Answer:
The correct answer is 16.61 grams methanol and 57.38 grams water.
Explanation:
The mole fraction (X) of methanol can be determined by using the formula,
X₁ = mole number of methanol (n₁) / Total mole number (n₁ + n₂)
X₁ = n₁/n₁ + n₂ = 0.14
n₁ / n₁ + n₂ = 0.14 ---------(i)
n₁ mole CH₃OH = n₁ mol × 32.042 gram/mol (The molecular mass of CH₃OH is 32.042 grams per mole)
n₁ mole CH₃OH = 32.042 n₁ g
n₂ mole H2O = n₂ mole × 18.015 g/mol
n₂ mole H2O = 18.015 n₂ g
Thus, total mole number is,
32.042 n₁ + 18.015 n₂ = 74 ------------(ii)
From equation (i)
n₁/n₁ + n₂ = 0.14
n₁ = 0.14 n₁ + 0.14 n₂
n₁ - 0.14 n₁ = 0.14 n₂
n₁ = 0.14 n₂ / 1-0.14
n₁ = 0.14 n₂/0.86 ----------(iii)
From eq (ii) and (iii) we get,
32.042 × 0.14/0.86 n₂ + 18.015 n₂ = 74
n₂ (32.042 × 0.14/0.86 + 18.015) = 74
n₂ = 74 / (32.042 × 0.14/0.86 + 18.0.15)
n₂ = 3.1854 mol
From equation (iii),
n₁ = 0.14/0.86 n₂
n₁ = 0.14/0.86 × 3.1854
n₁ = 0.5185 mol
Now, presence of water in the mixture is,
= 3.1854 mole × 18.015 gram per mole
= 57.38 grams
Methanol present in the mixture is,
= 0.5185 mol × 32.042 gram per mole
= 16.61 grams
You are given 10.00 mL of a solution of an unknown acid. The pH of this solution is exactly 2.18. You determine that the concentration of the unknown acid was 0.2230 M. You also determined that the acid was monoprotic (HA). What is the pKa of your unknown acid
Answer:
[tex]pKa=3.70[/tex]
Explanation:
Hello,
In this case, given the information, we can compute the concentration of hydronium given the pH:
[tex]pH=-log([H^+])\\[/tex]
[tex][H^+]=10^{-pH}=10^{-2.18}=6.61x10^{-3}M[/tex]
Next, given the concentration of the acid and due to the fact it is monoprotic, its dissociation should be:
[tex]HA\rightleftharpoons H^++A^-[/tex]
We can write the law of mass action for equilibrium:
[tex]Ka=\frac{[H^+][A^-]}{[HA]}[/tex]
Thus, due to the stoichiometry, the concentration of hydronium and A⁻ are the same at equilibrium and the concentration of acid is:
[tex][HA]=0.2230M-6.61x10^{-3}M=0.2164M[/tex]
As the concentration of hydronium also equals the reaction extent ([tex]x[/tex]). Thereby, the acid dissociation constant turns out:
[tex]Ka=\frac{(6.61x10^{-3})^2}{0.2164}\\ \\Ka=2.02x10^{-4}[/tex]
And the pKa:
[tex]pKa=-log(Ka)=-log(2.02x10^{-4})\\\\pKa=3.70[/tex]
Regards.
Stote 4 ways in which excesine alcohol conscuption is
harmful to humans
Answer:
An addiction could occur, maybe an overdose?, this could lead to death and maybe you would do unreasonable things which could get you fined or arrested.
Explanation:
Answer:
Excessive alcohol is harmful because you could get addicted.Alcohol can affect your nervous system.Your sugar levels will not be good.Parts of your body and organs will become inflamed.You can get a larger amount of muscle cramps.Also you will not be able to get enough vitamins in your body.Accidents that lead to deaths could occur.You would do crazy actions with things such as theft or breaking into a house which could get you fined or arrested.Too much alcohol can lead to high blood pressure, disease and even strokes.You can have birth defectsWith excessive alcohol you can get osteoporosis.You can also get your immune system weakened.Finally, alcohol can lead to cancer.Hope this helped,
Kavitha
1. In this experiment, the procedure instructs you to dissolve solid potassium hydrogen tartrate (KHT) in two different solvents. What are these two solvents? (2 pts)
Answer:
Water
Explanation:
Solid potassium hydrogen tartrates (KHT) is soluble in water. This is especially at room temperature.
The solvent for KHT is water.
A base solution contains 0.400 mol of OH–. The base solution is neutralized by 43.4 mL of sulfuric acid. What is the molarity of the sulfuric acid solution?
Answer:
Molarity of the sulfuric acid solution is 4.61M
Explanation:
The neutralization of a base of OH⁻ with sulfuric acid, H₂SO₄, occurs as follows:
2 OH⁻ + H₂SO₄ → 2H₂O + SO₄²⁻
That means, 2 moles of base react with 1 mole of sulfuric acid.
If you add 0.400 moles of OH⁻, moles of sulfuric acid you need to neutralize this amount of OH⁻ are:
0.400 moles OH⁻ ₓ (1 mole H₂SO₄ / 2 moles OH⁻) = 0.200 moles of H₂SO₄
As you add 43.4mL = 0.0434L of sulfuric acid to neutralize this solution, molarity (Ratio between moles and liters) is:
0.200 moles H₂SO₄ / 0.0434L = 4.61M
Molarity of the sulfuric acid solution is 4.61Mwhat is radiologist
Radiologists are medical doctors that treat injuries using medical imaging (radiology)
Answer:
a person who uses X-rays or other high-energy radiation, especially a doctor specializing in radiology.
Explanation:
Explain the term isomers?
Answer:
Isomers are molecules that have the same molecular method, however have a unique association of the atoms in space. That excludes any extraordinary preparations which can be sincerely because of the molecule rotating as an entire, or rotating about precise bonds.
How would you monitor the progress of a neutralization reaction? Question 2 options: We will use a funnel to separate the solid as it forms We will use a balance to see the changes in mass We will use a thermometer to check the changes in temperature We will use an acid-base indicator to see changes in color depending on the pH
Answer:
We will use an acid-base indicator to see changes in colour depending on the pH
Explanation:
The pH changes during a titration, so you could use an acid-base indicator to follow the changes in pH.
A is wrong. An acid-base titration does not usually form a solid, and it would be impractical to isolate a solid with a funnel.
B is wrong. There are no changes in mass.
C is wrong. Any changes in temperature would be too small to measure precisely with an ordinary thermometer.
The best way to monitor the progress of a neutralization reaction such as acid-base titration: D. Use an acid-base indicator to observe the changes in color depending on the pH.
The chemical reaction that occurs when you mix an acid and a base together is referred to as neutralization reaction.
In a neutralization reaction, what is formed is salt and water.
Acid-base titration is a neutralization method.
During acid-base titration, the neutralization reaction that occurs is usually monitored by observing the pH changes that occurs.
Change in pH is an indicator that there is progress in the neutralization reaction.
An acid-base indicator, can be used to detect the changes that occur via the pH changes in relation to the color change.
Therefore, the best way to monitor the progress of a neutralization reaction such as acid-base titration: D. Use an acid-base indicator to observe the changes in color depending on the pH.
Learn more about neutralization reaction here:
https://brainly.com/question/12442828
The vapor pressure of pure water at 250C is 23.77 torr. What is the vapor pressure of water above a solution that is 1.500 m glucose, C6H12O6?
Answer:
Vapor pressure of water = 23.14torr
Explanation:
When you made a solution, vapor pressure decreases following Raoult's law:
[tex]P_{solution} = X_{solvent} P_{solvent}[/tex]
Where P is vapor pressure and X mole fraction
As vapor pressure of water is 23.77torr we must find the mole fraction of water knowing the solution is 1.500m glucose (That is 1.500 moles of glucose per kg of water = 1000g of water).
1000g of H₂O are, in moles (Molar mass: 18.02g/mol):
1000g H₂O ₓ (1mole / 18.02g) = 55.5 moles of H₂O.
As we know now the solution contains 55.5 moles of water and 1.5 moles of glucose. Thus, mole fraction of water (Solvent) is:
[tex]X_{H_2O} = \frac{55.5molesH_2O}{55.5molesH_2O + 1.5 molesGlucose} = 0.9737[/tex]
Replacing in Raoult's law, pressure of water above the solution is:
[tex]P_{solution} = X_{solvent} P_{solvent}[/tex]
[tex]P_{solution} = 0.9737*23.77torr[/tex]
Vapor pressure of water = 23.14torrGive the major organic products from the oxidation with KMnO4 for the following compounds. Assume an excess of KMnO4.
a) ethylbenzene
b) m-Xylene (1,3- dimethylbenzene)
c) 4-Propyl-3-t-butyltoluene
Answer:
Explanation:
a ) Benzoic acid is formed . In any alkyl benzene derivative , potassium permanganate reacts to form carboxylic acid . It oxidises side chains to carboxylic acid .
C₆H₅CH₃ + 0 = C₆H₅COOH + H₂O
O is provided by KMnO₄
b ) In this reaction isophthalic acid is formed .
C₆H₄(CH₃)₂ +O = C₆H₄(COOH)₂
c)
4-Propyl-3-t-butyltoluene
In this oxidation , three side chains of ring are 1 ) 1-methyl 2 ) 3- butyl 3 ) 4 propyl .
The methyl and 4 - propyl groups are oxidised to di- carboxylic acid and 3 butyl group remains intact ( unoxidised )
If the concentration of Mg2+ in the solution were 0.039 M, what minimum [OH−] triggers precipitation of the Mg2+ ion? (Ksp=2.06×10−13.) Express your answer to two significant figures and include the appropriate units. nothing nothing
Answer:
2.30 × 10⁻⁶ M
Explanation:
Step 1: Given data
Concentration of Mg²⁺ ([Mg²⁺]): 0.039 M
Solubility product constant of Mg(OH)₂ (Ksp): 2.06 × 10⁻¹³
Step 2: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 3: Calculate the minimum [OH⁻] required to trigger the precipitation of Mg²⁺ as Mg(OH)₂
We will use the following expression.
Ksp = 2.06 × 10⁻¹³ = [Mg²⁺] × [OH⁻]²
[OH⁻] = 2.30 × 10⁻⁶ M
A meteorologist filled a weather balloon with 3.00L of the inert noble gas helium. The balloon's pressure was 765 torr. The balloon was released to an altitude with a pressure of 530 torr. What was the volume (L) of the weather balloon
Answer:
4.33 L
Explanation:
Step 1: Given data
Initial volume of the balloon (V₁): 3.00 L
Initial pressure of the balloon (P₁): 765 torr
Final volume of the balloon (V₂): ?
Final pressure of the balloon (P₂): 530 torr
Step 2: Calculate the final volume of the balloon
If we consider Helium to behave as an ideal gas, we can calculate the final volume of the balloon using Boyle's law.
[tex]P_1 \times V_1 = P_2 \times V_2\\V_2 = \frac{P_1 \times V_1}{P_2} = \frac{765torr \times 3.00L}{530torr} = 4.33 L[/tex]
The Handbook of Chemistry and Physics gives solubilities of the following compounds in grams per 100 mL water. Because these compounds are only slightly soluble, assume that the volume does not change on dissolution and calculate the solubility product for each.
(a) BaSeO4, 0.0118 g/100 mL
(b) Ba(BrO3)2 H20, 0.30 g/100 mL
(c) NH4MgAsO4-6H20, 0.038 g/100 mL
(d) La2(MoOs)3, 0.00179 g/100 mL
Answer:
(a) [tex]Ksp=4.50x10^{-7}[/tex]
(b) [tex]Ksp=1.55x10^{-6}[/tex]
(c) [tex]Ksp=2.27x10^{-12}[/tex]
(d) [tex]Ksp=1.05x10^{-22}[/tex]
Explanation:
Hello,
In this case, given the solubility of each salt, we can compute their molar solubilities by using the molar masses. Afterwards, by using the mole ratio between ions, we can compute the concentration of each dissolved and therefore the solubility product:
(a) [tex]BaSeO_4(s)\rightleftharpoons Ba^{2+}(aq)+SeO_4^{2-}(aq)[/tex]
[tex]Molar\ solubility=\frac{0.0188g}{100mL} *\frac{1mol}{280.3g}*\frac{1000mL}{1L}=6.7x10^{-4}\frac{mol}{L}[/tex]
In such a way, as barium and selenate ions are in 1:1 molar ratio, they have the same concentration, for which the solubility product turns out:
[tex]Ksp=[Ba^{2+}][SeO_4^{2-}]=(6.7x10^{-4}\frac{mol}{L} )^2\\\\Ksp=4.50x10^{-7}[/tex]
(B) [tex]Ba(BrO_3)_2(s)\rightleftharpoons Ba^{2+}(aq)+2BrO_3^{-}(aq)[/tex]
[tex]Molar\ solubility=\frac{0.30g}{100mL} *\frac{1mol}{411.15g}*\frac{1000mL}{1L}=7.30x10^{-3}\frac{mol}{L}[/tex]
In such a way, as barium and bromate ions are in 1:2 molar ratio, bromate ions have twice the concentration of barium ions, for which the solubility product turns out:
[tex]Ksp=[Ba^{2+}][BrO_3^-]^2=(7.30x10^{-3}\frac{mol}{L})(3.65x10^{-3}\frac{mol}{L})^2\\\\Ksp=1.55x10^{-6}[/tex]
(C) [tex]NH_4MgAsO_4(s)\rightleftharpoons NH_4^+(aq)+Mg^{2+}(aq)+AsO_4^{3-}(aq)[/tex]
[tex]Molar\ solubility=\frac{0.038g}{100mL} *\frac{1mol}{289.35g}*\frac{1000mL}{1L}=1.31x10^{-4}\frac{mol}{L}[/tex]
In such a way, as ammonium, magnesium and arsenate ions are in 1:1:1 molar ratio, they have the same concentrations, for which the solubility product turns out:
[tex]Ksp=[NH_4^+][Mg^{2+}][AsO_4^{3-}]^2=(1.31x10^{-4}\frac{mol}{L})^3\\\\Ksp=2.27x10^{-12}[/tex]
(D) [tex]La_2(MoOs)_3(s)\rightleftharpoons 2La^{3+}(aq)+3MoOs^{2-}(aq)[/tex]
[tex]Molar\ solubility=\frac{0.00179g}{100mL} *\frac{1mol}{1136.38g}*\frac{1000mL}{1L}=1.58x10^{-5}\frac{mol}{L}[/tex]
In such a way, as the involved ions are in 2:3 molar ratio, La ion is twice the molar solubility and MoOs ion is three times it, for which the solubility product turns out:
[tex]Ksp=[La^{3+}]^2[MoOs^{-2}]^3=(2*1.58x10^{-5}\frac{mol}{L})^2(3*1.58x10^{-5}\frac{mol}{L})^3\\\\Ksp=1.05x10^{-22}[/tex]
Best regards.
A mercury manometer is used to measure pressure in the container illustrated. Calculate the pressure exerted by the gas if atmospheric pressure is 751 torr and the distance labeled is 176 mm.
Answer:
Pressure exerted by the gas is 574.85 torr
Explanation:
Atmospheric pressure = 751 torr
but 1 torr = 1 mmHg
therefore,
atmospheric pressure = 751 mmHg
1 mmHg = 133.3 Pa
therefore,
atmospheric pressure = 751 x 133.3 = 100108.3 Pa
distance labeled (tube section with mercury) = 176 mm
the pressure within the tube will be
[tex]P_{tube}[/tex] = ρgh
where ρ is the density of mercury = 13600 kg/m^3
h is the labeled distance = 176 mm = 0.176 m
g is acceleration due to gravity = 9.81 m/s^2
[tex]P_{tube}[/tex] = 13600 x 9.81 x 0.176 = 23481.216 Pa
The general equation for the pressure in the manometer will be
[tex]P_{atm}[/tex] = [tex]P_{tube}[/tex] + [tex]P_{gas}[/tex]
where [tex]P_{atm}[/tex] is the atmospheric pressure
[tex]P_{tube}[/tex] is the pressure within the tube with mercury
[tex]P_{gas}[/tex] is the pressure of the gas
substituting, we have
100108.3 = 23481.216 + [tex]P_{gas}[/tex]
[tex]P_{gas}[/tex] = 100108.3 - 23481.216 = 76627.1 Pa
This pressure can be stated in mmHg as
76627.1 /133.3 = 574.85 mmHg
and also equal to 574.85 torr
To infer means to do what?
A. reach a conclusion about data
B. make a hypothesis about data
C. decide to collect some more data
D. state something found indirectly from data
Answer:
A
Explanation:
infer means use data to reach conclusion.
If a bottle of olive oil contains 1.2 kg of olive oil, what is the volume, in milliliters (mL), of the olive oil?
Answer:
1.3 mL
Explanation:
First, get the density of the olive oil, which is 0.917 kg/mL. Then divide the mass by the density:
1.2kg/0.917kg/mL= 1.3086150491 mL. The kg cancel out, leaving us with mL.
It should have 2 significant figures, because 1.2kg has 2 and we are dividing.
The volume of olive oil will be nearly 1300mL or 1.30 L as per the given data.
What is volume?Volume is a measurement of three-dimensional space that is occupied. It is frequently numerically quantified using SI derived units or various imperial units. The definition of length is linked to the definition of volume.
Volume is, at its most basic, a measure of space. The units liters (L) and milliliters (mL) are used to measure the volume of a liquid, also known as capacity.
This measurement is done with graduated cylinders, beakers, and Erlenmeyer flasks.
Here, it is given that mass of olive oil is 1.2kg.
We know that,
Density of olive oil = 0.917kg/l.
Volume = mass/density
Volume = 1.2/0.917.
Volume = 1.30 lit.
Volume = 1300mL.
Thus, the volume of olive oil will be 1300 mL.
For more details regarding volume, visit:
https://brainly.com/question/1578538
#SPJ2
Which of the following is a property of salts? Undergo combustion Do not make ionic bonds easily Do not conduct electricity as solids Formed due to reaction of acid with water
Answer:
Do not conduct electricity as solids.
Explanation:
Hello,
In this case, we should remember that salts are formed when an acid and base react in order to yield the salt and water due to the ions exchange during neutralization chemical reactions. For instance, when hydrochloric acid (acid) reacts with potassium hydroxide (base), sodium chloride (salt) and water are yielded via:
[tex]HCl+NaOH\rightarrow NaCl+H_2O[/tex]
Moreover, it is widely known that salts are formed by electrovalent/ionic bonds which involves electron transfer so the metallic atom becomes positively charged (cation) whereas the non-metallic atom becomes negatively charged (anion) once the electrons are received so it can conduct electricity when dissolved in water yet not when solid since electron transfer is facilitated by the aqueous media, otherwise, ions remain together. Thereby, answer is do not conduct electricity as solids.
Regards.
Answer:
c
Explanation:
Convert cm/S^2 to km/h^
2
Answer:
The answer to this question is 0.072km/h
Write a balanced equation for the single-replacement oxidation-reduction reaction described, using the smallest possible integer coefficients. The reaction that takes place when chlorine gas combines with aqueous potassium bromide. (Use the lowest possible coefficients. Omit states of matter.)
Answer:
[tex]\rm Cl_2 + 2\; KBr \to Br_2 + 2\; KCl[/tex].
One chlorine molecule reacts with two formula units of (aqueous) potassium bromide to produce one bromine molecule and two formula units of (aqueous) potassium chloride.
Explanation:
Formula for each of the speciesStart by finding the formula for each of the compound.
Both chlorine [tex]\rm Cl[/tex] and bromine [tex]\rm Br[/tex] are group 17 elements (halogens.) Each On the other hand, potassium [tex]\rm K[/tex] is a group 1 element (alkaline metal.) EachTherefore, the ratio between [tex]\rm K[/tex] atoms and [tex]\rm Br[/tex] atoms in potassium bromide is supposed to be one-to-one. That corresponds to the empirical formula [tex]\rm KBr[/tex]. Similarly, the ratio between
The formula for chlorine gas is [tex]\rm Cl_2[/tex], while the formula for bromine gas is [tex]\rm Br_2[/tex].
Balanced equation for the reactionWrite down the equation using these chemical formulas.
[tex]\rm ?\; Cl_2 + ?\; KBr \to ?\;Br_2 + ?\; KCl[/tex].
Start by assuming that the coefficient of compound with the largest number of elements is one. In this particular equation, both [tex]\rm KBr[/tex] and [tex]\rm KCl[/tex] features two elements each.
Assume that the coefficient of [tex]\rm KCl[/tex] is one. Hence:
[tex]\rm ?\; Cl_2 + 1 \; KBr \to ?\;Br_2 + ?\; KCl[/tex].
Note that [tex]\rm KBr[/tex] is the only source of [tex]\rm K[/tex] and [tex]\rm Br[/tex] atoms among the reactants of this reaction.
There would thus be one [tex]\rm K[/tex] atom and one [tex]\rm Br[/tex] atom on the reactant side of the equation.
Because atoms are conserved in a chemical equation, there should be the same number of [tex]\rm K[/tex] and [tex]\rm Br[/tex] atoms on the product side of the equation.
In this reaction, [tex]\rm Br_2[/tex] is the only product with [tex]\rm Br[/tex] atoms.
One [tex]\rm Br[/tex] atom would correspond to [tex]0.5[/tex] units of [tex]\rm Br_2[/tex].
Similarly, in this reaction, [tex]\rm KCl[/tex] is the only product with [tex]\rm K[/tex] atoms.
One [tex]\rm K[/tex] atom would correspond to one formula unit of [tex]\rm KCl[/tex].
Hence:
[tex]\displaystyle \rm ?\; Cl_2 + 1 \; KBr \to \frac{1}{2}\;Br_2 + 1\; KCl[/tex].
Similarly, there should be exactly one [tex]\rm Cl[/tex] atom on either side of this equation. The coefficient of [tex]\rm Cl_2[/tex] should thus be [tex]0.5[/tex]. Hence:
[tex]\displaystyle \rm \frac{1}{2}\; Cl_2 + 1 \; KBr \to \frac{1}{2}\;Br_2 + 1\; KCl[/tex].
That does not meet the requirements, because two of these coefficients are not integers. Multiply all these coefficients by two (the least common multiple- LCM- of these two denominators) to obtain:
[tex]\displaystyle \rm 1\; Cl_2 + 2 \; KBr \to 1\;Br_2 + 2\; KCl[/tex].
Write a balanced equation for: capture of an electron by cadmium-104
Answer:
104 48 Cd + 0 -1 e ---------> 104 47 Ag
Explanation:
In the process of electron capture, the nucleus captures an electron and thus converts a proton into a neutron with the emission of a neutrino. This process increases the Neutron/Proton ratio, the captured electron is usually from the K shell. An electron from a higher energy level now drops down to fill the vacancy in the K shell and characteristic X-ray is emitted. This process usually occurs where the Neutron/proton ratio is very low and the nucleus has insufficient energy to undergo positron emission.
For 104 48 Cd, the balanced equation for K electron capture is;
104 48 Cd + 0 -1 e ---------> 104 47 Ag
What is the purpose of reacting 2.0mL of HNO3 with 2.0 mL of H2SO4 in a separate test tube, prior to adding it to the solution containing the substrate
The question is incomplete, the complete question is;
What is the purpose of reacting 2.0mL of HNO3 with 2.0 mL of H2SO4 in a separate test tube, prior to adding it to the solution containing the substrate? more than one answer is possible
A) The release of a water molecule that acts as an electrophile in the reaction with methyl benzoate.
B) The formation of nitronium ion, which acts an electrophile in the reaction with methylbenzoate.
C)The formation of bisulfate (hydrogen sulfate), which acts as an electrophile in the reaction with methylbenzoate.
D)The release of a water molecule that acts as a nucleophile in the reaction with methyl benzoate.
Answer:
B) The formation of nitronium ion, which acts an electrophile in the reaction with methylbenzoate.
Explanation:
The benzene ring is known to be stable hence it can only undergo a substitution reaction with the aromatic ring still intact. When the substitution reaction involves an electrophile we refer to the process as electrophillic aromatic substitution. Electrophilic aromatic substitution is a useful synthetic route for many organic compounds.
In the electrophilic substitution of methyl benzoate using the 1:1 volume ratio mixture of H2SO4/HNO3, the nitronium ion (NO2+) is the electrophile generated in the test tube. It is this NO2+ that now reacts with the methyl benzoate to yield the reaction product.
If a boy (m = 50kg) at rest on skates is pushed by another boy who exerts a force of 200 N on him and if the first boy's final velocity is 8 m/s, what was the contact time? t= s
Answer:
t = 2 seconds
Explanation:
It is given that,
Mass of a boy, m = 50 kg
Initial speed of boy, u = 0
Final speed of boy, v = 8 m/s
Force exerting by another boy, F = 200 N
Let t is the time of contact. The force acting on an object is given by :
F = ma
a is acceleration
So,
[tex]F=\dfrac{m(v-u)}{t}\\\\t=\dfrac{m(v-u)}{F}\\\\t=\dfrac{50\times 8}{200}\\\\t=2\ s[/tex]
So, the contact time is 2 seconds.
Answer:
t=2 s
Explanation:
A student mixes 2.83 mL of benzoyl chloride with excess 15 M NH4OH to produce 1.95 g of benzamide. What is the percent yield of this student's experiment
Answer:
Explanation:
The reaction of benzoyl chloride with NH₄OH to produce benzamide is:
Benzoyl chloride + ammonia → Benzamide + NH₄Cl
Molar mass of benzoyl chloride: 140.57 g/mol. Density 1.21g/mL
Molar mass benzamide: 121.14g/mol.
To know percent yield you must know the theoretical yield of the reaction (How many grams are produced assuming a yield of 100%). Percent yield will be (Actual yield / Theoretical Yield) ₓ 100
Moles of 2.83mL of benzoyl chloride are:
2.83mL ₓ (1.21g/mL) ₓ (1mol / 140.57g) = 0.02436 moles of benzoyl chloride.
As 1 mole of benzoyl chloride produce 1 mole of benzamide (Theoretical yield), theoretical moles of benzamide produced are 0.02436. In mass:
0.02436 moles ₓ (121.14g / mol) = 2.95g of benzoyl chloride
As there are produced just 1.95, percent yield is:
(1.95g / 2.95g) ₓ 100 = 66.1%
Compare strontium with rubidium in terms of the following properties:
a. Atomic radius, number of valence electrons, ionization energy.
b. Strontium is smaller than rubidium.
c. Rubidium is smaller than strontium.
d. Strontium has more valence electrons.
e. Rubidium has more valence electrons.
f. Strontium has a larger ionization energy.
g. Rubidium has a larger ionization energy.
Answer:
Strontium is smaller
Strontium has the higher ionization energy
Strontium has more valence electrons
Explanation:
It must be understood that both elements belong to the same period i.e the same horizontal band of the periodic table
While Rubidium is an alkali metal(group 1) while Strontium is an alkali earth metal(group 2)
Since they are in the same period, periodic trends would be useful in evaluating their properties
In terms of atomic radius, rubidium is larger meaning it has a bigger atomic size
Generally, across the periodic table, atomic radius is expected to decrease and thus Rubidium which is leftmost is expected to have the higher atomic radius
Since strontium belongs to group 2 of the periodic table, it has 2 valence electrons which is more than the single valence electron that rubidium which is in group 1 has
In terms of ionization energy, the atom with the higher number of valence electrons will have the higher ionization energy which is strontium in this case
Draw the Lewis structure of ethyne (C₂H₂) and then choose the appropriate pair of molecular geometries of the two central atoms. Your answer choice is independent of the orientation of your drawn structure.
A) linear / linear
B) trigonal/pyramidal
C) pyramidal/trigonal
D) trigonal pyramidal/trigonal pyramidal
E) planar / linear
Answer:
A) linear / linear
Explanation:
In this case, we have a triple bond beetween the atoms (See figure 1). If we have this triple bond we will have an Sp hybridization (in both carbons). We have to remember the relationship between the geometry and the hybridization:
-) Sp3 = Tetrahedral
-) Sp2 = Trigonal
-) Sp = Linear
Due to the hybridization, we will have a linear structure between the atoms. The angle between the atoms is 180º (See figure 2).
So, if we have a hybridization Sp for both carbons, we will have a linear geometry in each carbon. Therefore, the answer is A.
The nutrition label on the back of a package of hotdogs (purchased within the US) indicates that one hotdog contains 100 calories. How many calories does a hotdog actually have?
A. 1,000
B. It depends on how many hotdogs you eat
C. 100
D. 10
E. 100,000
Answer:
C. 100
Explanation:
Biochemical researches and studies have found out that an average health hotdog has a calorie of between 100 and 150 which is usually dependent on the additives.
Since the nutrition label on the back of a package of hotdogs (purchased within the US) indicates that one hotdog contains 100 calories then it truly contains such amount of calories. The standard number of calories present in a hotdog is independent of the amount eaten by individuals.
Which of the following functional groups is formed from the condensation of carboxylic acids???
a. acid anhydride
b. acid halide
c. amide
d. ester
e. ether
Answer:
a
Explanation:
its made up of carbon and hydrogen
Zn + 2 HCl --> H2 + ZnCl2 If 1.70 g of Zn are reacted, how many grams of ZnCl2 can be created? Show work and process and I will give brainliest
Explanation:
first find the the number of moles of of zinc .
as the number of moles of zinc and ZnCl2 is same we can calculate the mass of ZnCl2.
How long should you hold the iron on the hair to heat the strand and set the base ?
A) 5 seconds
B) 15 seconds
C) 30 seconds
D) 1 minute
33. Hydrocarbons that release pleasant odors are called_________
hydrocarbons. (1 point)
Answer:
Aromatic Hydrocarbons
Explanation:
Aromatic (Pleasant Odour) Hydrocarbons are those having pleasant odours.
Answer:
substituted hydrocarbons
Explanation:
i think
Determine whether each of the following salts will form a solution that is acidic, basic, or pH-neutral. Drag the appropriate items to their respective bins.
Al(NO3)3
C2H5NH3NO3
NaClO
RbI
CH3NH3CN
Answer:
Al(NO₃)₃: Acidic.
C₂H₅NH₃NO₃: Acidic.
NaClO: Basic
RbI: pH-neutral
CH₃NH₃CN: Solution basic
Explanation:
The general rules to determine if a solution is acidic, basic or neutral are:
If it is a salt of a strong acid and base, the solution will be pH-neutral. If it is a salt of a strong acid and a weak base, the solution will be acidic due to the hydrolysis of the weak base component (cation). If it is a salt of a strong base and a weak acid, the solution will be basic due to the hydrolysis of the weak acid component (anion).For the salts:
Al(NO₃)₃. The repective acid is HNO₃ (Strong acid) and the base is Al(OH)₃ (Weak base). As the salt comes from strong acid and weak base. SOLUTION ACIDIC
C₂H₅NH₃NO₃. The acid is HNO₃ (Strong acid) and the base C₂H₅NH₃OH (Weak base). SOLUTION ACIDIC.
NaClO. Tha acid is HClO (weak acid), and the base NaOH (Strong base). SOLUTION BASIC.
RbI: The acid is HI (Strong acid) and the base RbOH (Strong base). pH-NEUTRAL
CH₃NH₃CN. The acid is HCN (weak acid; pKb = 4.79) and the base CH₃NH₃OH (weak base; pKa = 10.64). Both weak acid and base will produce each hydrolisis. The lower pK will predominate. That is the weak acid. SOLUTION BASIC
Solution of Al(NO₃)₃ and C₂H₅NH₃NO₃ salts is acidic, NaClO is basic and of RbI & CH₃NH₃cyanide is neutral in nature.
What is pH?pH of any solution tells about the acidity or basicity of the solution, pH of any solution ranges from 0 to 14 and from acidity to basicity.
Al(NO₃)₃ is a salt which is formed by the mixing of strong acid HNO₃ (Nitric acid) and weak base Al(OH)₃, so the resultant solution of the salt is acidic in nature.C₂H₅NH₃NO₃ salt is formed by the mixing of strong acid HNO₃ (Nitric acid) and weak base C₂H₅NH₃OH, so the resultant solution of the salt is acidic in nature.NaClO is a salt of weak acid is HClO and strong base NaOH, so the resultant solution of the salt is basic in nature.RbI salt is formed by the combination of strong acid HI and strong base RbOH, so the resultant solution of the salt is neutral in nature.CH₃NH₃Cyanide is a salt of weak acid hydrogen cyanide and weak base CH₃NH₃OH, so the resultant solution of the salt is neutral in nature.Hence, appropriate differentiation was done above.
To know more acidity or basicity, visit the below link:
https://brainly.com/question/172153