In an experiment, 5 g of Copper was heated with excess Sulfur to yield 4 g of Copper(I)Sulfide. What is the % yield?

Answers

Answer 1

The percent yield of copper(I) sulfide in this experiment is 31.83%.

What is percent yield?

To calculate the percent yield, we need to compare the actual yield (the amount of product that was obtained in the experiment) with the theoretical yield (the amount of product that should have been obtained if the reaction had gone to completion).

The balanced chemical equation for the reaction between copper and sulfur to form copper(I) sulfide is:

Cu + S →  [tex]Cu_{2}S[/tex]

The molar mass of Cu is 63.55 g/mol, and the molar mass of S is 32.06 g/mol. The molar mass of  [tex]Cu_{2}S[/tex]  is 159.17 g/mol.

First, we need to calculate the theoretical yield of copper(I) sulfide using the amount of copper used in the experiment:

5 g Cu × (1 mol Cu / 63.55 g Cu) × (1 mol [tex]Cu_{2}S[/tex] / 1 mol Cu) × (159.17 g  [tex]Cu_{2}S[/tex] / 1 mol [tex]Cu_{2}S[/tex] ) = 12.57 g  [tex]Cu_{2}S[/tex]

So the theoretical yield of copper(I) sulfide is 12.57 g.

The actual yield obtained in the experiment is 4 g.

The percent yield is then:

percent yield = (actual yield / theoretical yield) × 100%

percent yield = (4 g / 12.57 g) × 100%

percent yield = 31.83%

Therefore, the percent yield of copper(I) sulfide in this experiment is 31.83%.

What is theoretical yield ?

The theoretical yield is the amount of product that would be obtained in a chemical reaction if it went to completion, meaning that all the limiting reactant was used up and no product was lost. It is calculated using stoichiometry, which involves balancing the chemical equation for the reaction and using the coefficients to determine the mole ratio between the reactants and products.

Theoretical yield is often used as a reference value to compare with the actual yield obtained in an experiment, which is the amount of product actually obtained from the reaction. The percent yield can then be calculated by dividing the actual yield by the theoretical yield and multiplying by 100%.

To know more about yield, visit:

https://brainly.com/question/15238692

#SPJ1


Related Questions

Consider the reaction described by the chemical equation shown.
C2H4(g)+H2O(l)⟶C2H5OH(l)Δ∘rxn=−44.2 kJ

Use the data from the table of thermodynamic properties to calculate the value of Δ∘rxn
at 25.0 ∘C.


ΔS∘rxn= ? J⋅K−1

Calculate Δ∘rxn.

ΔG∘rxn= ? kJ


In which direction is the reaction, as written, spontaneous at 25 ∘C
and standard pressure?
reverse
both
neither
forward

Answers

Answer:

To calculate Δ∘rxn, we can use the following formula:

ΔG∘rxn = ΔH∘rxn - TΔS∘rxn

where ΔH∘rxn is the enthalpy change of the reaction, T is the temperature in Kelvin, and ΔS∘rxn is the entropy change of the reaction.

We know that ΔH∘rxn = -44.2 kJ and we want to find ΔS∘rxn at 25.0 ∘C (298 K). We can use the following formula to calculate ΔS∘rxn:

ΔG∘rxn = -RTlnK

where R is the gas constant (8.314 J/mol K), T is the temperature in Kelvin, and K is the equilibrium constant.

We can find K using the following formula:

ΔG∘rxn = -RTlnK K = e^(-ΔG∘rxn/RT)

We know that ΔG∘rxn = -44.2 kJ/mol and R = 8.314 J/mol K, so we can calculate K:

K = e^(-(-44.2 kJ/mol)/(8.314 J/mol K * 298 K)) K = 1.9 x 10^7

Now we can use K to calculate ΔS∘rxn:

ΔG∘rxn = -RTlnK ΔS∘rxn = -(ΔH∘rxn - ΔG∘rxn)/T ΔS∘rxn = -((-44.2 kJ/mol) - (-8.314 J/mol K * 298 K * ln(1.9 x 10^7)))/(298 K) ΔS∘rxn = -0.143 kJ/K

Therefore, ΔS∘rxn is -0.143 kJ/K.

To determine whether the reaction is spontaneous at 25 ∘C and standard pressure, we can use Gibbs free energy (ΔG). If ΔG < 0, then the reaction is spontaneous in the forward direction; if ΔG > 0, then it is spontaneous in the reverse direction; if ΔG = 0, then it is at equilibrium.

We know that ΔG∘rxn = -44.2 kJ/mol and T = 25 ∘C (298 K). We can use the following formula to calculate ΔG:

ΔG = ΔG∘ + RTlnQ

where Q is the reaction quotient.

At equilibrium, Q = K (the equilibrium constant). Since we calculated K earlier to be 1.9 x 10^7, we can use this value for Q.

ΔG = ΔG∘ + RTlnQ ΔG = (-44.2 kJ/mol) + (8.314 J/mol K * 298 K * ln(1.9 x 10^7)) ΔG = -43.6 kJ/mol

Since ΔG < 0, the reaction is spontaneous in the forward direction at 25 ∘C and standard pressure.

The temperature of a 2.0-liter sample of helium gas at STP is increased to 27C, and the pressure is decreased to 80 kPa. What is the new volume of the helium sample? Round your answer to the nearest tenth of a liter?

Answers

The new volume of the helium sample would be 2.4 L.

Volume of a gas

According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in kelvins.

At STP (standard temperature and pressure), which is defined as 0°C (273.15 K) and 101.325 kPa, the volume of 2.0 liters of helium gas contains one mole of helium atoms.

To find the new volume of the helium sample when the temperature is increased to 27°C (300.15 K) and the pressure is decreased to 80 kPa, we can use the following equation:

(P1V1)/T1 = (P2V2)/T2

where P1, V1, and T1 are the initial pressure, volume, and temperature, respectively, and P2, V2, and T2 are the final pressure, volume, and temperature, respectively.

Plugging in the values, we get:

(101.325 kPa)(2.0 L)/(273.15 K) = (80 kPa)(V2)/(300.15 K)

Solving for V2, we get:

V2 = (101.325 kPa)(2.0 L)/(273.15 K) * (300.15 K)/(80 kPa) = 2.36 L

Therefore, the new volume of the helium sample is approximately 2.4 L (rounded to the nearest tenth).

More on gas laws can be found here: https://brainly.com/question/27009857

#SPJ1

8. Balance the following equation:
NH3(g) + F2(g) → N₂F4(g) + HF(g)
a. How many moles of each reactant are needed to produce 4.00 moles of HF?
b. How many grams of F2 are required to react with 1.50 moles of NH3?
c. How many grams of N₂F4 can be produced when 3.40 grams of NH3 reacts?

Answers

Answer:

2NH₃(g) + 5F₂(g) → N₂F₄(g) + 6HF(g)

(a) mol of NH₃ required = 1.333 mol; mol of F₂ required = 3.333 mol

(b) mass of F₂ required = 142.5 g

(c) N₂F₄ produced = 10.38 g

Explanation:

2NH₃(g) + 5F₂(g) → N₂F₄(g) + 6HF(g)

What is Stoichiometry?

In chemical equations, unless stated otherwise, the reactants and products will theoretically always remain in stoichiometric ratios.

The stoichiometry of a reaction is the relationship between the relative quantities of products and reactants, typically a ratio of whole integers.

Consider the following chemical reaction: aA + bB ⇒ cC + dD.

The stoichiometry of reactants to products in this reaction is the ratio of the coefficients of each species: a : b : c : d.

Converting between moles and mass:

To convert from mass to moles, divide the mass present by the molar mass, resulting in the number of moles.

Thence, the formula for moles: n = m/M, where n = number of moles, m = mass present, and M = molar mass. This formula can be easily rearranged to find mass present from molar mass and moles, or molar mass from mass and moles.

a. How many moles of each reactant are needed to produce 4.00 moles of HF?

In the given chemical equation, the stoichiometry of the reaction is

2 : 5 : 1 : 6. Therefore, for every 2 moles of NH₃, we require 5 moles of F₂, which will produce 1 mole of N₂F₄ and 6 moles of HF.

mol of NH₃ required = 1/3 × mol of HF = 1.333 mol

mol of F₂ required = 5/6 × mol of HF = 3.333 mol

b. How many grams of F₂ are required to react with 1.50 moles of NH₃?

Using stoichiometry again: mol of F₂ required = 5/2 × mol of NH₃

∴ F₂ required = 3.75 mol.

Then we can convert this to mass: m = nM = (3.75)(2×19.00) = 142.5 g

c. How many grams of N₂F₄ can be produced when 3.40 grams of NH₃ reacts?

Converting mass to moles: n = m/M = 3.40/(14.01+1.008×3) = 0.1996 mol

Using stoichiometry again: mol of N₂F₄ produced = 1/2 × mol of NH₃

∴ N₂F₄ produced = 0.0998 mol

converting moles to mass: m = nM = (0.0998)(14.01×2+19.00×4)

∴ N₂F₄ produced = 10.38 g

What does X represent for this transmutation? 9 4Be + 4₂He X+ ¹on ?​

Answers

The result of the transformation, denoted by the symbol X, is 12 6C.

What does the radioactive decay symbol X stand for?

The chemical symbol for the unstable nucleus, X, is represented by the nuclear equation, where the letter a stands for the particle's mass number and the letter b for the number of protons.

What is atom transmutation?

the process of changing one chemical element into another. Since a transmutation involves a change to the atomic nuclei's structure, it can either be produced via a nuclear reaction (q.v. ), like neutron capture, or it can happen naturally due to radioactive decay, like alpha and beta decay (qq. v.).

To know more about nucleus visit:

https://brainly.com/question/14600198

#SPJ1

The combustion of 136 g of methane (CH₄) in the presence of excess oxygen gas produces 353 g of carbon dioxide. [CH₄ + 2O₂ --> CO₂ + 2H₂O; C = 12.01 g/mol, H = 1.01 g/mol, O = 16.0 g/mol]

What is the percent yield?

a.)
0.385
b.)
0.026
c.)
0.947
d.)
0.00946

Answers

Taking into account definition of percent yield, the correct answer is option c): the percent yield for the reaction is 0.947.

Reaction stoichiometry

In first place, the balanced reaction is:

CH₄ + 2 O₂ → CO₂ + 2 H₂O

By reaction stoichiometry, the following amounts of moles of each compound participate in the reaction:

CH₄: 1 moleO₂: 2 molesCO₂: 1 moleH₂O: 2 moles

The molar mass of the compounds is:

CH₄: 16.05 g/moleO₂: 32 g/moleCO₂: 44.01 g/moleH₂O: 18.02 g/mole

By reaction stoichiometry, the following mass quantities of each compound participate in the reaction:

CH₄: 1 mole ×16.05 g/mole= 16.05 gramsO₂: 2 moles ×32 g/mole= 64 gramsCO₂: 1 mole ×44.01 g/mole= 44.01 gramsH₂O: 2 moles×18.02 g/mole= 36.04 grams

Mass of CO₂ formed

The following rule of three can be applied: if by reaction stoichiometry 16.05 grams of CH₄ form 44.01 grams of CO₂, 136 grams of CH₄ form how much mass of CO₂?

mass of CO₂= (136 grams of CH₄× 44.01 grams of CO₂)÷16.05 grams of CH₄

mass of CO₂= 372.92 grams

Then, 372.92 grams of CO₂ can be produced from 136 grams of CH₄.

Percent yield

The percent yield is the ratio of the actual return to the theoretical return expressed as a percentage and this is calculated as the experimental yield divided by the theoretical yield multiplied by 100%:

percent yield= (actual yield÷ theoretical yield)× 100%

where the theoretical yield is the amount of product acquired through the complete conversion of all reagents in the final product.

Percent yield for the reaction in this case

In this case, you know:

actual yield= 353 gramstheorical yield= 372.92 grams

Replacing in the definition of percent yield:

percent yield= (353 grams÷ 372.92 grams)× 100%

Solving:

percent yield= 94.7%= 0.947

Finally, the percent yield for the reaction is 0.947.

Learn more about percent yield:

brainly.com/question/14408642

#SPJ1

Given the following data for water:
Heat of fusion = 334 J/g
Heat of vaporization = 2,256 J/g
Specific heat of solid = 2.09 J/g °C)
Specific heat of liquid = 4.184 J/g °C)
Specific heat of gas = 1.84 J/g °C)
Calculate how much energy is needed to change 100.0 grams of liquid water at 15.0 °C to vapor at 125.0 °C. (3 points)
Oa
O
b
44,000 J
89,400 J
104,000 J
266,000 J

Answers

The process of changing 100.0 grams of liquid water at 15.0 °C to vapor at 125.0 °C involves several steps, and we need to calculate the energy required for each step and then add them up:

1. Heating the liquid water from 15.0 °C to 100.0 °C:

q = m * Cp * ΔT
= 100.0 g * 4.184 J/g °C * (100.0 °C - 15.0 °C)
= 34,972 J

2. Vaporizing the liquid water at 100.0 °C:

q = m * Hvap
= 100.0 g * 2,256 J/g
= 225,600 J

3. Heating the water vapor from 100.0 °C to 125.0 °C:

q = m * Cp * ΔT
= 100.0 g * 1.84 J/g °C * (125.0 °C - 100.0 °C)
= 4,600 J

The total energy required is the sum of the three steps:

Q = q1 + q2 + q3
= 34,972 J + 225,600 J + 4,600 J
= 265,172 J

Therefore, the energy needed to change 100.0 grams of liquid water at 15.0 °C to vapor at 125.0 °C is approximately 265,172 J, which is closest to option (d) 266,000 J.

35.0 ml. of a 0.250 M solution of /OH is titrated with 0.150 M HCI. After 35.0 mL of the HCl has been added, the resultant

Answers

Determine the amount of KOH present in the resulting solution. KOH was initially 0.00875 mol, then 0.00525 mol of it interacted with HCl. As a result, 0.00875 mole - 0.00525 mol (= 0.00350 mol of KOH is left. The resulting solution has a volume of 70.0 mL (35.0 mL plus 35.0 mL).

Is HCl directly titrated with NaOH?

The titrant (NaOH), which is added gradually throughout the course of a titration, is added to the unknown substance. The equivalency point is the moment at which precisely the right quantity of titrant (NaOH) has indeed been added that react to the entire analyte (HCl).

What happens when you titrate NaOH to HCl?

What took place during titration: One mole of NaOH interacts with one mole of HCl inside the reaction between the two substances. NaOH with HCl equals NaCl plus H2O. (NaOH and HCl have a mole ratio of 1:1.) • The NaOH concentration is 0.1 M, or 0.1 molecules per litre.

To know more about solution visit:

https://brainly.com/question/30665317

#SPJ1

Which sub atomic particles are similar in size

Answers

Answer:

Neutrons and Protons

Explanation:

Different elements can have subatomic particles of varying sizes. The size of an atom is defined by the size of its electron cloud, which is composed of electrons, and the size of its nucleus, which is composed of protons and neutrons. The atomic number and subsequently the identity of an element are determined by the number of protons in the nucleus. The quantity of protons and neutrons in the nucleus determines its size. The quantity of electrons in the electron cloud and the energy levels they are located at define its size. The size of atoms can differ depending on the element due to differences in the amount of protons, neutrons, and electrons.

Question 4 of 10
How much energy is required to vaporize 2 kg of gold? Use
the table below and this equation: Q = mLvapor
Substance
Aluminum
Copper
Gold
Helium
Lead
Mercury
Water
Latent Heat
Fusion
(melting)
(kJ/kg)
400
207
62.8
5.2
24.5
11.4
335
Melting
Point
(°C)
660
1083
1063
-270
327
-39
0
Latent Heat
Vaporization
(boiling) (kJ/kg)
1100
4730
1720
21
871
296
2256
Boiling
Point
(°C)
2450
2566
2808
-269
1751
357
100

Answers

It requires 10.15 kilojoules of energy.

What is vaporization?

The term "vaporisation" (or "evaporation") often refers to the transformation of a liquid's condition into a vapour phase below its boiling point. The phrase, however, can also refer to the process of removing a solvent, independent of the temperature used.

What is energy?

When a body moves to exert force, it is said to be exerting work. Energy is the capacity to accomplish work. Energy is something we always need, and it can take many different forms.

If the gold is present in the liquid state, you only have to determine the latent heat of vaporization, or lvap. The empirical data for gold is 330 kJ/mol.

Q = mlvap

Q = (2 kg)(1 kmol/197 kg)(1,000 mol/1 kmol)

Q = 10.15 kJ

It needs an energy of 10.15 kilojoules

To know more about energy visit:

https://brainly.com/question/1932868

#SPJ1

50 points +brainlist (there's going to be 3 more added on my profile with the same points(
which type of process is this?
chemical
physical
nuclear​

Answers

nuclear type of process is this

Is the reaction physical or chemical?

The content of a physical reaction differs from that of a chemical reaction. A chemical reaction changes the makeup of the substances in question; a physical change changes the look, smell, or plain presentation of a sample of matter without changing its content.

Nuclear reactions are not the same as chemical reactions. Atoms become more stable in chemical processes by engaging in electron transfers or by sharing electrons with other atoms.

learn more about Nuclear reactions

https://brainly.com/question/25387647

#SPJ1

A mixture that contains large particles that are uniformly dispersed is called a _____.


solvent

emulsion

alloy

colloid

Answers

Answer:

colloid

Explanation:

there's no explanation

colloid

hope this helps

Select all the elementary substances.
silver bromide (AgBr)
silicon dioxide (SiO₂)
hydrogen sulfide (H₂S)
xenon (Xe)

Answers

Answer:

silicon dioxide,xenon

Explanation:

Calculate the concentrations of all species in a 0.510 M NaCH3COO (sodium acetate) solution. The ionization constant for acetic acid is a=1.8×10−5.

[Na+]=

[OH−]=

[H3O+]=

[CH3COO−]=

[CH3COOH]=

Answers

The concentrations of all species in a 0.510 M NaCH₃COO (sodium acetate) solution: [Na+]= 0.510 M , [OH-]= 1.8x10⁻⁵ M , [H₃O+]= 1.8x10⁻⁵ M , [CH₃COO-]= 0.510 M and [CH₃COOH]= 0.510 - (1.8x10⁻⁵) = 0.50982 M.

What is concentration?

Concentration is the ability to focus your attention on a single task or thought for a prolonged period of time. It involves being able to ignore distractions and to be able to work through any difficulties or obstacles that may arise. Concentration is an important skill to master in order to achieve success in any endeavor, whether it be academic, professional, or personal. Good concentration can help you to stay focused, organized, and productive. When you are able to concentrate, you can take in the information needed to make better decisions and solve problems. Concentration is a skill that can be developed with practice, such as by setting goals, breaking down tasks into smaller, manageable pieces, and avoiding distractions.

To learn more about concentration
https://brainly.com/question/29330415
#SPJ1

whats the answer and why?

Answers

I would say C

Since the nitro group (NO2) contains a positively charged nitrogen atom, it tends to attract electron from the aromatic ring and, therefore, the other group/atom. In the first case, I think piridine (II) makes a stronger bond with water since the nitrogen in the aromatic ring needs its electrons in order to be have a slight negative charge that can interact with the slightly positive charged hydrogen atom in water. If the nitro group is present, it will attract to some extent the electrons of the nitrogen atom in the ring, thus making the H-bond less stronger.

In the second case the hydrogen, which is slightly positive, of the OH group interacts with the oxygen, which is slightly negative, of water. If the nitro group is present, it will attract the electrons of oxygen of the hydroxyl group, therefore making the bond between the oxygen and the hydrogen more polar (which basically means that the bonding electron of hydrogen is even more attracted by the oxygen atom) making the hydrogen atom more positive, which means that the H-bond will be stronger

Sulfur reacts with oxygen gas to form sulfur dioxide gas according to the following reaction. S8(s)+8O2(g)⟶8SO2(g). For this reaction, ΔH=−2374 kJ and ΔS=312.2 J/K. Calculate ΔG for this reaction at 805 K.

Answers

The reaction's G value at 805 K is -2625.7 kJ.

Sulphur dioxide gas is the name of the byproduct created when sulphur and gas react.

Sulfur dioxide gas is the byproduct of the interaction between sulphur and oxygen. Sulphurous acid is created when sulphur dioxide dissolves in water. Sulfuric acid causes blue litmus paper to turn red. Non-metal oxides typically have an acidic character.

ΔG = ΔH - TΔS

where ΔH is the enthalpy change, ΔS is the entropy change, T is the temperature in Kelvin, and ΔG is the change in Gibbs free energy.

Substituting the given values:

ΔG = -2374 kJ - (805 K)(312.2 J/K)

ΔG = -2374 kJ - 251717 J

ΔG = -2374 kJ - 251.7 kJ

ΔG = -2625.7 kJ

To know more about reaction's visit:-

https://brainly.com/question/28984750

#SPJ1

A sample with the phase diagram below starts at room temperature (25oC) and 1 atm. What phase change would the sample go through if it was cooled to 80 K?

a)Condensation (gas to liquid)

B)Fusion (solid to liquid)

C)Deposition (gas to solid)

D)Vaporization (liquid to gas)

E)Sublimation (solid to gas)

F)Freezing (liquid to solid)

Answers

Answer: C)Deposition (gas to solid)

Explanation: According to the phase diagram, at room temperature (25°C) and 1 atm, the sample is in the gas phase.  As the temperature decreases to 80 K, it falls below the sublimation curve. T he sublimation curve represents the conditions at which a substance can change directly from a solid to a gas or from a gas to a solid without passing through the liquid phase.

Since the sample is in the gas phase at room temperature, cooling it to 80 K would cause it to go through the process of deposition, where the gas particles directly transform into a solid without first becoming a liquid.  This is indicated by the section of the phase diagram below the sublimation curve.

If all the coefficients in the already balanced equation are multiplied by 2, will the equation still remain balanced and will the multiplication affect the equilibrium constant? If you answer yes to any part of the question, please explain in detail.

Answers

Yes, If all the coefficients in a balanced chemical equation are multiplied by 2, the equation will still remain balanced because the ratio of the reactants and products remain the same.

What are the coefficients?

For example, the balanced equation: [tex]2H_{2}[/tex] + [tex]O_{2}[/tex] -> [tex]2H_{2}O[/tex]

The coefficients of a chemical equation are the numbers written in front of the chemical formulas of reactants and products, indicating the relative amounts of each substance involved in the reaction. The coefficients are used to balance the chemical equation, ensuring that the law of conservation of mass is obeyed. The coefficients represent the smallest whole-number ratios of the substances in the reaction, and they provide important information about the stoichiometry of the reaction.

When all the coefficients are multiplied by 2, the equation becomes: [tex]4H_{2}[/tex] + [tex]2O_{2}[/tex] -> [tex]4H_{2}O[/tex]

The equation is still balanced because the ratio of hydrogen to oxygen to water molecules remains the same (4:2:4).

Multiplying the coefficients by a constant will not affect the equilibrium constant (Kc) as long as the reaction conditions remain constant. This is because the equilibrium constant is a ratio of the concentrations of products and reactants at equilibrium, and the ratio remains the same even if the coefficients of the balanced equation are multiplied by a constant. However, if the temperature, pressure or concentration of any reactants or products are changed, then the value of the equilibrium constant will change.

To know more about coefficients, visit:

https://brainly.com/question/31467971

#SPJ1

How much energy is involved when 100g of water is heated from 35°C to 115°C water vapor?

Answers

252,212 Joules of energy are required to heat 100g of water from 35°C to 115°C water vapor.

To calculate the amount of energy required to heat water from 35°C to 100°C, we use the specific heat capacity of water, which is 4.18 J/(g°C). This means that it takes 4.18 Joules of energy to heat one gram of water by one degree Celsius.

So, the energy required to heat 100 g of water from 35°C to 100°C can be calculated as follows:

Q1 = m × c × ΔT

Q1 = 100 g × 4.18 J/(g°C) × (100°C - 35°C)

Q1 = 26,212 Joules

Next, we need to calculate the amount of energy required to vaporize the water at 100°C. This is done using the heat of vaporization of water, which is 2260 J/g.

So, the energy required to vaporize 100 g of water at 100°C is:

Q2 = m × Lv

Q2 = 100 g × 2260 J/g

Q2 = 226,000 Joules

Therefore, the total energy required to heat 100 g of water from 35°C to 115°C water vapor is:

Q = Q1 + Q2

Q = 26,212 Joules + 226,000 Joules

Q = 252,212 Joules

Thus, 252,212 Joules of energy are required to heat 100g of water from 35°C to 115°C water vapor.

learn more about energy here

https://brainly.com/question/13881533

#SPJ1

Mary claims that two Duluth Solutions will have a lower reaction rate than two concentrated Solutions which statement tells whether Mary is right and gives a correct explanation a she is right because there will be fewer successful collisions between reactants and the dilute Solutions B​ be she is right because the Duluth solution gives the molecule more space to move more quickly see she is not right because of the dilute solution gives the molecules more room to move around and align themselves well for collisions or D she is not right because there will be fewer successful collisions between reactants in the dilute Solutions.​

Answers

The correct statement that tells whether Mary is right is: A) She is right because there will be fewer successful collisions between reactants in the dilute solutions.

What is Collision?

Collision refers to the physical interaction between two or more objects, particles, or molecules that come into contact with each other. In the context of chemistry and physics, collision often refers to the interaction between particles during a chemical reaction.

The rate of a chemical reaction is influenced by several factors, including the concentration of reactants. In general, higher concentration of reactants leads to a higher reaction rate, as it increases the frequency of collisions between reactant molecules, which is an essential step in most chemical reactions.

Learn more about Collision from the given link

https://brainly.com/question/7221794

#SPJ1

Calcium nitrate reacts with ammonium fluoride to make calcium fluoride and ammonium nitrate. When (4.479x10^1) mL of (4.61x10^-1) M calcium nitrate was added to (7.332x10^1) mL of (1.5835x10^0) M ammonium fluoride, 0.731 grams of calcium fluoride were isolated. How many moles of ammonium fluoride were initially added in this experiment (not necessarily reacted)?

Answers

The moles of ammonium fluoride initially added in this experiment was 0.0216 moles.

What is mole?

Mole is a unit of measurement that is used in chemistry to measure the amount of a substance. It is a very important unit of measurement because it allows chemists to accurately measure the amount of a substance that is being used in a reaction. The mole is defined as the amount of a substance that contains the same number of particles as there are atoms in 12 grams of carbon-12..

First, we need to calculate the moles of calcium nitrate in the solution. We can do this by using the molarity and volume of the solution:
(4.61x10⁻¹ M)*(4.479x10¹ mL) = 0.0216 moles of calcium nitrate
(0.731 g)*(1 mol/55.847 g) = 0.0131 moles of calcium fluoride
(0.0216 moles)*(1 mol/1 mol)
= 0.0216 moles of ammonium fluoride
Therefore, the moles of ammonium fluoride initially added in this experiment was 0.0216 moles.

To learn more about mole
https://brainly.com/question/29367909
#SPJ1

Calculate the cell potential, Ecell, for the following reaction at 298k.
Co(s)+2Ag+(0.010M)=Co+2(0.015M)+2 Ag(s)

Answers

To calculate the cell potential, Ecell, for the given reaction at 298K, we need to use the Nernst equation. The Nernst equation relates the cell potential to the standard cell potential, temperature, and the concentrations of the reactants and products. The Nernst equation is given as follows:

Ecell = E°cell - (RT/nF) ln(Q)

where,

Ecell = cell potential

E°cell = standard cell potential

R = gas constant (8.314 J/K.mol)

T = temperature (298 K)

n = number of electrons transferred in the balanced redox reaction

F = Faraday constant (96,485 C/mol)

Q = reaction quotient

The given reaction is a redox reaction, which involves the transfer of two electrons from Co to Ag+. The balanced half-reactions are as follows:

Co(s) → Co2+(aq) + 2 e-

Ag+(aq) + e- → Ag(s)

The standard reduction potentials for these half-reactions are:

Co2+(aq) + 2 e- → Co(s) E°red = -0.28 V

Ag+(aq) + e- → Ag(s) E°red = +0.80 V

The overall standard cell potential can be calculated by subtracting the standard reduction potential of the anode from that of the cathode:

E°cell = E°red,cathode - E°red,anode

= +0.80 V - (-0.28 V)

= +1.08 V

Now we need to calculate the reaction quotient Q using the concentrations of the reactants and products. According to the given information, [Ag+] = 0.010 M and [Co2+] = 0.015 M.

Q = ([Co2+][Ag+]^2)/([Ag+]^2)

= ([0.015][0.010]^2)/([0.010]^2)

= 0.015 M

Substituting the values in the Nernst equation, we get:

Ecell = E°cell - (RT/nF) ln(Q)

= 1.08 - (8.314 x 298 / (2 x 96485)) ln(0.015)

= 0.829 V

Therefore, the cell potential, Ecell, for the given reaction at 298K is 0.829 V.

The heat of combustion of liquid ethylene glycol, C2H6O2 is -1189.2 kJ/mol. In an experiment 4.34 g of this compound was burnt completely and the heat evolved raised the temperature of y gram of water from 27.5 °C to 45.5 °C. Calculate the value of y (mass of water used).​

Answers

The value of y is 1141 g if 4.34 g of this compound were totally burned, and the heat released caused a gram of water to warm up from 27.5 °C to 45.5 °C.

How can you figure out how much water was used?

1 mole of ethylene glycol burns with a heat output of -1189.2 kJ/mol. The following formula can be used to determine the amount of heat released during the burning of 4.34 g of ethylene glycol:

Ethylene glycol's ([tex]C_{2}H_{6}O_{2}[/tex]) molar mass is calculated as follows: 2(12.01 g/mol) + 6(1.01 g/mol) + 2(16.00 g/mol) = 62.07 g/mol

Burned ethylene glycol is calculated as follows: 4.34 g / 62.07 g/mol = 0.0699 mol

4.34 g of ethylene glycol burned, releasing the following amount of heat:

-83.1 kJ = 0.0699 mol x -1189.2 kJ/mol

The water used in the experiment absorbs this heat. Water has a specific heat capacity of 4.18 J/g°C. The following formula can be used to determine how much water was utilized in the experiment:

The amount of heat the water absorbs is: -83.1 kJ = -83,100 J

The water's temperature changed from 45.5 °C to 27.5 °C, which equals 18 °C.

The mass of water employed in the experiment is 1,141 g, which is equal to -83,100 J / (4.18 J/g°C 18 °C).

To learn more about heat of combustion visit:

brainly.com/question/14317568

#SPJ9

Is a sample of oxygen gas at 70 degrees celsius
twice as hot as a sample of oxygen gas at 35 degrees celsius

Answers

A sample of oxygen gas at 70 degrees Celsius is not twice as hot as a sample of oxygen gas at 35 degrees Celsius.

What is Temperature?

Temperature is a physical property that describes the degree of hotness or coldness of a substance, typically measured with a thermometer in units such as Celsius or Fahrenheit. It is a measure of the average kinetic energy of the particles that make up a substance, with higher temperatures indicating greater kinetic energy and lower temperatures indicating less kinetic energy.

The temperature difference between the two samples is 35 degrees Celsius, not 70 degrees Celsius. Temperature is a measure of the average kinetic energy of the particles in a substance, and it is on an absolute scale (Kelvin).

As we can see, the temperature in Kelvin of oxygen gas at 70 degrees Celsius (343.15 K) is not twice the temperature of oxygen gas at 35 degrees Celsius (308.15 K). Therefore, a sample of oxygen gas at 70 degrees Celsius is not twice as hot as a sample of oxygen gas at 35 degrees Celsius.

Learn more about Temperature from the given link

https://brainly.com/question/26866637

#SPJ1

When a hydrogen atom is added to a polyatomic ion, the amount of negative charge . Following this pattern, we can see that hydrogen carbonate has a charge of and hydrogen sulfate has a charge of .

Answers

If we add one or two hydrogen ions to a polyatomic ion that has a 3-charge, as the phosphate ion (PO₄3-), it will still be a polyatomic ion. (Three H+ would entirely cancel out the 3-charge, turning it into a neutral molecule and removing it from the category of polyatomic ions.

Why does carbonate have a negative 2 charge?

As a result, the carbonate ion has 2 more electrons than protons due to its negative charge. The doubly bonded oxygen in the carbonate ion is neutral, whereas each single bonded oxygen has a negative charge. This is the cause of the total charge of "-2," then.

An essential component of the atmosphere of stars like the Sun is the hydrogen anion.

learn more about carbonate ion

https://brainly.com/question/28770987

#SPJ1

The Ka value for ethanoic acid, CH3COOH is 1.79 x 10-5. What is the pH of an equimolar solution of ethanoic acid and Na+CH3COO-?

Answers

The pH of the solution can be calculated using the following steps:

Write the chemical equation for the dissociation of ethanoic acid:

CH3COOH + H2O ⇌ CH3COO- + H3O+

Write the equilibrium expression for the dissociation of ethanoic acid:

Ka = [CH3COO-][H3O+] / [CH3COOH]

Since the solution is equimolar in CH3COOH and CH3COO-, we can assume that the initial concentrations of CH3COOH and CH3COO- are equal. Let's use the variable x to represent the concentration of CH3COO- and CH3COOH in mol/L.

[CH3COOH] = x mol/L [CH3COO-] = x mol/L

Since CH3COOH is a weak acid, we can assume that only a small fraction of it dissociates in water. Let's use the variable y to represent the concentration of H3O+ ions in mol/L that are produced from the dissociation of CH3COOH. From the dissociation of ethanoic acid, we know that [CH3COO-] = [H3O+].

[CH3COO-] = y mol/L [H3O+] = y mol/L

Use the equilibrium expression to solve for the concentration of H3O+ ions:

Ka = [CH3COO-][H3O+] / [CH3COOH] 1.79 x 10^-5 = y^2 / x

Solving for y in terms of x, we get:

y = sqrt(Ka * x)

Calculate the pH of the solution using the equation:

pH = -log[H3O+]

pH = -log(y)

Substituting in the value of y from Step 5, we get:

pH = -log(sqrt(Ka * x))

Simplifying, we get:

pH = -0.5 * log(Ka * x)

Substituting in the value of Ka, we get:

pH = -0.5 * log(1.79 x 10^-5 * x)

Now we can calculate the pH for the solution by substituting the value of x as it is equimolar.

pH = -0.5 * log(1.79 x 10^-5 * x)

pH = -0.5 * log(1.79 x 10^-5 * 1)

pH = -0.5 * log(1.79 x 10^-5)

pH = 4.74

Therefore, the pH of an equimolar solution of ethanoic acid and Na+CH3COO- is 4.74.

For the reaction: N₂(g) + 3H₂(g) + 2NH3(g) AH = -76.4 KJ/mol. Determine the heat energy when 5.0g of hydrogen burns.​

Answers

Answer:

-191 kJ

Explanation:

The given reaction is:

N₂(g) + 3H₂(g) → 2NH₃(g) ΔH = -76.4 kJ/mol

From the balanced equation, we can see that the stoichiometric ratio between hydrogen (H₂) and ammonia (NH₃) is 3:2. This means that 3 moles of hydrogen react to produce 2 moles of ammonia.

To determine the heat energy when 5.0 g of hydrogen (H₂) burns, we need to follow these steps:

Step 1: Calculate the moles of hydrogen (H₂)

Using the molar mass of hydrogen (H₂), which is 2 g/mol, we can calculate the moles of hydrogen (H₂) in 5.0 g of hydrogen:

Moles of H₂ = Mass of H₂ / Molar mass of H₂

Moles of H₂ = 5.0 g / 2 g/mol

Moles of H₂ = 2.5 mol

Step 2: Use the stoichiometry of the reaction

Based on the stoichiometry of the reaction, we know that 3 moles of hydrogen (H₂) react to produce 2 moles of ammonia (NH₃), and the enthalpy change (ΔH) is -76.4 kJ/mol.

Step 3: Calculate the heat energy

The heat energy for 2.5 moles of hydrogen (H₂) can be calculated using the given enthalpy change (ΔH) and the stoichiometry of the reaction:

Heat energy = Moles of H₂ x ΔH

Heat energy = 2.5 mol x -76.4 kJ/mol

Heat energy = -191 kJ (rounded to three significant figures)

So, the heat energy when 5.0 g of hydrogen (H₂) burns is -191 kJ (rounded to three significant figures), and the negative sign indicates that the reaction is exothermic, releasing heat.

The volume of a sample of oxygen is 200.0 mL when the pressure is 3.000 atm and the temperature is 37.0 C. What is the new temperature if the volume increases to 400.0 mL and the pressure decreases to 2.000 atm?

Answers

Answer:

140.3 *C

Explanation:

(P1 * V1) / T1 = (P2 * V2) / T2

where P1 = 3.000 atm, V1 = 200.0 ml, T1 = 37.0°C + 273.15 = 310.15 K, P2 = 2.000 atm, V2 = 400.0 ml.

Substituting these values into the formula gives:

(3.000 atm * 200.0 ml) / 310.15 K = (2.000 atm * 400.0 ml) / T2

Solving for T2 gives:

T2 = (2.000 atm * 400.0 ml * 310.15 K) / (3.000 atm * 200.0 ml)

T2 ≈ 413 K or 140°C.

Which statement about the reaction between calcium oxide and water is correct?
a) 65.2 kJ of heat are released for every mole of CaO that reacts.
b) 130 kJ of heat are released for every mole of H2O that reacts.
c) 130 kJ of heat are absorbed for every mole of CaO that reacts.
d) 65.2 kJ of heat are absorbed for every mole of H2O that reacts.

Answers

The heat that is released is 1600 J

65.2 kJ of heat are released for every mole of CaO that reacts.

What is the heat released?

For every mole of CaO that combines with water, 65.2 kJ of heat are generated, according to thermodynamic statistics. As a result, a considerable amount of heat is emitted throughout the reaction, making it highly exothermic.

We know that;

H = mcdT

H = heat absorbed or evolved

m = mass of the substance

c = Heat capacity of the substance

dT = temperature change.

H = 60 * 1 * (43 - 70)

H = -1600 J

Learn more about enthalpy:https://brainly.com/question/16720480

#SPJ1

2. When dinitrogen pentoxide is heated, it decomposes to
nitrogen dioxide and oxygen. How many moles of nitrogen
dioxide can be formed from the decomposition of 1.25 g of
dinitrogen pentoxide?

Answers

0.02314 moles of  NO₂ can be formed from the decomposition of 1.25 g of dinitrogen pentoxide.

The balanced equation for the decomposition of dinitrogen pentoxide is:

2 N₂O₅ → 4 NO₂ + O₂

The molar mass of N₂O₅  is 108.01 g/mol.

To determine the number of moles of N₂O₅  present in 1.25 g, we use the following calculation:

moles N₂O₅  = mass / molar mass

moles N₂O₅ = 1.25 g / 108.01 g/mol

moles N₂O₅ = 0.01157 mol

From the balanced equation, we can see that 2 moles of N₂O₅  decompose to form 4 moles of NO2. Therefore, the number of moles of NO2 produced can be calculated as:

moles  NO₂ = (0.01157 mol N2O5) × (4 mol NO2 / 2 mol N2O5)

moles  NO₂ = 0.02314 mol

Therefore, 0.02314 moles of  NO₂ can be formed from the decomposition of 1.25 g of dinitrogen pentoxide.

learn more about moles here

https://brainly.com/question/29367909

#SPJ1

Your conclusion will include a summary of the lab results and an interpretation of the results.
Please answer all questions in complete sentences using your own words.
1. Identify the independent variable?
2. Identify the dependent variable?
3. Why do you believe knowing how elements and compounds react together is essential in
everyday matters?
I
4. Choose one of the compounds from the table and explain how you know the number of
atoms in your formula.
5. Is it possible for two different compounds to be made from the same two elements? Why
or why not?
6. With a limited number of elements (less than 120 are known), does this mean we also
have a small number of compounds? Or do we have many compounds in this world?

Answers

The independent and dependent variables are compounds and elements, respectively.

Why do you believe knowing how elements and compounds react together is essential in everyday matters?

Elements and compounds make up everything in our surroundings. Knowing how things operate can aid in our ability to comprehend our surroundings.

Explain how you determined the number of atoms in your formula for one of the compounds in the table.

Water is one of the chemicals listed in the table (H2O). This molecule has 3 atoms, which can be broken down into 2 hydrogen (H) atoms and 1 oxygen atom (O).

Can the same two elements be combined to form two distinct compounds? If not, why not?

Several compounds can be created by mixing the same two elements' atoms in different ratios.

Does having a minimal number of known elements (less than 120) imply that there aren't many compounds as well? Or does this universe contain a lot of compounds?

Because these elements mix in various ways and in various quantities to create unique compounds, we have a huge variety of compounds in this universe.

To learn more about chemical compounds visit:

brainly.com/question/12166462

#SPJ1

Other Questions
Which parts are the female reproductive parts of the flower? which type of document addresses the specific concerns realted to access given to administrators and certain support staff? NMENTSCOURSESWRITERAssignment-13 Quiz 2Attempt 3 of 3HSECTION 1 OF 1In at least one hundred words, discuss the significance of the conversation that occurs in "Hills Like White ElephantsHow do Jig and the American relate to one another? How do they understand one another?QUUP I did not get the answer Deposits of 70 are placed into a fund at the end of each year for 10 years. The effective annual interest rate is 8%. Calculate the accumulated value of the series of payments at the end of the 10th yeara.1,014.06 b.770.69 c.932.93 d.1.095.18 e.1851.81 You have recently been appointed as the Financial Manager of Indigo Blues Ltd. (2)Q.1.1 As a financial manager, you are responsible for the 'investment decisions' of Indigo Blues Ltd. You will need to ensure that funds are managed in such a way that they become available as and when needed by the business. Q.1.1.1 Explain what the 'investment decision' would entail from a short-term perspective. Q.1.1.2 Explain what the 'investment decision' would entail from a medium-to long-term perspective. Q.1.1.2 Provide three (3) examples of key investment decisions which you may be involved in as a financial manager. ) (2) (3) 3) -l juega muy bien!-S, algn da __________ en un estadio famoso.1. juegas2. jug3. jugar4. jugarn _______________ is the starting point for most of the degenerative diseasesA)obesityB)diabetesC)hypertensionD)Atherosclerosis Summers in Earth's Northern Hemisphere are warmest when:Please choose the correct answer from the following choices, and then select the submit answer button.Answer choicesthe North Pole points toward Polaris, the current north star.axial precession matches the axial tilt.axial precession matches the orbital eccentricity.the North Pole points toward Vega. Introduction and thesis for Dorian gray in a essay this excerpt of indonesian music comes from portugal. how did this style make to the indonesian archipelago? a sample of br2(g) takes 26.0 min to effuse through a membrane. how long would it take the same number of moles of ar(g) to effuse through the same membrane? A two-way is normally used as an off/on switch and to control _____. there are 90 people in the restaurant. the probability of someone ordering a drink with the food is 60%. use normal approximation of binomial distribution to answer the following 6 questions. 1. what is the mean of the normal distribution? 2. what is the standard deviation of the normal distribution? 3. what is the probability that exactly 50 people will order a drink? 4. what the probability that more than 50 people will order a drink? 5. what is the probability that less than 50 people will order a drink? 6. what is the probability that between 52 or more and 56 or less people will order a drink? a cost-cutting project will decrease costs by $64,300 a year. the annual depreciation will be $14,400 and the tax rate is 35 percent. what is the operating cash flow for this project? what is the correct from addressing infernal dialogues?Then I told myself, "what it can't make? " An increase in the government budget deficit will shift the ________ curve for loanable funds to the ________ and the equilibrium real interest rate will ________.A.demand; right; riseB.demand; left; fallC.supply; right; fallD.supply; left; rise the def company is planning a $64 million expansion. the expansion is to be financed by selling $25.6 million in new debt and $38.4 million in new common stock. the before-tax required rate of return on debt is 0.075 and the required rate of return on equity is 0.145. if the company has a marginal tax rate of 0.27, what is the firm's cost of capital? A student is going to the office. He starts out from the classroom and walks 20 m North then stops totalk. Then he starts for the office again and walks 30 m North, but stops again to talk. Then he walks 10 m North and finally makes it to the office. 4. Compare a baby's concept of the world to a three-year-old's concept of theworld Conduct rhetorical analysis on the three magazine advertisements below. Specifically, examine how the Aristotelian appeals--ethos, pathos, and logos--function in the ads. For each advertisement, analyze how one of the appeals is being used. For example, explore the role of pathos in the Nike ad, ethos in the Toyota ad, and logos in the Surfrider Foundation ad (you should decide which appeal you want to analyze the function of in each ad; just make sure that each of your three responses focuses on a different appeal). Each response should be 50+ words. This forum will close at 8pm on Sunday, April 16th. NikeSurfriderToyota