.1^{2}[/tex] = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = [tex]Iw^{2}[/tex] = 6.655 x [tex]31.82^{2}[/tex] = 6738.27 J

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex] =  [tex]\frac{1}{2}[/tex][tex]*16*2.8^{2}[/tex] = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = [tex]Iw[/tex] = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

[tex](I_{1} +I_{2} )w[/tex]

where the subscripts 1 and 2 indicates the values first and second  flywheels

[tex](I_{1} +I_{2} )w[/tex] = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = [tex]Iw^{2}[/tex] = 6.655 x [tex]3.05^{2}[/tex] = 61.908 J

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = [tex]\frac{1}{2}mv_{car} ^{2}[/tex]

where m is the mass of the car

[tex]v_{car}[/tex] is the velocity of the car

Equating the energy

2246.09 =  [tex]\frac{1}{2}mv_{car} ^{2}[/tex]

making m the subject of the formula

mass of the car m = [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]

An 1300-turn coil of wire that is 2.2 cmcm in diameter is in a magnetic field that drops from 0.14 TT to 0 TT in 9.0 msms . The axis of the coil is parallel to the field.
What is the emf of the coil? (in V)

Answers

Answer:

The induced  emf is  [tex]\epsilon =7.68 \ V[/tex]

Explanation:

From the question we are told that

     The number of turns is  [tex]N = 1300 \ turns[/tex]

    The diameter is  [tex]d = 2.2 \ cm = 2.2*10^{-2}[/tex]

     The initial magnetic field is  [tex]B_i = 0.14 \ T[/tex]

      The final magnetic field is  [tex]B_f = 0 \ T[/tex]

      The  time taken is  [tex]dt = 9.0ms = 9.0*10^{-3} \ s[/tex]

 

The radius is mathematically evaluated as

      [tex]r = \frac{d}{2 }[/tex]

substituting values

     [tex]r = \frac{2.2 *10^{-2}}{2 }[/tex]

     [tex]r = 1.1*10^{-2} \ m[/tex]

The induced emf is mathematically represented as

    [tex]\epsilon =- N * \frac{d\phi }{dt }[/tex]

Where  [tex]d\phi[/tex] is the change in magnetic field which is mathematically represented as

        [tex]d\phi = dB * A * cos\theta[/tex]

=>   [tex]d\phi = [B_f - B_i ] * A * cos\theta[/tex]

Here  [tex]\theta = 0[/tex] given that the axis of the coil is parallel to the field

Also A is the cross-sectional area which is mathematically represented as

       [tex]A = \pi r^2[/tex]

substituting values

      [tex]A = 3.142 * [1.1*10^{-2}]^2[/tex]

       [tex]A = 3.8 *10^{-4] \ m^2[/tex]

So

    [tex]d\phi = [0 - 0.14 ] * 3.8*10^{-4}[/tex]

    [tex]d\phi = -5.32*10^{-5} \ weber[/tex]

So  

     [tex]\epsilon =- 1300 * \frac{-5.32*10^{-5} }{ 9.0*10^{-3} }[/tex]

    [tex]\epsilon =7.68 \ V[/tex]

4. The Richter scale describes how much energy an earthquake releases. With every increase of 1.0 on the scale, 32 times more energy is released. How many times more energy would be released by a quake measuring 2.0 more units on the Richter scale?

Answers

Answer:

64 times

Explanation:

if increase of 1 gives you 32

then increase of 2 will give you its double

64

If you increase one, you get 32 then multiplying by 2 will give you 64, which is its double.

What is Earthquake?

An earthquake is a sudden energy released in the Earth's lithosphere that causes shock wave, which cause the Earth's surface to shake. Earthquakes can range in strength from ones that are so small that no one can feel them to quakes that are so powerful that they uproot entire cities, launch individuals and objects into the air, and harm vital infrastructure.

The frequency, kind, and intensity of earthquakes observed over a specific time period are considered to be the seismic activity of an area.

The average rate of earthquake energy output per unit volume determines the basicity of a certain area of the Earth. The non-earthquake seismic rumbling is also alluded to as a tremor.

To know more about Earthquake:

https://brainly.com/question/1296104

#SPJ5

A 4g bullet, travelling at 589m/s embeds itself in a 2.3kg block of wood that is initially at rest, and together they travel at the same velocity. Calculate the percentage of the kinetic energy that is left in the system after collision to that before.

Answers

Answer:

The  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Explanation:

Given;

mass of bullet, m₁ = 4g = 0.004kg

initial velocity of bullet, u₁ = 589 m/s

mass of block of wood, m₂ = 2.3 kg

initial velocity of the block of wood, u₂ = 0

let the final velocity of the system after collision = v

Apply the principle of conservation of linear momentum

m₁u₁ + m₂u₂ = v(m₁+m₂)

0.004(589) + 2.3(0) = v(0.004 + 2.3)

2.356 = 2.304v

v = 2.356 / 2.304

v = 1.0226 m/s

Initial kinetic energy of the system

K.E₁ = ¹/₂m₁u₁² + ¹/₂m₂u₂²

K.E₁ = ¹/₂(0.004)(589)² = 693.842 J

Final kinetic energy of the system

K.E₂ = ¹/₂v²(m₁ + m₂)

K.E₂ = ¹/₂ x 1.0226² x (0.004 + 2.3)

K.E₂ = 1.209 J

The kinetic energy left in the system = final kinetic energy of the system

The percentage of the kinetic energy that is left in the system after collision to that before = (K.E₂ / K.E₁) x 100%

                       = (1.209 / 693.842) x 100%

                        = 0.174 %

Therefore, the  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

A typical home uses approximately 1600 kWh of energy per month. If the energy came from a nuclear reaction, what mass would have to be converted to energy per year to meet the energy needs of the home

Answers

Answer:

7.68×10^25kg

Explanation:

The formula for energy used per year is calculated as

Energy used per year =12 x Energy used per month

By substituting Energy used per month in the above formula, we get

Energy used per year =12 x 1600kWh

= 19200kWh

Conversion:

From kWh to J:

1 kWh=3.6 x 10^6 J

Therefore, it is converted to J as

19200 kWh =19200 x 3.6 x 10^6 J

= 6.912×10^10 J

Hence, energy used per year is 6.912×10^10 J

To find the mass that is converted to energy per year.

E = MC^2 ............1

E is the energy used per year

C is the speed of light = 3.0× 10^8m/s

Where E= 6.912×10^10 J

Substituting the values into equation 1

6.912×10^10 J = M × 3.0× 10^8m/s

M = 6.912×10^10 J / (3.0× 10^8m/s)^2

M = 6.912×10^10 J/9×10^16

M = 7.68×10^25kg

Hence the mass to be converted is

7.68×10^25kg

Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.5 m diameter and a mass of 250 kg. Its maximum angular velocity is 1200 rpm.
How long does it take the flywheel to reach top angular speed of 1200 rpm?

Answers

Answer:

t = 2.95 min

Explanation:

Given that,

The diameter of flywheeel, d = 1.5 m

Mass of flywheel, m = 250 kg

Initial angular velocity is 0

Final angular velocity, [tex]\omega_f=1200\ rpm = 126\ rad/s[/tex]

We need to find the time taken by the flywheel to each a speed of 1200 rpm if it starts from rest.

Firstly, we will find the angular acceleration of the flywheel.

The moment of inertia of the flywheel,

[tex]I=\dfrac{1}{2}mr^2\\\\I=\dfrac{1}{2}\times 250\times (0.75)^2\\\\I=70.31\ kg-m^2[/tex]

Now,

Let the torque is 50 N-m. So,

[tex]\alpha =\dfrac{\tau}{I}\\\\\alpha =\dfrac{50}{70.31}\\\\\alpha =0.711\ rad/s^2[/tex]

So,

[tex]t=\dfrac{\omega_f-\omega_i}{\alpha }\\\\t=\dfrac{126-0}{0.711}\\\\t=177.21\ s[/tex]

or

t = 2.95 min

Two protons are released from rest, with only the electrostatic force acting. Which of the following statements must be true about them as they move apart? (There could be more than one correct choice.)a. Their electrical potential energy keeps decreasing.b. Their acceleration keeps decreasing.c. Their kinetic energy keeps increasing.d. Their kinetic energy keeps decreasing.e. Their electric potential energy keeps increasing.

Answers

Answer:

Explanation:

correct options

a ) Their electrical potential energy keeps decreasing

Actually as they move apart , their electrical potential energy decreases due to increase of distance between them and kinetic energy increases

so a ) option is correct

b ) Their acceleration keeps decreasing

As they move apart , their mutual force of repulsion decreases due to increase of distance between them so the acceleration decreases .

c ) c. Their kinetic energy keeps increasing

Their kinetic energy increases because their electrical potential energy decreases . Conservation of energy law will apply .

The moving apart should be true statements:

a. The electrical potential energy should be reduced.

b. The acceleration should be reduced.

c. The kinetic energy should be increased.

True statements related to moving apart:

At the time when the moving part, there is the reduction of the electric potential energy because there is a rise in the distance due to which the increment of the kinetic energy.  The reduction of the mutual force of repulsion because of increment in the distance due to this the acceleration should be reduced. There is the increase in the kinetic energy due to the reduction of the electrical potential energy. here the law of conversation of energy should be applied.

Learn more about energy here: https://brainly.com/question/10658188

g a conductor consists of an infinite number of adjacent wires, each infinitely long. If there are n wires per unit length, what is the magnitude of B~

Answers

Answer:

B=uonI/2

Explanation:

See attached file

In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum

Answers

Complete  Question

In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum? (b) What is the distance between these maxima on a screen 57.9 cm from the slits?

Answer:

a

  [tex]\theta = 0.3819^o[/tex]

b

  [tex]y = 0.00386 \ m[/tex]

Explanation:

From the question we are told that

    The slit separation is  [tex]d = 150 \lambda[/tex]

    The  distance from the screen is  [tex]D = 57.9 \ cm = 0.579 \ m[/tex]

 

Generally the condition for constructive interference is mathematically represented as

            [tex]dsin (\theta ) = n * \lambda[/tex]

=>        [tex]\theta = sin ^{-1} [\frac{n * \lambda }{ d } ][/tex]

where  n is the order of the maxima  and value is 1 because we are considering the central maximum and an adjacent maximum

     and  [tex]\lambda[/tex] is the wavelength of the light

So

       [tex]\theta = sin ^{-1} [\frac{ 1 * \lambda }{ 150 \lambda } ][/tex]

       [tex]\theta = 0.3819^o[/tex]

Generally the distance between the maxima is mathematically represented as

       [tex]y = D tan (\theta )[/tex]

=>    [tex]y = 0.579 tan (0.3819 )[/tex]

=>    [tex]y = 0.00386 \ m[/tex]

Four 50-g point masses are at the corners of a square with 20-cm sides. What is the moment of inertia of this system about an axis perpendicular to the plane of the square and passing through its center

Answers

Answer:

moment of inertia I ≈ 4.0 x 10⁻³ kg.m²

Explanation:

given

point masses = 50g = 0.050kg

note: m₁=m₂=m₃=m₄=50g = 0.050kg

distance, r, from masses to eachother = 20cm = 0.20m

the distance, d, of each mass point from the centre of the mass, using pythagoras theorem is given by

= (20√2)/ 2 = 10√2 cm =14.12 x 10⁻² m  

moment of inertia is a proportion of the opposition of a body to angular acceleration about a given pivot that is equivalent to the entirety of the products of every component of mass in the body and the square of the component's distance from the center

mathematically,

I = ∑m×d²

remember, a square will have 4 equal points

I = ∑m×d² = 4(m×d²)

I = 4 × 0.050 × (14.12 x 10⁻² m)²

I = 0.20 × 1.96 × 10⁻²

I =  3.92 x 10⁻³ kg.m²

I ≈ 4.0 x 10⁻³ kg.m²

attached is the diagram of the equation

A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 30 cmcm and 1200 turns of wire. When running, the solenoid produced a field of 1.4 TT in the center. Given this, how large a current does it carry?

Answers

Answer:

The current is  [tex]I = 2042\ A[/tex]

Explanation:

From the question we are told that

    The length of the solenoid is  [tex]l = 2.2 \ m[/tex]

    The  radius is  [tex]r_i = 30 \ cm = 0.30 \ m[/tex]

    The number of turn is [tex]N = 1200 \ turns[/tex]

    The  magnetic field is  [tex]B = 1.4 \ T[/tex]

The  magnetic field produced  is mathematically represented as

         [tex]B = \frac{\mu_o * N * I }{l }[/tex]

making [tex]I[/tex] the subject

       [tex]I = \frac{B * l}{\mu_o * N }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with values [tex]\mu_o = 4\pi *10^{-7} N/A^2[/tex]

 substituting values

        [tex]I = \frac{1.4 * 2.2 }{4\pi *10^{-7} * 1200 }[/tex]

        [tex]I = 2042\ A[/tex]

A magnetic field is entering into a coil of wire with radius of 2(mm) and 200 turns. The direction of magnetic field makes an angle 25° in respect to normal to surface of coil. The magnetic field entering coil varies 0.02 (T) in every 2 seconds. The two ends of coil are connected to a resistor of 20 (Ω).
A) Calculate Emf induced in coil
B) Calculate the current in resistor
C) Calculate the power delivered to resistor by Emf

Answers

Answer:

a) 2.278 x 10^-5 volts

b) 1.139 x 10^-6 Ampere

c) 2.59 x 10^-11 W

Explanation:

The radius of the wire r = 2 mm = 0.002 m

the number of turns N = 200 turns

direction of the magnetic field ∅ = 25°

magnetic field strength B = 0.02 T

varying time = 2 sec

The cross sectional area of the wire = [tex]\pi r^{2}[/tex]

==> A = 3.142 x [tex]0.002^{2}[/tex] = 1.257 x 10^-5 m^2

Field flux Φ = BA cos ∅ = 0.02 x 1.257 x 10^-5 x cos 25°

==> Φ = 2.278 x 10^-7 Wb

The induced EMF is given as

E = NdΦ/dt

where dΦ/dt = (2.278 x 10^-7)/2 = 1.139 x 10^-7

E = 200 x 1.139 x 10^-7 = 2.278 x 10^-5 volts

b) If the two ends are connected to a resistor of 20 Ω, the current through the resistor is given as

[tex]I[/tex] = E/R

where R is the resistor

[tex]I[/tex] = (2.278 x 10^-5)/20 = 1.139 x 10^-6 Ampere

c) power delivered to the resistor is given as

P = [tex]I[/tex]E

P = (1.139 x 10^-6) x (2.278 x 10^-5) = 2.59 x 10^-11 W

Sally who weighs 450 N, stands on a skate board while roger pushes it forward 13.0 m at constant velocity on a level straight street. He applies a constant 100 N force.


Work done on the skateboard


a. Rodger Work= 0J


b. Rodger work= 1300J


c. sally work= 1300J


d. sally work= 5850J


e. rodger work= 5850J

Answers

Answer:

b. Rodger work = 1300 J

Explanation:

Work done: This can be defined as the product of force and distance along the direction of the force.

From the question,

Work is done by Rodger using a force of 100 N  in pushing the skateboard through a distance of 13.0 m.

W = F×d............. Equation 1

Where W = work done, F = force, d = distance.

Given: F = 100 N, d = 13 m

Substitute these values into equation 1

W = 100(13)

W = 1300 J.

Hence the right option is b. Rodger work = 1300 J

Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter your answer to at least one decimal place.)

Answers

Answer:

Power=50.17dioptre

Power=50.17D

Explanation:

P=1/f = 1/d₀ + 1/d₁

Where d₀ = the eye's lens and the object distance= 5.70m=

d₁= the eye's lens and the image distance= 0.02m

f= focal length of the lense of the eye

We know that the object can be viewed clearly by the person ,then image and lens of the eye's distance needs to be equal with the retinal and the eye lens distance and this distance is given as 0.02m

Therefore, we can calculate the power using above formula

P= 1/5.70 + 1/0.02

Power=50.17dioptre

Therefore, the power the eye's is using to see the object from distance is 5.70D

Solve 3* +5-220t = 0​

Answers

Answer:

t = 27.5

Explanation:

[tex]3 + 5 -220t = 0[/tex]

Well to solve for t we need to combine like terms and seperate t.

So 3+5= 8

8 - 220t = 0

We do +220 to both sides

8 = 220t

And now we divide 220 by 8 which is 27.5

Hence, t = 27.5

"A power of 200 kW is delivered by power lines with 48,000 V difference between them. Calculate the current, in amps, in these lines."

Answers

Answer:

9.6×10⁹ A

Explanation:

From the question above,

P = VI.................... Equation 1

Where P = Electric power, V = Voltage, I = current.

make I the subject of the equation

I = P/V............. Equation 2

Given: P = 200 kW = 200×10³ W, V = 48000 V.

Substitute these vales into equation 2

I = 200×10³×48000

I = 9.6×10⁹ A.

Hence the current in the line is 9.6×10⁹ A.

two resistors of resistance 10 ohm's and 20 ohm's are connected in parallel to a batery of e.m.f 12V. Calculate the current passing through the 20hm's resister​

Answers

Current through 20 ohm resistor is 0.6 A

A person standing 180m from the foot of a high building claps hi
hand and hears the echo 0.03minutes later. What is the speed
sound in air at that temperature?
A) 331m/s
B) 240m/s C) 200m/s D) 300m/s

Answers

Answer:

C) 200 m/s

Explanation:

The sound travels a total distance of 360 m in 0.03 minutes.

v = (360 m) / (0.03 min × 60 s/min)

v = 200 m/s

Two objects are in all respects identical except for the fact that one was coated with a substance that is an excellent reflector of light while the other was coated with a substance that is a perfect absorber of light. You place both objects at the same distance from a powerful light source so they both receive the same amount of energy U from the light. The linear momentum these objects will receive is such that:

Answers

Answer:

absorbent    p = S / c

reflective         p = 2S/c

Explanation:

The moment of radiation on a surface is

          p = U / c

where U is the energy and c is the speed of light.

In the case of a fully absorbent object, the energy is completely absorbed. The energy carried by the light is given by the Poynting vector.

           p = S / c

in the case of a completely reflective surface the energy must be absorbed and remitted, therefore there is a 2-fold change in the process

           p = 2S/c

A piece of electronic equipment that is surrounded by packing material is dropped so that it hits the ground with a speed of 4 m/s. After impact, the equipment experiences an acceleration of a = 2kx, where k is a constant and x is the compression of the packing material. If the packing material experiences a maximum compression of 20 mm, determine the maximum acceleration of the equipment.

Answers

Answer:

Maximum acceleration is 800m/s^2

Explanation:

See attached file

A skater spins at 3rev/s when she stretches her arms outward. If she keeps her fists on her chest she can spin at 4.5rev/s and her body inertia is 3kg.m2. What is her body inertia when she stretches her arms outward?

Answers

Answer:

Body inertia I = 4.5 kg/m^2

Explanation:

Here, we want to calculate the body inertia when the arms are stretched outwards.

We know from the question that angular momentum is conserved

Thus;

I * 3 = 4.5 * 3

I = 4.5 kg/m^2

A student builds a rocket-propelled cart for a science project. Its acceleration is not quite high enough to win a prize, so he uses a larger rocket engine that provides 39% more thrust, although doing so increases the mass of the cart by 13%. By what percentage does the cart's acceleration increase?

Answers

Answer:

Explanation:

a = F / m

where a is acceleration , F is thrust and m is mass

taking log and differentiating

da / a = dF / F - dm / m

(da / a)x 100 = (dF / F)x100 - (dm / m) x100

percentage increase in a = percentage increase in F - percentage increase in m

= percentage increase in acceleration a   = 39 - 13 = 26 %

required increase = 26 %.

If an astronomer wants to find and identify as many stars as possible in a star cluster that has recently formed near the surface of a giant molecular cloud (such as the Trapezium cluster in the Orion Nebula), what instrument would be best for her to use

Answers

Answer:

Infrared telescope and camera

Explanation:

An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.

Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, Infrared images is better used, since they are able to penetrate the surrounding clouds of dust, and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.

If the magnetic field steadily decreases from BBB to zero during a time interval ttt, what is the magnitude III of the induced current

Answers

Answer:

Using ohms law

The current is found from Ohm's Law.

I = V /R = E /R = Bxy /Rt.

Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength is 4.0 mV/m at a point 1.5 m away from the center of the circle. At what rate is the magnetic field changing?

Answers

Answer:

The rate at which the magnetic field changes is  [tex]\frac{\Delta B }{\Delta t } = - 5.33*10^{-3} \ T/ s[/tex]

Explanation:

From the question we are told that

   The  electric field strength is [tex]E = 4.0 mV/m = 4.0 *10^{-3} V/m[/tex]

   The  radius of the  circular region where the electric field is induced is

   [tex]d = 1.5 \ m[/tex]

Generally the induced electric field is mathematically represented as

     [tex]E = - \frac{r}{2} * \frac{\Delta B }{\Delta t }[/tex]

The  negative sign show that the induced electric field is acting in opposite direction to the change in magnetic field

Where  [tex]\frac{\Delta B }{\Delta t }[/tex] is the change in magnetic field

So  

       [tex]\frac{\Delta B }{\Delta t } = - \frac{2 * E }{r}[/tex]

substituting values

       [tex]\frac{\Delta B }{\Delta t } = - \frac{2 * 4.0 *10^{-3}}{ 1.5 }[/tex]

       [tex]\frac{\Delta B }{\Delta t } = - 5.33*10^{-3} \ T/ s[/tex]

A proton moving at 4.80 106 m/s through a magnetic field of magnitude 1.74 T experiences a magnetic force of magnitude 7.00 10-13 N. What is the angle between the proton's velocity and the field? (Enter both possible answers from smallest to largest. Enter only positive values between 0 and 360.)

Answers

Answer:

31.55° and 148.45°

Explanation:

Formula for calculating the force experiences by the proton placed in a magnetic field is as expressed below;

F = qvBsinθ where;

F is the magnetic force experienced by the proton

q is the charge on the proton

v is the velocity of the proton

B is the magnetic field

θ is the angle between the proton's velocity and the field (Required)

Given parameters

F =  7.00 * 10⁻¹³N

q = 1.602*10⁻¹⁹C

v = 4.80 * 10⁶ m/s

B = 1.74 T

θ  =?

From the formula F = qvBsinθ;

sinθ = F/qvB

sinθ = 7.00 * 10⁻¹³/1.602*10⁻¹⁹* 4.80 * 10⁶*1.74

sinθ =  7.00 * 10⁻¹³/13.38*10⁻¹³

sinθ = 0.5231689 * 10⁰

sinθ = 0.5231689

θ = sin⁻¹0.5231689

θ = 31.55°

The following are the positive values of the angle between 0° and 360°

Sin is positive in the first and second quadrant. In the second quadrant the angle is equal to 180°-31.55° = 148.45°.

Hence the possible values of the angle from smallest to largest are 31.55° and 148.45°

Determine the position in the oscillation where an object in simple harmonic motion: (Be very specific, and give some reasoning to your answer.) has the greatest speed has the greatest acceleration experiences the greatest restoring force experiences zero restoring force g

Answers

Answer:

Explanation:

The greatest speed is attained at middle point or equilibrium point or where displacement from equilibrium point is zero .

When the object remains at one of the extreme point it experiences greatest acceleration but at that point velocity is zero . Due to acceleration , its velocity goes on increasing till it come to equilibrium point . At this point acceleration becomes zero . After that its velocity starts decreasing because of negative acceleration . Hence at middle point velocity is maximum .

The greatest acceleration is attained at maximum displacement or at one of the two extreme end .

Greatest restoring force too will be at position where acceleration is maximum because acceleration is produced by restoring force .

Restoring force is proportional to displacement or extension against restoring force . So it will be maximum when displacement is maximum .

Zero restoring force exists at equilibrium position or middle point or at point where displacement is zero . It is so because acceleration at that point is zero .

An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the new acceleration would be _____ m/s/s.

Answers

Hahahahaha. Okay.

So basically , force is equal to mass into acceleration.

F=ma

so when F=ma , we get acceleration=6m/s/s

Force is doubled.

Mass is 1/3 times original.

2F=1/3ma

Now , we rearrange , and we get 6F=ma

So , now for 6 times the original force , we get 6 times the initial acceleration.

So new acceleration = 6*6= 36m/s/s

Suppose that a 117.5 kg football player running at 6.5 m/s catches a 0.43 kg ball moving at a speed of 26.5 m/s with his feet off the ground, while both of them are moving horizontally.
(a) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in the same direction.
(b) Calculate the change in kinetic energy of the system, in joules, after the player catches the ball.
(c) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in opposite directions.
(d) Calculate the change in kinetic energy of the system, in joules, in this case.

Answers

Answer:

a) 6.57 m/s

b) 53.75 J

c) 6.37 m/s

d) -98.297 J

Explanation:

mass of player = [tex]m_{p}[/tex] = 117.5 kg

speed of player = [tex]v_{p}[/tex] = 6.5 m/s

mass of ball = [tex]m_{b}[/tex] = 0.43 kg

velocity of ball = [tex]v_{b}[/tex] = 26.5 m/s

Recall that momentum of a body = mass x velocity = mv

initial momentum of the player = mv = 117.5 x 6.5 = 763.75 kg-m/s

initial momentum of the ball = mv = 0.43 x 26.5 = 11.395 kg-m/s

initial kinetic energy of the player = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.5^{2}[/tex] =  2482.187 J

a) according to conservation of momentum, the initial momentum of the system before collision must equate the final momentum of the system.

for this first case that they travel in the same direction, their momenta carry the same sign

[tex]m_{p}[/tex][tex]v_{p}[/tex] + [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

where v is the final velocity of the player.

inserting calculated momenta of ball and player from above, we have

763.75 + 11.395 = (117.5 + 0.43)v

775.145 = 117.93v

v = 775.145/117.93 = 6.57 m/s

b) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.57^{2}[/tex] = 2535.94 J

change in kinetic energy = 2535.94 - 2482.187 = 53.75 J  gained

c) if they travel in opposite direction, equation becomes

[tex]m_{p}[/tex][tex]v_{p}[/tex] - [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

763.75 - 11.395 = (117.5 + 0.43)v

752.355 = 117.93v

v = 752.355/117.93 = 6.37 m/s

d) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.37^{2}[/tex]  = 2383.89 J

change in kinetic energy = 2383.89 - 2482.187 = -98.297 J

that is 98.297 J  lost

Other Questions
the sum of x and y is twice x. y= 11. How did the solubility product constant Ksp of KHT in pure water compare to its solubility product constant Ksp of KHT in KCl solution? Are these results what you would expect? Why? Two similar cylindrical cans hold 2 litres and 6.75 litres of liquid. If the diameter of the smaller can is 16cm, find the diameter of the larger can. What does the pH of a solution have to be in order to be a base? Please help............. . Why does Urrea consider himself 100% Mexican and 100% American? Why? Were you raised similarly? A storage basin is 1240 ft by 637 ft. Its 15.63 ft deep. How many gallons of water is in the basin Please help i will mark brainliest for correct answers! A student stands 20 m away from the footof a tree and observes that the angle of elevation of the top of the tree, measured from a table 1.5 m above the ground, is 3428'. Calculate the height of the tree tothe nearest metre. what is standard deviation in maths A corporation has 50,000 shares of $25 par stock outstanding. If the corporation issues a 3-for-1 stock split, the number of shares outstanding after the split will be a.50,000 shares b.100,000 shares c.150,000 shares d.16,666 shares Collectivist-inclined totalitarian states tend to enact laws that severely restrict private enterprises, while laws enacted by governments in democratic states, where individualism is the dominant political philosophy, tend to be pro-private enterprise and pro-consumer. This indicates that the Which barriers can make it difficult for individuals to obtain necessary health care At a pond, there were 24 ducks swimming. The ratio of ducklings to adult ducks is 5:1. How many ducklings were swimming at the pond? Thank you for the help!! Please answer this in two minutes A wooden artifact from a Chinese temple has a 14C activity of 41.0 counts per minute as compared with an activity of 58.2 counts per minute for a standard of zero age. You may want to reference (Pages 913 - 916) Section 21.4 while completing this problem. Part A From the half-life for 14C decay, 5715 yr, determine the age of the artifact. Express your answer using two significant figures. t Grade 7 : Civics chapter : 3 - Understanding Media Write a short note on : The impact of Advertising The Right to Information Act 2005 Plz do answer and I'll mark as brainliest if I'm satisfied with the answer : ) The second is freedom of every person to worship God inhis own way everywhere in the world.The third is freedom from want ....The fourth is freedom from fear ...Which best explains the role that the theme of "freedom" plays in thisexcerpt?A. It helps Roosevelt convince Americans that future generations willthink highly of the United States if it doesn't enter the war.B. It helps Roosevelt convince Americans that war is dangerous andexpensive.C. It helps Roosevelt convince Americans that the United Statesmust act quickly to enter the war.D. It helps Roosevelt convince Americans that everyone is entitled tofreedom are mutations good or bad