In the Pilbara iron ore exists in mines that are both readily accessible and contain high grade ore, which is then shipped to China. Research how the iron is extracted by reduction of haematite. Explain why this process is known as reduction and how the ore is separated before being reduced in a blast furnace.

Answers

Answer 1

The extraction of iron from haematite ore involves a process called reduction. Reduction is the chemical reaction in which oxygen is removed from a compound, resulting in the formation of a new substance.

In the case of haematite, the reduction process involves removing the oxygen from the iron oxide (Fe2O3) to obtain elemental iron (Fe). This is typically achieved through a process called smelting, which is carried out in a blast furnace. Before the haematite ore is reduced in a blast furnace, it needs to undergo a series of steps to separate impurities and prepare it for the reduction process. The first step is crushing and grinding the ore into smaller particles. This is done to increase the surface area of the ore, allowing for better contact with the reducing agent. After crushing and grinding, the ore is then subjected to a process called beneficiation, where it is separated from gangue materials and other impurities.

Beneficiation techniques vary, but commonly involve processes such as gravity separation, magnetic separation, and flotation. These methods exploit the differences in physical and chemical properties between the haematite ore and the impurities, allowing for their separation. Once the ore is purified and separated, it is ready to be reduced in a blast furnace, where the smelting process takes place.

For more such questions on  Reduction

https://brainly.com/question/13182308

#SPJ8


Related Questions

I need help with question 5

Answers

I believe this answer is A, hope this helps!

An atom has 17 protons and 17 electrons.The atoms charge is

Answers

An atom has 17 protons and 17 electrons. The atom's charge is neutral. The positive charge of the 17 protons in this atom is balanced by the negative charge of the 17 electrons.

The ratio of an atom's protons, which have a positive charge, to its electrons, which have a negative charge, determines the charge of the atom. The quantity of protons in an electrically neutral atom is equal to the quantity of electrons.

The positive charge of the 17 protons in this atom is balanced by the negative charge of the 17 electrons, since there are 17 protons and 17 electrons in it. Consequently, the atom is electrically neutral or has a net charge of zero.

Learn more about protons, here:

https://brainly.com/question/18489557

#SPJ1

100 POINTS AND BRAINLIST!




Question
Why does the sun appear so much larger and brighter than the other stars that are seen from Earth?
Responses

The sun is much larger than other stars. [A]

The sun appears only during the daytime. [B]

The sun is closer to Earth than other stars. [C]

The sun burns more brightly than other stars. [D]

Answers

The correct response is:

C. The sun is closer to Earth than other stars.

The apparent size and brightness of an object in the sky can be influenced by its distance from the observer. Although the sun is actually an average-sized star, it appears larger and brighter than other stars because it is much closer to Earth. The stars we see at night are located at much greater distances from our planet, making them appear smaller and dimmer in comparison to the sun.

Answer:

C. The sun is closer to Earth than other stars.

Explanation:

Why is this?

The sun appears larger and brighter than other stars because it is much closer to Earth. The sun is the closest star to Earth, at a distance of about 93 million miles. Other stars are much farther away, so they appear smaller and less bright in the sky.

Calculate how many moles of FeSO4 • 7H2O were added to the Erlenmeyer flask in trial 2

Answers

I'm sorry, but I don't have access to the specific details of your experiment or the information provided in "trial 2" mentioned in your question. In order to calculate the number of moles of FeSO4 • 7H2O added to the Erlenmeyer flask in trial 2, you would need to know the mass of FeSO4 • 7H2O added or have additional information about the experiment.

Please provide more context or specific data related to trial 2, such as the mass of FeSO4 • 7H2O added or any other relevant information, so that I can assist you further.

The ages of rocks that contain fossils can be determined using the isotope 87Rb. This isotope of rubidium undergoes beta decay with a half‑life of 4.75×1010y. Ancient samples contain a ratio of 87Sr to Rb87 of 0.0205. Given that 87Sr is a stable product of the beta decay of 87Rb, and assuming there was originally no 87Sr present in the rocks, calculate the age of the rock sample. Assume that the decay rate is constant over the relatively short lifetime of the rock compared to the half-life of 87Rb.

Answers

The calculate the age of the rock sample values, the age of the rock sample can be determined.

we can use the concept of radioactive decay and the ratio of 87Sr to 87Rb. Since 87Sr is a stable product of the beta decay of 87Rb, the increase in the ratio of 87Sr to 87Rb over time reflects the decay of 87Rb.

The ratio of 87Sr to 87Rb in ancient samples is given as 0.0205. This means that for every 0.0205 moles of 87Rb, there is one mole of 87Sr.

Since the half-life of 87Rb is 4.75×10^10 years, after each half-life, half of the 87Rb would have decayed into 87Sr. Therefore, the ratio of 87Sr to 87Rb increases by a factor of 2.

To determine the age of the rock sample, we can calculate the number of half-lives that have occurred based on the change in the ratio. The ratio of 0.0205 corresponds to 1 half-life, 0.041 corresponds to 2 half-lives, 0.082 corresponds to 3 half-lives, and so on.

By taking the logarithm of the ratio change and dividing it by the logarithm of 2 (since the ratio doubles with each half-life), we can find the number of half-lives.

Using this information, the age of the rock sample can be calculated as follows:

Age (in years) = number of half-lives × half-life of 87Rb

For more such questions on values

https://brainly.com/question/1565677

#SPJ8

I need help in this:(

Answers

Answer:

Phosphorus(P) and Oxygen(O)=Covalent bond

Chlorine(Cl) and Sodium(Na) = Ionic bond

Silver (Ag) and Silver (Ag)= Metallic bond

Silver (Ag) and silver (Ag) metallic bonding

Phosphorus and Oxygen would be covalent bonding

Chlorine and sodium would be ionic bonding.

Describe two ways in which sodium chloride is different from sodium

Answers

Answer:

Sodium (Na) is a highly reactive metal, while sodium chloride (NaCl) is a compound formed by the combination of sodium and chlorine (Cl). Sodium exists as a pure element, whereas sodium chloride is a stable, crystalline compound.

Sodium is a soft, silvery-white metal that is highly reactive and can easily react with water or air. In contrast, sodium chloride is a white crystalline solid that is highly stable and does not react readily with water or air. Sodium chloride is commonly known as table salt and is widely used as a seasoning and food preservative.

Please help me ASAP!!50 points!!
1. An excess of sodium hydroxide was added to 30 ml of water. As a result, 200 ml of ammonia was released. Calculate the concentration of ammonium ions in water (mg/I)

2. An excess of sodium carbonate was added to a 20 ml sample of drinking water.
As a result, 20 mg of barium carbonate precipitate was formed. Determine the mass of barium (mg) in 1 ml of drinking water.

Answers

1.To calculate the concentration of ammonium ions in water, we need to determine the number of moles of ammonium ions and then convert it to milligrams per liter (mg/L).

Given:

Volume of water = 30 ml

Volume of ammonia released = 200 ml

First, we need to convert the volume of ammonia released to the volume of water. Since the ammonia was released from the reaction with sodium hydroxide, the volume of ammonia released is equivalent to the volume of water used. Therefore, the volume of water used is 200 ml.

Next, we'll calculate the number of moles of ammonium ions:

Molar volume of water = 18.015 g/mol

Volume of water used = 200 ml = 0.2 L

The molar ratio between sodium hydroxide and ammonium ions is 1:1. Therefore, the number of moles of ammonium ions is equal to the number of moles of sodium hydroxide used.

Now, let's calculate the number of moles of sodium hydroxide used:

Molar mass of sodium hydroxide (NaOH) = 22.99 g/mol + 16.00 g/mol + 1.01 g/mol = 39.99 g/mol

The concentration of sodium hydroxide in water is not provided. If you have the concentration of sodium hydroxide, we can use it to determine the number of moles of sodium hydroxide used. Without that information, we cannot calculate the number of moles of ammonium ions and, subsequently, the concentration of ammonium ions in water.

2. To determine the mass of barium in 1 ml of drinking water, we'll use the information given:

Volume of drinking water = 20 ml

Mass of barium carbonate precipitate formed = 20 mg

We need to calculate the mass of barium in the precipitate and then convert it to milligrams per milliliter (mg/ml).

The molar mass of barium carbonate (BaCO₃) is:

Molar mass of barium (Ba) = 137.33 g/mol

Molar mass of carbonate (CO₃) = 12.01 g/mol + (3 × 16.00 g/mol) = 60.01 g/mol

Molar mass of barium carbonate (BaCO₃) = 137.33 g/mol + 60.01 g/mol = 197.34 g/mol

The molar ratio between barium carbonate and barium is 1:1. Therefore, the number of moles of barium in the precipitate is equal to the number of moles of barium carbonate formed.

Now, let's calculate the number of moles of barium carbonate:

Mass of barium carbonate precipitate formed = 20 mg = 0.020 g

Number of moles of barium carbonate = Mass of barium carbonate / Molar mass of barium carbonate

= 0.020 g / 197.34 g/mol

Finally, we'll calculate the mass of barium in 1 ml of drinking water:

Volume of drinking water = 20 ml

Mass of barium in 1 ml of drinking water = (Number of moles of barium carbonate / Volume of drinking water) × Molar mass of barium

= (0.020 g / 197.34 g/mol) / 20 ml × 137.33 g/mol

Learn more about sodium hydroxide on:

https://brainly.com/question/10073865

#SPJ1

What is the freezing point, in °C, of
a 0.66 m solution of C4H10 in
benzene?
FP (benzene) = 5.50 °C
K; (benzene) = 5.12 °C/m
[?] °C

Answers

The freezing point of a 0.66 m solution of  [tex]C_4H_{10[/tex]  in benzene is approximately 2.1208 °C.

To calculate the freezing point of a solution we can use the below formula

ΔT = K * m

where ΔTthe change in freezing point, K is the cryoscopic constant, and m is the molality of the solution.

Given:

Freezing point of benzene = 5.50 °C

Cryoscopic constant of benzene  = 5.12 °C/m

Molality of the solution= 0.66 m

Substituting the values into the formula:

ΔT = 5.12 °C/m * 0.66 m

Calculating the value:

ΔT = 3.3792 °C

We have to subtract the calculated change in freezing point from the freezing point of pure benzene to find the freezing point of the solution

The freezing point of solution = Freezing point (benzene) - ΔT

Freezing point of solution = 5.50 °C - 3.3792 °C

Calculating the value:

Freezing point of solution = 2.1208 °C

Therefore, the freezing point of a 0.66 m solution of [tex]C_4H_{10[/tex] in benzene is approximately 2.1208 °C.

To learn more about Molality,

https://brainly.com/question/30640726

Number 4 please please pleaseeee

Answers

If it travells at 330m/s, and it has to travel 5100m just

5100 ÷ 330

because time = distance ÷ speed

= 15.45 s

Answer:

15.4545455 seconds

Explanation:

(5100 m) / (330 (m / s))

5100/330 = 15.4545455 seconds

What is the structure of an atom.

Answers

Answer:

An atom contains three basic particles namely protons, neutrons and electrons. The nucleus of the atom contains protons and neutrons where protons are positively charged and neutrons are neutral. The electrons are located at the outermost regions called the electron shell.

How many grams of BaSO4 can be produced from 200.0 g of Ba(NO3)2 and 100.0 g of Na2SO4? Which is limiting reactant? How much excess reactant remains?

Answers

The limiting reactant will be the one that produces fewer moles of BaSO4. The excess reactant will be the one that has moles left over after the reaction.

To determine the grams of BaSO4 produced and the limiting reactant, we need to compare the stoichiometry of the balanced chemical equation for the reaction between Ba(NO3)2 and Na2SO4, which is:

Ba(NO3)2 + Na2SO4 → BaSO4 + 2NaNO3

First, calculate the number of moles for each reactant:

Moles of Ba(NO3)2 = 200.0 g / molar mass of Ba(NO3)2

Moles of Na2SO4 = 100.0 g / molar mass of Na2SO4

Then, calculate the moles of BaSO4 formed by comparing the stoichiometric coefficients:

Moles of BaSO4 formed = Moles of Ba(NO3)2 (according to the stoichiometry ratio)

Next, calculate the grams of BaSO4 formed:

Grams of BaSO4 formed = Moles of BaSO4 formed × molar mass of BaSO4

To identify the limiting reactant, compare the moles of BaSO4 formed from each reactant. The reactant that produces fewer moles of BaSO4 is the limiting reactant.

To determine the excess reactant remaining, calculate the moles of excess reactant and then convert it to grams.

For more such questions on  limiting reactant

https://brainly.com/question/26905271

#SPJ8

What mass (g) of CaCl2 are needed to make 1L of a 3M CaCl2 solution?

87.5g

100.52g

332.94g

9g

Answers

The mass of CaCl₂ required  to make a 1L solution of 3M CaCl₂ is equal to 332.94 g, hence option C is correct.

To find the mass of CaCl₂ required to make a 3M solution, it considers the molar mass of CaCl2 and the desired concentration.

The molar mass of CaCl₂ can be observed as follows:

Molar mass (CaCl₂) = (molar mass of Ca) + 2 × (molar mass of Cl)

= (40.08 g/mol) + 2 × (35.45 g/mol)

= 40.08 g/mol + 2 × 35.45 g/mol

= 40.08 g/mol + 70.90 g/mol

= 110.98 g/mol

Now, by using the formula for molarity to find the mass of CaCl₂ required:

Molarity (M) = (moles of solute) / (volume of solution in liters)

Arrange the formula to solve for moles of solute:

(moles of solute) = (Molarity) × (volume of solution in liters)

It is required to make a 1L solution of 3M CaCl₂:

(moles of CaCl2) = (3 mol/L) × (1 L)

= 3 mol

Finally, find the mass of CaCl₂ using the moles and molar mass:

(mass of CaCl2) = (moles of CaCl₂ × (molar mass of CaCl₂)

= 3 mol × 110.98 g/mol

= 332.94 g

Thus, the mass of CaCl2 required to make a 1L solution of 3M CaCl₂ is  332.94 g.

Learn more about solution, here:

https://brainly.com/question/29465158

#SPJ1

convert 5 moles of water to grams of water

convert 220 J of energy to calories

Answers

The 5 moles of water is equal to 90.075 grams of water and 220 J of energy is equal to 52.636 calories.

To change moles of water to grams, it is required to find the molar mass of the substance. The molar mass of water (H2O) is equal to 18.015 grams/mol.

To change 5 moles of water to grams, by using the following calculation:

5 moles × 18.015 grams/mol = 90.075 grams of water

Thus, 5 moles of water is equal to 90.075 grams of water.

To change joules to calories,  by using the conversion factor:

1 cal = 4.184 J.

To change 220 J of energy to calories, by using the following calculation:

220 J ×  (1 cal / 4.184 J) = 52.636 cal

Thus, 220 J of energy is equal to 52.636 calories.

Learn more about water, here:

https://brainly.com/question/29285510

#SPJ1

Identify the conjugate acid-base pairs in the reaction between amonia and hydrofluoric acid in aqueous solution
NH3 (aq) + HF (aq) = NH4+ (aq) + F- (aq)

Answers

The conjugate acid-base pairs in the reaction between ammonia and hydrofluoric acid in aqueous solution are NH3/NH4+ and HF/F-.

In the reaction between ammonia (NH3) and hydrofluoric acid (HF) in aqueous solution, the following conjugate acid-base pairs can be identified:

NH3 (ammonia) and NH4+ (ammonium ion):

Ammonia (NH3) acts as a base by accepting a proton (H+) from hydrofluoric acid (HF) to form the ammonium ion (NH4+). In this reaction, ammonia acts as a Lewis base by donating an electron pair to the proton, resulting in the formation of the ammonium ion as the conjugate acid.

HF (hydrofluoric acid) and F- (fluoride ion):

Hydrofluoric acid (HF) acts as an acid by donating a proton (H+) to ammonia (NH3) to form the fluoride ion (F-).

In this reaction, hydrofluoric acid acts as a Lewis acid by accepting an electron pair from ammonia, resulting in the formation of the fluoride ion as the conjugate base.

To summarize, in the reaction NH3 (aq) + HF (aq) = NH4+ (aq) + F- (aq), the conjugate acid-base pairs are NH3/NH4+ and HF/F-. Ammonia (NH3) is the base that forms its conjugate acid, the ammonium ion (NH4+), while hydrofluoric acid (HF) is the acid that forms its conjugate base, the fluoride ion (F-).

It is important to note that in an aqueous solution, ammonia is present as NH3 molecules, and hydrofluoric acid dissociates into H+ and F- ions. The resulting ammonium ion (NH4+) and fluoride ion (F-) remain in the solution.

For more question on aqueous visit:

https://brainly.com/question/19587902

#SPJ8

A teacher divides her class into groups and assigns each group the task of measuring the mass of the samer object three times the teacher already knoes that the mass of the object is 25 g

Answers

Dividing the class into groups and assigning them the task of measuring the mass of the same object multiple times promotes scientific inquiry, encourages critical thinking.

It also provides an opportunity to discuss the concepts of precision, accuracy, and the role of statistical analysis in scientific investigations.

When the teacher divides her class into groups and assigns each group the task of measuring the mass of the same object three times, it allows for multiple measurements to be taken in order to obtain more accurate and reliable results. This approach is a common practice in scientific experiments and data collection.

By having multiple groups perform the measurements, several factors come into play:

1. Precision: Each group's measurements may have some inherent variability due to factors such as the sensitivity of the measuring instrument, human error, or slight variations in the experimental conditions. Taking multiple measurements allows for better assessment of the precision of the measurements by evaluating the spread or range of values obtained.

2. Accuracy: While the teacher already knows the mass of the object is 25 g, the purpose of the exercise is to assess the accuracy of the measurements performed by the students. By comparing the measured values from each group to the known value, the teacher can evaluate the accuracy of the measurements and identify any systematic errors or biases.

3. Averaging: Taking multiple measurements allows for the calculation of an average value, which tends to be a more reliable representation of the true value. By averaging the measurements from all the groups, the teacher can obtain a more accurate estimate of the mass of the object.

4. Statistical Analysis: With multiple measurements, the teacher can perform statistical analysis on the data, such as calculating measures of central tendency (mean, median) and measures of dispersion (standard deviation), to further assess the quality and reliability of the measurements.

Overall, dividing the class into groups and assigning them the task of measuring the mass of the same object multiple times promotes scientific inquiry, encourages critical thinking, and helps students understand the importance of repeated measurements in obtaining accurate and reliable data. It also provides an opportunity to discuss the concepts of precision, accuracy, and the role of statistical analysis in scientific investigations.

For more such question on mass visit

https://brainly.com/question/24191825

#SPJ8

If a chemical reaction consumes reactants at a steady rate of 1.64 x 1021 molecules per second, how long will it take for the reaction to consume 6.02 x 1023 molecules of reactant? Express your answer in seconds using the correct number of significant figures. Do not enter your answer using scientific notation.

Answers

The amount of time it will take for the reaction to consume 6.02 x 10²³ molecules of reactant is 3.67 × 10² seconds.

How to calculate molecules?

The amount of time it will take for a molecule to react can be calculated by dividing the number of molecules in the substance by the rate of time as follows;

Time taken = no of molecules ÷ no of molecules/seconds

According to this question, if a chemical reaction consumes reactants at a steady rate of 1.64 x 10²¹ molecules per second, the amount of time it will take for the reaction to consume 6.02 x 10²³ molecules of reactant is as follows!

Time = 6.02 x 10²³ molecules ÷ 1.64 x 10²¹ molecules per second

Time = 3.67 × 10² seconds

Learn more about molecules at: https://brainly.com/question/30465503

#SPJ1

__Fe+__Pb(No3)3+__Pb
If 30.0 g of iron react with 258 g lead (Il) nitrate and 67.8 grams of lead form, what is the percent yield?

Answers

When 30.0 g of iron reacts with 258 g lead (Il) nitrate and 67.8 grams of lead form, then the percentage yield is 40.62%.

Given information,

Mass of iron = 30g

Mass of Lead (III) nitrate = 258g

Mass of lead = 67.8g

The balanced equation for the reaction is:

2 Fe + 3 Pb(NO₃)₂ → 3 Pb + 2 Fe(NO₃)₃

The stoichiometric ratio between iron (Fe) and lead (Pb) is 2:3.

The moles of Fe:

Moles of Fe = mass of Fe / molar mass of Fe

Moles of Fe = 30.0/ 55.845

Moles of Pb = (3/2) × moles of Fe

The theoretical yield of Pb:

Mass of Pb (theoretical) = moles of Pb × molar mass of Pb

Mass of Pb (theoretical) = (3/2) × moles of Fe × molar mass of Pb

The percent yield:

Percent yield = (actual yield / theoretical yield) × 100

Actual yield = 67.8 g

Theoretical yield = (3/2) × (30/55.845) × 207.2 = 166.95

Percent yield = 67.8/166.9  × 100 = 40.62%

Thus, the percentage yield is 40.62%.

Learn more about percentage yield, here:

https://brainly.com/question/29200507

#SPJ1

which stament is true about endothermic and exothermic reactions? 1. Energy is absorbed 2. energy is released in an endothermic reaction. 3. the products have more potential energy than the reactants in an exothermic reaction. 4. the products have more potential energy than the reactant in an endothermic reaction.

Answers

The Statement 3 (the products have more potential energy than the reactants in an exothermic reaction) is partially correct because the products do have lower potential energy than the reactants in an exothermic reaction.

The correct statement regarding endothermic and exothermic reactions is:

Energy is absorbed in an endothermic reaction.

In an endothermic reaction, energy is taken in from the surroundings, usually in the form of heat. The reactants have a lower energy level than the products, so energy must be absorbed to reach the higher energy state of the products. This energy absorption causes a decrease in the temperature of the surroundings, making the reaction feel cold.

On the other hand, in an exothermic reaction, energy is released. The reactants have a higher energy level than the products, so energy is released during the reaction, usually in the form of heat. This energy release causes an increase in the temperature of the surroundings, making the reaction feel warm or hot.

Therefore, statement 2 (energy is released in an endothermic reaction) and statement 4 (the products have more potential energy than the reactant in an endothermic reaction) are incorrect.

For more such questions on energy

https://brainly.com/question/5650115

#SPJ8

someone help ASAP!!

What are possible components of ionic compounds? Check all that apply.

1: a metal and a nonmetal

2: 2 metals

3: a metal and a polyatomic anion

4: a polyatomic cation and a metal




What happens to ions during bonding to form an ionic compound?

Cations accept electrons and anions give away electrons.

Anions and cations share electrons.

Cations give away electrons and anions accept those electrons.

Answers

Answer:

Question 1:

1: a metal and a nonmetal

3: a metal and a polyatomic anion

4: a polyatomic cation and a metal

Question 2:

Cations give away electrons and anions accept those electrons

For the 1st question :

1 is correct
2 is incorrect
3 is correct
4 is correct

For the 2nd question :

Cations give away electrons and anions meaning the elections accepts them


So the correct answer is "Cations give away electrons and anions accept those electrons."

ASAP PLEASE!!!B. Complete the drawing for the sample reaction below to show the law of conservation of
mass, when XY is produced.
+
->

Answers

The complete reaction, according to the law of conservation of mass is:

XX + YY → 2XY

The Law of Conservation is a fundamental principle in chemistry and physics. It states that in a closed system, mass cannot be created or destroyed during a chemical reaction or a physical change. The total mass of the substances involved before the reaction or change must equal the total mass of the substances after the reaction or change.

This principle is based on the understanding that atoms are not created or destroyed, but they can combine or separate to form different substances.

Learn more about the law of mass conservation, here:

https://brainly.com/question/28711001

#SPJ1

convert 7.54 x 10^-8 m to nanometers

Answers

7.54 *[tex]10^8[/tex] meters is  75.4 nanometers.

To convert 7.54 *  [tex]10^8[/tex] meters to nanometers, you can multiply the value by [tex]10^9[/tex]

as,  [tex]10^9[/tex]nanometers = 1  meter.

7.54 * [tex]10^8[/tex] m * [tex]10^9[/tex] =  7.54 x [tex]10^1[/tex] nm

Therefore, 7.54 *[tex]10^8[/tex] meters is equal to 75.4 nanometers.

learn more about conversion:

https://brainly.com/question/13076223

Final answer:

To convert 7.54 x 10^-8 meters to nanometers, you multiply 7.54 x 10^-8 by 1 x 10^9 to get 75.4 nanometers.

Explanation:

To convert meters to nanometers, you need to know that 1 meter is equivalent to 1 x 109 nanometers. Therefore, if you were to convert 7.54 x 10-8 m to nanometers, you would multiply 7.54 x 10-8 by 1 x 109.

Here's how you'd do it: 7.54 x 10-8 m * 1 x 109 nm/m = 75.4 nm. So, 7.54 x 10-8 meters is equivalent to 75.4 nanometers.

Learn more about Unit Conversion here:

https://brainly.com/question/32030244

#SPJ2

Calculate the pH of a 0.005 M NaOH (PLS)

Answers

To calculate the pH of a solution of NaOH (sodium hydroxide), we need to consider that NaOH is a strong base that dissociates completely in water, producing hydroxide ions (OH⁻).

Given:

Concentration of NaOH = 0.005 M

Since NaOH dissociates into one hydroxide ion (OH⁻) per molecule, we can determine the concentration of hydroxide ions in the solution, which will allow us to calculate the pOH. Then, we can convert the pOH to pH using the relationship: pH + pOH = 14.

1. Calculate the concentration of hydroxide ions (OH⁻):

The concentration of OH⁻ ions will be the same as the concentration of NaOH since NaOH dissociates completely.

Concentration of OH⁻ = 0.005 M

2. Calculate the pOH:

pOH = -log[OH⁻]

pOH = -log(0.005)

Using logarithm properties, we can determine the pOH value:

pOH = -log(0.005)

pOH = -(-2.301)

pOH = 2.301

3. Calculate the pH:

pH = 14 - pOH

pH = 14 - 2.301

pH ≈ 11.699

Therefore, the pH of a 0.005 M NaOH solution is approximately 11.699.

The pH of a 0.005 M concentration of NaOH ( sodium hydroxide ) solution is approximately 11.70.

What is the pH of the sodium hydroxide?

The pH of a solution is defined as the logarithm of the reciprocal of the hydrogen ion concentration  [H+] of the given solution.

From the formula;

pH = -log[ H⁺ ]

pOH = -log[ OH⁻ ]

pH + pOH = 14

Given that; the concentration of solution (molarity) ( OH⁻ ) is 0.005 M.

First, we determine the pOH.

pOH = -log[ OH⁻ ]

Plug in ( OH⁻ ) = 0.005

pOH = -log[ 0.005 ]

pOH = 2.30

Now, plug pOH = 2.30 into the above formula and solve for the pH:

pH + pOH = 14

pH + 2.30 = 14

Subtract 2.30 from both sides:

pH + 2.30 - 2.30 = 14 - 2.30

pH = 14 - 2.30

pH = 11.7

Therefore, the pH of the solution is 11.7.

Learn more about pH & pOH here: brainly.com/question/17144456

#SPJ1

Determine the grams of potassium chloride produced when 505 grams of potassium
phosphate react with 222 grams of HCI. Refer to the balanced equation below.
K3PO4 (aq) + 3HCI (aq) --> 3KCI (1) + H3PO4 (aq) (balanced)

Answers

Answer:  505 grams K3PO4 x (3 x 222 grams HCI)/ (3 x K3PO4) = 555.5 grams KCl

Explanation:

A gas occupies a volume of 2.99-L at 28.10oC and 4.71-atm. What is the volume of the gas at conditions of STP?

Answers

The volume of the gas at standard temperature and pressure conditions is approximately 12.77 liters.

What is the final volume of the gas?

To find the volume of the gas at STP, we can use the combined gas law:

[tex]\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}[/tex]

Note that: at STP (Standard Temperature and Pressure) is defined as a temperature of 0°C (273.15 K) and a pressure of 1 atm.

Given that:

P₁ = initial pressure = 4.71 atm

V₁ = initial volume = 2.99 L

T₁ = initial temperature = 28.10 °C = ( 28.10 + 273.15 ) = 301.25 K

P₂ = final pressure (STP pressure ) = 1 atm

T₂ = final temperature (STP temperature)  = 0°C = 273.15 K

V₂ = final volume = ?

Substituting the given values into the formula:

[tex]\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}\\\\\frac{4.71\ *\ 2.99 }{301.25} = \frac{1\ *\ V_2}{273.15 }\\\\V_2 = 12.77\ L[/tex]

Therefore, the final volume is 12.77 litres.

Learn more about the combined gas law here: brainly.com/question/25944795

#SPJ1

How many moles of H2O are found in a sample containing 7.1 * 10 (19) molecules

Answers

The sample containing 7.1 × 10^19 molecules of H2O corresponds to approximately 1.18 × 10^(-4) moles of H2O.

To determine the number of moles of H2O in a sample containing 7.1 × 10^19 molecules, we need to use Avogadro's number, which states that 1 mole of any substance contains 6.022 × 10^23 molecules.

Given that there are 7.1 × 10^19 molecules of H2O in the sample, we can calculate the number of moles using the following formula:

Moles = Number of molecules / Avogadro's number

Moles = 7.1 × 10^19 / 6.022 × 10^23

Moles ≈ 1.18 × 10^(-4) moles

For more such questions on molecules

https://brainly.com/question/24191825

#SPJ8

Need help with this 2 part question

Answers

The limiting reagent is chlorine and the correct option is option 2.

In a chemical reaction, the limiting reagent is the reactant that determines the quantity of the products that are produced. Limiting reagents are defined as the substances which are entirely consumed in the completion of a chemical reaction and so a limiting reagent limits the formation of products and determines the amount of products obtained in the reaction.

The limiting reagent can be identified from the number of moles in the reaction, the one that is having the lesser number of moles acts as a limiting reagent in the reaction.

Given,

Moles of hydrogen = 5.3 moles

Moles of chlorine = 4.8 moles

Limiting reagent is the one that has lesser number of moles and thus chlorine is the limiting reagent in this reaction.

Thus, the ideal selection is option 2.

Learn more about Limiting reagent, here:

https://brainly.com/question/31171741

#SPJ1

How many grams of AgNO3 are needed to prepare 750 ml of a 0.30 M solution?

Answers

We can use the following formula to determine how many grams of AgNO3 are needed to make a 0.30 M solution with a volume of 750 ml:

moles = volume (L) x concentration (M)

The volume provided must first be converted from milliliters to liters:

Volume = 750 ml ÷ 1000 ml/L = 0.75 L

Now we can find the molarity of AgNO3:

moles = 0.30 M × 0.75 L = 0.225 moles

To find the grams of AgNO3, we need to use the molar mass of AgNO3, which is calculated as follows:

Ag: 1 atom × 107.87 g/mol = 107.87 g/mol

N: 1 atom × 14.01 g/mol = 14.01 g/mol

O: 3 atoms × 16.00 g/mol = 48.00 g/mol

Total molar mass of AgNO3:

107.87 g/mol + 14.01 g/mol + 48.00 g/mol = 169.88 g/mol

Now, we can calculate the grams of AgNO3 needed:

grams = moles × molar mass

grams = 0.225 moles × 169.88 g/mol = 38.22 grams

Therefore, approximately 38.22 grams of AgNO3 are needed to prepare 750 ml of a 0.30 M solution.

Learn more about molar mass, here:

https://brainly.com/question/31545539

#SPJ1

calculate the pH of the solution obtained if 40cm^3 of 0.2M HCl was added to 30cm^3 of 0.1M NaOH​

Answers

To calculate the pH of the solution obtained by mixing HCl and NaOH, we need to consider the neutralization reaction between the two compounds. The reaction between HCl (hydrochloric acid) and NaOH (sodium hydroxide) produces water (H₂O) and forms a salt (NaCl).

Given:

Volume of HCl solution (V₁) = 40 cm³

Concentration of HCl solution (C₁) = 0.2 M

Volume of NaOH solution (V₂) = 30 cm³

Concentration of NaOH solution (C₂) = 0.1 M

1. Determine the moles of HCl and NaOH used:

Moles of HCl = Concentration (C₁) × Volume (V₁)

Moles of HCl = 0.2 M × 0.04 L (converting cm³ to L)

Moles of HCl = 0.008 mol

Moles of NaOH = Concentration (C₂) × Volume (V₂)

Moles of NaOH = 0.1 M × 0.03 L (converting cm³ to L)

Moles of NaOH = 0.003 mol

2. Determine the limiting reagent:

The stoichiometry of the reaction between HCl and NaOH is 1:1, meaning that they react in a 1:1 ratio. Whichever reactant is present in a smaller amount will be the limiting reagent.

In this case, NaOH is present in a smaller amount (0.003 mol), which means it will be fully consumed during the reaction.

3. Determine the excess reagent and its remaining moles:

Since NaOH is the limiting reagent, we need to find the remaining moles of HCl.

Moles of HCl remaining = Moles of HCl initially - Moles of NaOH reacted

Moles of HCl remaining = 0.008 mol - 0.003 mol

Moles of HCl remaining = 0.005 mol

4. Calculate the concentration of HCl in the resulting solution:

Volume of resulting solution = Volume of HCl solution + Volume of NaOH solution

Volume of resulting solution = 0.04 L + 0.03 L

Volume of resulting solution = 0.07 L

Concentration of HCl in the resulting solution = Moles of HCl remaining / Volume of resulting solution

Concentration of HCl in the resulting solution = 0.005 mol / 0.07 L

Concentration of HCl in the resulting solution ≈ 0.071 M

5. Calculate the pH of the resulting solution:

pH = -log[H⁺]

pH = -log(0.071)

Using logarithm properties, we can determine the pH value:

pH ≈ -log(0.071)

pH ≈ -(-1.147)

pH ≈ 1.147

Therefore, the pH of the solution obtained by mixing 40 cm³ of 0.2 M HCl and 30 cm³ of 0.1 M NaOH is approximately 1.147.

need help asap!!
u don’t gotta answer all questions btw

Answers

The molarity of the 750 ml solution of BaI₂ was calculated to be 0.787 M.

413 grams of BaI₂corresponds to 1.05 moles and 750 ml of water corresponds to 0.75 liters of water. So the molarity of the solution is calculated as

1.05* 0.75= 0.787 moles.

24) Thus the molarity of the solution is 0.787 M.

25) P₂O₇ is a covalent compound. Both phosphorous and oxygen have similar electronegativity.

SnBr₂ is ionic as the electronegativity difference between the two is less.

Fe(OH)₂ is an ionic compound.

Cl₃O₈ is a covalent compound.

26) (NH₄)₂CO₃ is highly soluble in water while Fe(OH)₂ is insoluble in water. CaOH is poorly soluble in water while PbCl₂is only sparingly soluble in water.

27) In the given reaction FeS is formed as the precipitate and it is highly insoluble in water while the KCl is dissolved in the aqueous solution.

In the second reaction, ZnCl₂ is soluble as a part of the aqueous solution while strontium sulfate forms the precipitate.

28) In salt water salt is the solute and water is the solvent.

29) Air pressure is lower in a higher atmosphere. The pressure is 0.65 atm and the temperature is -15 degrees at the altitude where the balloon has risen. As the balloon rises, the external pressure decreases and the balloon volume increases. However, the internal pressure or ballon volume remains the same.

30) With an increase in the temperature of a substance, the kinetic energy of the substance increases too.

31) With an increase in the pressure, volume decreases while with a pressure decreases volume increases.

32) If the temperature of a gas increases the pressure also increases.

33) When the plunger is pushed in, the air pressure increases. This pushes the bubbles out and reduces the size of the marshmallow. When the plunger is pushed out, the air pressure decreases, causing the marshmallow to expand.

To learn more about molarity, refer to the link:

https://brainly.com/question/2817451

#SPJ1

Other Questions
(1 point) Use the Laplace transform to solve the following initial value problem: y" + 25y = 78(t 6) - y(0) = 0, y'(0) = 0 Notation for the step function is Ut c) = uc(t). = y(t) = U(t 6 In a Statement of Cash Flows, if used equipment is sold at a loss, the amount shown as a cash inflow from investing activities equals the carrying amount of the equipment:1. Less the loss and plus the amount of tax attributable to the loss.2. Less both the loss and the amount of tax attributable to the loss.3. Less the loss.4. With no addition or subtraction. Find the volume of the solid created when the region bounded by y=3x, y = 0 and x = 1 a) is rotated about the x-axis. b) is rotated about the line x = 1. c) is rotated about the line x = 4. last year 60 students of a school appeared in the finals.Among them 8 students secured grade C,4 students secured grade D and the rest of them secured grades A(18 students)B(30 students) find the ratio of students who secured grade A,B,C and D what will the nurse tell parents of a child with a positive throat culture for group a hemolytic streptococcus that the treatment is most likely to be? a certified appraiser is one who has received certification by the binary string 01001010001101 is afloating-point number expressed using the 14 bit simple model given inyour text. assuming an exponent bias is 15. waht is its decimal equivalent 3,4,5 and 6 Find an equation of the tangent to the curve at the point corresponding_to the given value of the parameter: 3. x = t^3 +1, y = t^4 +t; t =-1 A tank contains 100 gallons of water in which 20 pounds of salt is dissolved. A brine solution containing 3 pounds of salt per gallon of water is pumped into the tank at the rate of 4 gallons per minute, and the well-stirred mixture is pumped out at the same rate. Let A(t) represent the amount of salt in the tank at time t. The correct initial value problem for A(t) is:The answer options are:A) dA/dt= 4-A/25; A(0) = 0B) dA/dt=3-A/25; A(0) = 0C) dA/dt=4+A/25; A(0) =2 0D) dA/dt=12-A/25; A(0) =2 0 Following an increase in the demand for money, an open economy is experiencing a significant increase in real interest rates relative to the rest of the world.Explain how this increase in interest rates will affect each of the following for the country.i. Investmentii. The international value of its currencyiii. Exports a ski jumper starts with a horizontal take-off velocity of 27 m/s and lands on a straight landing hill inclined at 30. Determine (a) the time between take-off and landing. (b) the length d of the jump. (c) the maximum vertical distance between the jumper and the landing hill. which system is logical analytical deliberate and methodical martin is researching the differences in fluid intelligence throughout the lifespan. which activity would assist in his study? Write the quadratic equation in standard form that corresponds to the graph shown below.. Please help. ali flipped a fair coin three times he did this a total of 120 sets of three tosses. about how many of these times do you predict he got at least one heads Please select all that are true regarding trading imbalaces:When the FA0, the excess of demand over supply for a DC appreaciates the DC, making exports more expensive and pushing the CA towards zero (X-).When the FA>0, the excess of demand over supply for a DC appreaciates the DC, making DI more expensive and pushing the FA towards zero (DI-).When the CA A wagon is pulled with a force of 80 pounds by a handle thatmakes an angle of 20 with the horizontal.AWhat is the horizontal component of the force correct to thenearest tenth?27.4B75.28020C76.2D 76.4 Calculus 1 - Commerce/Social Science (y=0) f P3. Find all r-value(s) for which y = (x+4)(- 3)2 has a horizontal tangent line. Find the area bounded between the curves y = Vx and y = x on the interval [0,5] using the integral in terms of x. Then without calculation, write the formula of the area in terms of y. The following scenario describes the temperature u of a rod at position x and time t. Consider the equation ut = u xx ,00, with boundary conditions u(0,t)=0,u(1,t)=0. Suppose u(x,0)=2sin(4x) What is the maximum temperature in the rod at any particular time. That is, M(t)= help (syntax) where M(t) is the maximum temperature at time t. Use your intuition.