____ is based on the observation that the rate of increase in transistor density on microchips had increased steadily, roughly doubling every 18 to 24 months.

Answers

Answer 1

Answer:

Moore's Law

Explanation:

An observation that the number of transistors in a dense integrated circuit doubles about every two years (24 months), was made by Gordon E. Moore, the co-founder of Intel, and this observation became Moore's Law in 1965.

Therefore, Moore's Law is based on the observation that the rate of increase in transistor density on microchips had increased steadily, roughly doubling every 18 to 24 months.


Related Questions

A 10-ft-long simply supported laminated wood beam consists of eight 1.5-in. by 6-in. planks glued together to form a section 6 in. wide by 12 in. deep. The beam carries a 9-kip concentrated load at midspan. Which point has the largest Q value at section a–a?

Answers

Answer:

point B where [tex]Q_B = 101.25 \ in^3[/tex]  has the largest Q value at section a–a

Explanation:

The missing diagram that is suppose to be attached to this question can be found in the attached file below.

So from the given information ;we are to determine the  point that  has the largest Q value at section a–a

In order to do that; we will work hand in hand with the image attached below.

From the image attached ; we will realize that there are 8 blocks aligned on top on another in the R.H.S of the image with the total of 12 in; meaning that each block contains 1.5 in each.

We also have block partitioned into different point segments . i,e A,B,C, D

For point A ;

Let Q be the moment of the Area A;

SO ; [tex]Q_A = Area \times y_1[/tex]

where ;

[tex]y_1 = (6 - \dfrac{1.5}{2})[/tex]

[tex]y_1 = (6- 0.75)[/tex]

[tex]y_1 = 5.25 \ in[/tex]

[tex]Q_A =(L \times B) \times y_1[/tex]

[tex]Q_A =(6 \times 1.5) \times 5.25[/tex]

[tex]Q_A =47.25 \ in^3[/tex]

For point B ;

Let Q be the moment of the Area B;

SO ; [tex]Q_B = Area \times y_2[/tex]

where ;

[tex]y_2 = (6 - \dfrac{1.5 \times 3}{2})[/tex]

[tex]y_2= (6 - \dfrac{4.5}{2}})[/tex]

[tex]y_2 = (6 -2.25})[/tex]

[tex]y_2 = 3.75 \ in[/tex]

[tex]Q_B =(L \times B) \times y_1[/tex]

[tex]Q_B=(6 \times 4.5) \times 3.75[/tex]

[tex]Q_B = 101.25 \ in^3[/tex]

For point C ;

Let Q be the moment of the Area C;

SO ; [tex]Q_C = Area \times y_3[/tex]

where ;

[tex]y_3 = (6 - \dfrac{1.5 \times 2}{2})[/tex]

[tex]y_3 = (6 - 1.5})[/tex]

[tex]y_3= 4.5 \ in[/tex]

[tex]Q_C =(L \times B) \times y_1[/tex]

[tex]Q_C =(6 \times 3) \times 4.5[/tex]

[tex]Q_C=81 \ in^3[/tex]

For point D ;

Let Q be the moment of the Area D;

SO ; [tex]Q_D = Area \times y_4[/tex]

since there is no area about point D

Area = 0

[tex]Q_D =0 \times y_4[/tex]

[tex]Q_D = 0[/tex]

Thus; from the foregoing ; point B where [tex]Q_B = 101.25 \ in^3[/tex]  has the largest Q value at section a–a

why is the peak value of the rectified output less than the peak value of the ac input and by how much g

Answers

Answer:

The Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Explanation:

This is what we called HALF WAVE RECTIFIER in which the Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Therefore this is the formula for Half wave rectifier

Vrms = Vm/2 and Vdc

= Vm/π:

Where,

Vrms = rms value of input

Vdc = Average value of input

Vm = peak value of output

Hence, half wave rectifier is a rectifier which allows one half-cycle of an AC voltage waveform to pass which inturn block the other half-cycle which is why this type of rectifiers are often been used to help convert AC voltage to a DC voltage, because they only require a single diode to inorder to construct.

By saying that the electrostatic field is conservative, we do not mean that:_______ The potential difference between any two points is zero. It is the gradient of scalar potential. Its circulation is identically zero along any path. Its curl is identically zero everywhere. The work done in moving a charge along closed path inside the field is zero.

Answers

Answer:

(a) The potential difference between any two points is zero.

Explanation:

A conservative field is;

i. a vector field that is the gradient of some function. Electrostatic field is the gradient of scalar potential, hence it is conservative.

ii. a vector field where the integral along every closed path is zero. This means that the work done in a closed cycle is zero. For an electrostatic field, the charge along closed path inside the field is zero. Hence, electrostatic field is conservative.

iii. a vector field if curl of its potential(vector product of the del operator and the potential) is zero. The curl of electrostatic field is identically zero everywhere.

iv. a vector field whose circulation is zero along any path.

v. a vector field whose potential difference between two points is independent of the path taken. The potential difference between any two points is not necessarily zero.

Other examples of conservative fields are;

i. gravitational field.

ii. magnetic field.

When we say that electrostatic field is conservative, we do not mean that the potential difference between any two points is zero.

What is a conservative field?

A conservative field refers to a form of force between the Earth and another mass whose work is determined only by the final displacement of the object acted upon.

What we mean by saying an electrostatic field is conservative includes:

It is the gradient of scalar potentialIts circulation is identically zero along any pathIts curl is identically zero everywhereThe work done in moving a charge along closed path inside the field is zero.

Hence, when we say that electrostatic field is conservative, we do not mean that the potential difference between any two points is zero.

Therefore, the Option A is correct.

Read more about conservative field

brainly.com/question/10712927

There are two piston-cylinder systems that each contain 1 kg of an idea gas at a pressure of 300 kPa and temperature of 350 K. The two systems then undergo two different processes:

System 1 undergoes process 1 as follows:
Isobaric heating to 500 K, then compressed to a pressure of 500 kPa and a temperature of 600 K.

System 2 undergoes process 2 as follows:
Directly compressed in one step to a pressure 500 kPa and a temperature of 600 K

We "measure" the entropy of each system before and after the process. Which system had the biggest entropy change?

a. System 1
b. System 2
c. Entropy change is the same for both systems

Answers

Answer:

Entropy change is same for both systems because entropy is a state function i.e., it doesn't depend on the path by which the system arrived at it's present state (500 kPa, 600 K) from initial state (300 kPa, 350 K) .

Explanation:

Solid solution strengthening is achieved byGroup of answer choicesstrain hardening restricting the dislocation motion increasing the dislocation motion increasing the grain boundary g

Answers

Answer:

B. restricting the dislocation motion

Explanation:

Solid solution strengthening is a type of alloying that is carried out by the addition of the atoms of the element used for the alloying to the crystallized lattice structure of the base metal, which the metal that would be strengthened. The purpose of this act is to increase the strength of metals. It actually works by impeding or restricting the motion in the crystal lattice structure of metals thus making them more difficult to deform.

The solute atoms used for strengthening could be interstitial or substitutional. The interstitial solute atoms work by moving in between the space in the atoms of the base metal while the substitutional solute atoms make a replacement with the solvent atoms in the base metal.

A 1.7 cm thick bar of soap is floating in water, with 1.1 cm of the bar underwater. Bath oil with a density of 890.0 kg/m{eq}^3 {/eq} is added and floats on top of the water. How high on the side of the bar will the oil reach when the soap is floating in only the oil?

Answers

Answer:

The height of the oil on the side of the bar when the soap is floating in only the oil is 1.236 cm

Explanation:

The water level on the bar soap = 1.1 m mark

Therefore, the proportion of the bar soap that is under the water is given by the relation;

Volume of bar soap = LW1.7

Volume under water = LW1.1

Volume floating = LW0.6

The relative density of the bar soap = Density of bar soap/(Density of water)

= m/LW1.7/(m/LW1.1) = 1.1/1.7

Given that the oil density = 890 kg/m³

Relative density of the oil to water = Density of the oil/(Density of water)

Relative density of the oil to water = 890/1000 = 0.89

Therefore, relative density of the bar soap to the relative density of the oil = (1.1/1.7)/0.89

Relative density of the bar soap to the oil = (1.1/0.89/1.7) = 1.236/1.7

Given that the relative density of the bar soap to the oil = Density of bar soap/(Density of oil) = m/LW1.7/(m/LWX) = X/1.7 = 1.236/1.7

Where:

X  = The height of the oil on the side of the bar when the soap is floating in only the oil

Therefore;

X = 1.236 cm.

If the contact surface between the 20-kg block and the ground is smooth, determine the power of force F when t = 4 s. Initially, the block is at rest

Answers

Answer:

115.2 W

Explanation:

The computation is shown below:

As we know that

Power = F . v

[tex]F_H = F cos \theta[/tex]

[tex]F_H = 30 \frac{4}{5}[/tex]

[tex]F_H = 24N[/tex]

Now we solve for V

[tex]V = V_0 + at[/tex]            a = 24N ÷ 20Kg

But V_0 = 0          a = 1.2 m/s^2

F_H = ma             V = 0 + (1.2) (4)

a = F_H ÷ m        V = 4.8 m/s

Therefore

Power = F_Hv

= (24) (4.8)

= 115.2 W

By applying the above formuals we can get the power

Commutation is the process of converting the ac voltages and currents in the rotor of a dc machine to dc voltages and currents at its terminals. True False

Answers

Answer:

false

Explanation:

the changing of a prisoner sentence or another penalty to another less severe

The temperature of water is 45 what does the measurement represent

Answers

Answer:

degree of hotness of coldness of a substance

Anytime scaffolds are assembled or __________, a competent person must oversee the operation.

a. Drawn
b. Disassembled
c. Thought
d. Made

Answers

B because of health and safety regulations

When scaffolds are now being construct or deconstruct, a competent person must supervise the work and train everybody who'll be assisting, and the further discussion can be defined as follows:

The competent person is also responsible for proposing whether fall protection is required for each scaffold erected. In constructing a scaffold, there are specific criteria for the ground the scaffold is constructed. On the products and components used to build the scaffold, its height in relation to the foundation. It's platform's design, and whether or not high efficiency is needed to supervise the installation.

Therefore, the final answer is "Option B".

Learn more:

brainly.com/question/16049673

Compute the volume percent of graphite, VGr, in a 3.2 wt% C cast iron, assuming that all the carbon exists as the graphite phase. Assume densities of 7.9 and 2.3 g/cm3 for ferrite and graphite, respectively.

Answers

Answer:

The volume percentage of graphite is 10.197 per cent.

Explanation:

The volume percent of graphite is the ratio of the volume occupied by the graphite phase to the volume occupied by the graphite and ferrite phases. The weight percent in the cast iron is 3.2 wt% (graphite) and 96.8 wt% (ferrite). The volume percentage of graphite is:

[tex]\%V_{gr} = \frac{V_{gr}}{V_{gr}+V_{fe}} \times 100\,\%[/tex]

Where:

[tex]V_{gr}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

[tex]V_{fe}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

The expression is expanded by using the definition of density and subsequently simplified:

[tex]\%V_{gr} = \frac{\frac{m_{gr}}{\rho_{gr}} }{\frac{m_{gr}}{\rho_{gr}}+\frac{m_{fe}}{\rho_{fe}}}\times 100\,\%[/tex]

Where:

[tex]m_{fe}[/tex], [tex]m_{gr}[/tex] - Masses of the ferrite and graphite phases, measured in grams.

[tex]\rho_{fe}, \rho_{gr}[/tex] - Densities of the ferrite and graphite phases, measured in grams per cubic centimeter.

[tex]\%V_{gr} = \frac{1}{1+\frac{\frac{m_{fe}}{\rho_{fe}} }{\frac{m_{gr}}{\rho_{gr}} } }\times 100\,\%[/tex]

[tex]\%V_{gr} = \frac{1}{1 + \left(\frac{\rho_{gr}}{\rho_{fe}} \right)\cdot\left(\frac{m_{fe}}{m_{gr}} \right)} \times 100\,\%[/tex]

If [tex]\rho_{gr} = 2.3\,\frac{g}{cm^{3}}[/tex], [tex]\rho_{fe} = 7.9\,\frac{g}{cm^{3}}[/tex], [tex]m_{gr} = 3.2\,g[/tex] and [tex]m_{fe} = 96.8\,g[/tex], the volume percentage of graphite is:

[tex]\%V_{gr} = \frac{1}{1+\left(\frac{2.3\,\frac{g}{cm^{3}} }{7.9\,\frac{g}{cm^{3}} } \right)\cdot \left(\frac{96.8\,g}{3.2\,g} \right)} \times 100\,\%[/tex]

[tex]\%V_{gr} = 10.197\,\%V[/tex]

The volume percentage of graphite is 10.197 per cent.

Following are the solution to the given points:

[tex]\to C_{Gr} = 100\\\\ \to C_{\alpha}= 0[/tex]From [tex]Fe-F_{\frac{e}{3}} c[/tex] diagram.  

[tex]\to W_{\alpha} =\frac{C_{Gr}-C_{o}}{C_{Gr}-C_{\alpha}}[/tex]

           [tex]= \frac{100-3.6}{100-0} \\\\= \frac{100-3.6}{100} \\\\= \frac{96.4}{100} \\\\=0.964[/tex]

Calculating the weight fraction of graphite:  

[tex]\to W_{Gr}=\frac{C_0 - c_d}{C_{Gr} -c_d}[/tex]

            [tex]= \frac{3.6-0}{100-0} \\\\ = \frac{3.6}{100} \\\\= 0.036[/tex]

Calculating the volume percent of graphite:

[tex]\to V_{Gr}=\frac{\frac{W_{Gr}}{P_{Gr}}}{\frac{w_{\alpha}}{P_{\alpha}}+ \frac{W_{Gr}}{P_{Gr}}}[/tex]

           [tex]=\frac{\frac{0.036}{2.3}}{\frac{0.964}{7.9}+\frac{0.036}{2.3}}\\\\=0.11368 \times 100\%\\\\=11.368\%[/tex]

Therefore, the final answer is "0.964, 0.036, and 11.368%"

Learn more Graphite:

brainly.com/question/4770832

When the value of the output cannot be determined even if the value of the controllable input is known, the model is:_________

a. analog.
b. digital.
c. stochastic.
d. deterministic.

Answers

Answer:

c. stochastic.

Explanation:

A stochastic model is a tool in statistics, used to estimate the probability distributions of intended outcomes by the allowance of random variation in any number of the inputs over time. For a stochastic model, Inputs to a quantitative model are uncertain, and the value of the output from a stochastic model cannot be easily determined, even if the value of the input that can be determined is known. The distributions of the resulting outcomes of a stochastic model is usually due to the large number of simulations involved, and it is widely used as a statistical tool in the life sciences.

Identify the advantages of using 6 tube passes instead of just 2 of the same diameter in shell-and-tube heat exchanger.What are the advantages and disadvantages of using 6 tube passes instead of just 2 of the same diameter?

Answers

Answer:

Please check explanation for answer

Explanation:

Here, we are concerned with stating the advantages and disadvantages  of using a 6 tube passes instead of a 2 tube passes of the same diameter:

Advantages

* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface

* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too

            Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.

Disadvantages

* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.

* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of  manufacturing costs

The column is constructed from high-strength concrete and eight A992 steel reinforcing bars. If the column is subjected to an axial force of 200 kip.
a) Determine the average normal stress in the concrete and in each bar. Each bar has a diameter of 1 in.
b) Determine the required diameter of each bar so that 60% of the axial force is carried by concrete.

Answers

Answer:

d= 2.80inch

Explanation:

Given:

Axial force= 30kip

d= 1inch

CHECK THE ATTACHMENT FOR DETAILED EXPLANATION

A) The average normal stress in the concrete and in each bar are; σ_st = 15.52 kpi ; σ_con = 2.25 kpi

B) The required diameter of each bar so that 60% of the axial force is carried by concrete is; 0.94 inches

Concrete Column Design

We are told that;

Column has eight A992 steel reinforcing bars.

Column is subjected to an axial force of 200 kip.

A) Diameter of each bar is 1 inch.

Using equations of equilibrium, we have;

∑fy = 0;

8P_st + P_con = 200      ------(eq 1)

Using compatibility concept, we know from the image attached that;

δ_st = δ_con

where δ_st is change in length of steel and δ_con is change in length of concrete.

Thus;

δ_st = (P_st * L)/(A_st * E_st)

where;

P_st is tensile force of steel

L is length of steel = 3 ft = 36 inches

A_st is area of steel = π/4 * 1² = 0.7854 in²

E_st is young's modulus of steel = 29000 ksi

Similarly;

δ_con = (P_con * L)/(A_con * E_con)

where;

P_con is tensile force of concrete

L is length of concrete = 3 ft = 36 inches

E_con is young's modulus of concrete = 4200 ksi

A_con is area of concrete with diameter of 8 inches = (π/4 * 8²) - 6(π/4 * 1²) = 45.5531 in²

Thus;

From δ_st = δ_con;

(P_st * 36)/(0.7854 * 29000) = (P_con * 36)/(45.5531 * 4200)

Solving this gives;

P_st = 0.119P_con    -----(eq 2)

Put 0.119P_con for P_st in eq 1 to get;

8(0.119P_con) + P_con = 200  

1.952P_con = 200

P_con = 102.459 kip

Thus; P_st = 12.193 kip

Thus, average normal stress is;

Steel; σ_st = P_st/A_st

σ_st = 12.193/0.7854

σ_st = 15.52 kpi

Concrete; σ_con = P_con/A_con

σ_con = 102.459/45.5531

σ_con = 2.25 kpi

B) Since 60% of the axial force is carried by the concrete. Then it means that 40% will be carried by the steel.

Thus;

P_con = 60% * 200 = 120 kip

P_st = 40% * 200 = 80 kip

Using compatibility again;

δ_st = δ_con

Thus;

(P_st * L)/(A_st * E_st) = (P_con * L)/(A_con * E_con)

6(π/4 * d²)) = (80 * ((π/4 * 8²) - 6(π/4 * d²)) * 4200)/(120 * 29000)

⇒ 4.712d² = 0.09655(50.2655 - 4.712d²)

⇒ 4.712d²/0.09655 = 50.2655 - 4.712d²

⇒ 48.8037d² = 50.2655 - 4.712d²

Solving this gives;

d = 0.94 inches

Read more about concrete columns at; https://brainly.com/question/25329636

The first choice for how to reduce or eliminate a hazard is: a) Engineering controls b) Workplace controls c) Personal protective equipment d) Administrative controls

Answers

Answer:

The correct answer would be a) Engineering Controls.

Explanation:

If the controls are handled correctly, you can reduce and eliminate hazards so no one gets hurt. Engineering controls are absolutely necessary to prevent hazards.

Hope this helped! :)

Personal  protective equipment (PPE) is appropriate for controlling hazards

PPE are used for exposure to hazards when safe work practices and other forms of administrative controls cannot provide sufficient additional protection, a supplementary method of control is the use of protective clothing or equipment. PPE may also be appropriate for controlling hazards  while engineering and work practice controls are being installed.

Find out more on Personal  protective equipment at: https://brainly.com/question/13720623

For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _______ and using the Maximum Shear Stress Theory the material will __________
a. fail / not fail
b. fail /fail
c. not fail/fail
d. not fail/not fail

Answers

Answer:

Option A - fail/ not fail

Explanation:

For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _fail______ and using the Maximum Shear Stress Theory the material will ___not fail_______

For a fluid flowing through a pipe assuming that pressure drop per unit length of pipe (P/L) depends on the diameter of the pipe , the velocity of fluid, the density of fluid and the viscosity of the fluid. Show that = ∅ ൬ ൰

Answers

Answer:

Explanation:

La vaca

El pato

Consider a double-pipe counter-flow heat exchanger. In order to enhance its heat transfer, the length of the heat exchanger is doubled. Will the effectiveness of the exchanger double?

Answers

Answer:

effectiveness of the heat exchanger will not be double when the length of the heat exchanger is doubled.

Because effectiveness depends on NTU and not necessarily the length of the heat exchanger

The effectiveness of a heat exchanger is defined as the ratio of the maximum possible heat transfer rate to the actual heat transfer rate.

a. True
b. False

Answers

Answer:

False

Explanation:

Because

The effectiveness (ϵ) of a heat exchanger is defined as the ratio of the actual heat transfer to the maximum possible heat transfer.

A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 mL of the base. Assuming complete neutralization of the acid,
1) What was the normality of the acid solution?
2) What was the molarity of the acid solution?

Answers

Answer:

a. 0.4544 N

b. [tex]5.112 \times 10^{-5 M}[/tex]

Explanation:

For computing the normality and molarity of the acid solution first we need to do the following calculations

The balanced reaction

[tex]H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O[/tex]

[tex]NaOH\ Mass = Normality \times equivalent\ weight \times\ volume[/tex]

[tex]= 0.3200 \times 40 g \times 21.30 mL \times 1L/1000mL[/tex]

= 0.27264 g

[tex]NaOH\ mass = \frac{mass}{molecular\ weight}[/tex]

[tex]= \frac{0.27264\ g}{40g/mol}[/tex]

= 0.006816 mol

Now

Moles of [tex]H_2SO_4[/tex] needed  is

[tex]= \frac{0.006816}{2}[/tex]

= 0.003408 mol

[tex]Mass\ of\ H_2SO_4 = moles \times molecular\ weight[/tex]

[tex]= 0.003408\ mol \times 98g/mol[/tex]

= 0.333984 g

Now based on the above calculation

a. Normality of acid is

[tex]= \frac{acid\ mass}{equivalent\ weight \times volume}[/tex]

[tex]= \frac{0.333984 g}{49 \times 0.015}[/tex]

= 0.4544 N

b. And, the acid solution molarity is

[tex]= \frac{moles}{Volume}[/tex]

[tex]= \frac{0.003408 mol}{15\ mL \times 1L/1000\ mL}[/tex]

= 0.00005112

=[tex]5.112 \times 10^{-5 M}[/tex]

We simply applied the above formulas

The volume of the 0.3200 M, NaOH required to neutralize the H₂SO₄, is

21.30 mL, which gives the following acid solution approximate values;

1) Normality of the acid solution is 0.4544 N

2) The molarity of the acid is 0.2272

How can the normality, molarity of the solution be found?

Molarity of the NaOH = 0.3200 M

Volume of NaOH required = 21.30 mL

1) The normality of the acid solution is found as follows;

The chemical reaction is presented as follows;

H₂SO₄(aq) + 2NaOH (aq) → Na₂SO₄ (aq) + H₂O

Number of moles of NaOH in the reaction is found as follows;

[tex]n = \dfrac{21.30}{1,000} \times 0.3200 \, M = \mathbf{0.006816 \, M}[/tex]

Therefore;

The number of moles of H₂SO₄ = 0.006816 M ÷ 2 = 0.003408 M

[tex]Normality = \mathbf{ \dfrac{Mass \ of \, Acid \ in \ reaction}{Equivalent \ mass \times Volume \ of \ soltute}}[/tex]

Which gives;

[tex]Normality = \dfrac{ 98 \times 0.003408 }{49 \times 0.015} = \mathbf{0.4544}[/tex]

The normality of the acid solution, H₂SO₄(aq), N ≈ 0.4544

2) The molarity is found as follows;

[tex]Molarity = \dfrac{0.003408 \, moles}{0.015 \, L} = \mathbf{0.2272 \, M}[/tex]

The molarity of the acid solution is 0.2272 M

Learn more about the normality and the molarity of a solution here:

https://brainly.com/question/6532653

https://brainly.com/question/14112872

which solution causes cells to shrink

Answers

Answer: Hypertonic

Explain: a hypertonic solution has increased solute and a net movement of water outside causing the cell to shrink. A hypotonic has decreased solute concentration, and a net movement of water inside the cell, causing swelling or breakage.

It is to be noted that a hypertonic solution have the capacity to make cells to shrink.

What happens in a hypertonic solution?

In a hypertonic solution, the concentration of solutes (e.g., salts, sugars) outside the cell is higher than inside the cell.

As a result, water moves out of the cell through osmosis, trying to equalize the concentration, causing the cell to lose water and shrink.

This process is commonly observed in biology when examining the effect of different solutions on cells, such as in red blood cells or plant cells.

Learn more about hypertonic solution at:

https://brainly.com/question/4237735

#SPJ6

Aggregate blend composed of 65% coarse aggregate (SG 2.701), 35% fine aggregate (SG 2.625)
Compacted specimen weight in air = 1257.9 g, submerged weight = 740.0 g, SSD weight = 1258.7 g
Compacted specimen contains 5.0% asphalt by total weight of the mix with Gb = 1.030
Theoretical maximum specific gravity = 2.511
Bulk specific gravity of the aggregate __________
Bulk specific gravity of the compacted specimen__________
Percent stone __________
Effective specific gravity of the stone__________
Percent voids in total mix__________
Percent voids in mineral aggregate__________
Percent voids filled with asphalt__________

Answers

Answer:

2.6742.42891.695%2.5923.305%11.786%78.1%

Explanation:

coarse aggregate (ca) = 65%,   SG = 2.701

Fine aggregate = 35%,    SG = 2.625

A) Bulk specific gravity of aggregate

   = [tex]\frac{65*2.701 + 35*2.625}{100} = 2.674[/tex]

B) Wm = 1257.9 g { weight in air }

    Ww = 740 g { submerged weight }

   therefore Bulk specific gravity of compacted specimen

   = [tex]\frac{Wm}{Wm-Ww}[/tex]  =  [tex]\frac{1257.9}{1257.9 - 740 }[/tex]  =  2.428

   Theoretical specific gravity = 2.511

Percent stone

= 100 - asphalt content - Vv

= 100 - 5 - 3.305 = 91.695%

c) percent of void

= [tex]\frac{9.511-2.428}{2.511} * 100[/tex]    Vv = 3.305%

d) let effective specific gravity in stone

     = [tex]\frac{91.695*unstone+ 5 *1.030 }{96.695} = 2.511[/tex]

    = Instone = 2.592 effective specific gravity of stone

e) Vv = 3.305%

f ) volume filled with asphalt (Vb) = [tex]\frac{\frac{Wb}{lnb} }{\frac{Wm}{Inm} } * 100[/tex]

           Vb = [tex]\frac{5 * 2.428}{1.030 * 100} * 100[/tex]

          Vb = 11.786 %

Volume of mineral aggregate = Vb + Vv

              VMA = 11.786 + 3.305 = 15.091

g) percent void filled with alphalt

     = Vb / VMA * 100

    VMA = 11.786 + 3.305 = 15.091

   percent void filled with alphalt

     = Vb / VMA * 100 = (11.786 / 15.091) * 100 = 78.1%

 

The closed feedwater heater of a regenerative Rankine cycle is to heat 7000 kPa feedwater from 2608C to a saturated liquid. The turbine supplies bleed steam at 6000 kPa and 3258C to this unit. This steam is condensed to a saturated liquid before entering the pump. Calculate the amount of bleed steam required to heat 1 kg of feedwater in this unit.

Answers

Answer:

the amount of bleed steam required to heat 1 kg of feedwater in this unit is 0.078 kg/s

Explanation:

Given that:

Pressure of the feed water = 7000 kPa

Temperature of the closed feedwater heater = 260 ° C

Pressure of of the turbine = 6000 kPa

Temperature of the turbine = 325 ° C

The  objective is to calculate the amount of bleed steam required to heat 1 kg of feedwater in this unit.

From the table A-4 of saturated water temperature table at temperature  260° C at state 1 ;

Enthalpies:

[tex]h_1 = h_f = 1134.8 \ kJ/kg[/tex]

From table A-6 superheated water at state 3 ; the value of the enthalpy relating to the pressure of the turbine at 6000 kPa and temperature of 325° C  is obtained by the interpolating the temperature between 300 ° C and 350 ° C

At 300° C; enthalpy = 2885.6 kJ/kg

At 325° C. enthalpy = 3043.9 kJ/kg

Thus;

[tex]\dfrac{325-300}{350-300}=\dfrac{h_{325^0}-{h_{300^0}}}{{h_{350^0}}- {h_{300^0}}}[/tex]

[tex]\dfrac{325-300}{350-300}=\dfrac{h_{325^0}-2885.6}{3043.9-2885.6 }}[/tex]

[tex]\dfrac{25}{50}=\dfrac{h_{325^0}-2885.6}{3043.9-2885.6 }}[/tex]

[tex]h_{325^0} = 2885.6 + \dfrac{25}{50}({3043.9-2885.6 )[/tex]

[tex]h_{325^0} = 2885.6 + 0.5({3043.9-2885.6 )[/tex]

[tex]h_{325^0} =2964.75 \ kJ/kg[/tex]

At pressure  of 7000 kPa at state 6; we obtain the enthalpies corresponding to the pressure at table A-5 of the saturated water pressure tables.

[tex]h_6 = h_f = 1267.5 \ kJ/kg[/tex]

From state 4 ;we obtain the specific volume corresponding to the pressure of 6000 kPa at table A-5 of the saturated water pressure tables.

[tex]v_4 = v_f = 0.001319\ m^3 /kg[/tex]

However; the specific work pump can be determined by using the formula;

[tex]W_p = v_4 (P_5-P_4)[/tex]

where;

[tex]P_4[/tex] = pressure at state 4

[tex]P_5[/tex] = pressure at state 5

[tex]W_p = 0.001319 (7000-6000)[/tex]

[tex]W_p = 0.001319 (1000)[/tex]

[tex]W_p =1.319 \ kJ/kg[/tex]

Using the energy balance equation of the closed feedwater heater to calculate the amount of bleed steam required to heat 1 kg of feed water ; we have:

[tex]E_{in} = E_{out} \\ \\ m_1h_1 +m_3h_3 + m_3W_p = (m_1+m_3)h_6[/tex]

where;

[tex]m_1 = 1 \ kg[/tex]

Replacing our other value as derived above into the energy balance equation ; we have:

[tex]1 \times 1134.8 +m_3 \times 2964.75 + m_3 \times 1.319 = (1+m_3)\times 1267.5[/tex]

[tex]1134.8 + 2966.069 \ m_3 = 1267.5 + 1267.5m_3[/tex]

Collect like terms

[tex]2966.069 \ m_3- 1267.5m_3 = 1267.5-1134.8[/tex]

[tex]1698.569 \ m_3 =132.7[/tex]

[tex]\ m_3 = \dfrac{132.7}{1698.569}[/tex]

[tex]\mathbf{ m_3 = 0.078 \ kg/s}[/tex]

Hence; the amount of bleed steam required to heat 1 kg of feedwater in this unit is 0.078 kg/s

An example of a transient analysis involving the 1st law of thermodynamics and conservation of mass is the filling of a compressed air tank. Assume that an air tank is being filled using a compressor to a pressure of 5 atm, and that it is being fed with air at a temperature of 25°C and 1 atm pressure. The compression process is adiabatic. Will the temperature of the air in the tank when it is done being filled i.e. once the pressure in the tank reaches 5 atm), be greater than, equal to, or less that the temperature of the 25°C air feeding the compressor?
A. Greater than 25°C
B. Unable to determine
C. Same as 25°C
D. Less than 25°C

Answers

Answer:

The temperature will be greater than 25°C

Explanation:

In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.

mathematically

Change in the internal energy of a system ΔU = ΔQ + ΔW

in an adiabatic process, ΔQ = 0

therefore

ΔU = ΔW

where ΔQ is the change in heat into the system

ΔW is the work done by or done on the system

when work is done on the system, it is conventionally negative, and vice versa.

also W = pΔv

where p is the pressure, and

Δv = change in volume of the system.

In this case, work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C

Air enters the first compressor stage of a cold-air standard Brayton cycle with regeneration and intercooling at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The overall compressor pressure ratio is 10, and the pressure ratios are the same across each compressor stage. The temperature at the inlet to the second compressor stage is 300 K. The turbine inlet temperature is 1400 K. The compressor stages and turbine each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k = 1.4, calculate:
a. the thermal efficiency of the cycle
b. the back work ratio
c. the net power developed, in kW
d. the rates of exergy destruction in each compressor stage and the turbine stage as well as the regenerator, in kW, for T 0 = 300 K.

Answers

Answer:

a. [tex]\eta _{th}[/tex] = 77.65%

b. bwr = 6.5%

c. 3538.986 kW

d. -163.169 kJ

Explanation:

a. The given property  are;

P₂/P₁ = 10, P₂ = 10 * 100 kPa = 1000 kPa

p₄/p₁ = 10

P₂/P₁ = p₄/p₃ = √10

p₂ = 100·√10

[tex]T_{2s}[/tex] = T₁×(√10)^(0.4/1.4) = 300 × (√10)^(0.4/1.4) = 416.85 K

T₂ = T₁ + ([tex]T_{2s}[/tex] - T₁)/[tex]\eta _c[/tex] = 300 + (416.85 - 300)/0.8 = 446.0625 K

p₄ = 10×p₁ = 10×100 = 1000 kPa

p₄/p₃ = √10 =

p₃ = 100·√10

T₃ = 300 K

T₃/[tex]T_{4s}[/tex] = (P₂/P₁)^((k - 1)/k) = (√10)^(0.4/1.4)

[tex]T_{4s}[/tex] = T₃/((√10)^(0.4/1.4) ) = 300/((√10)^(0.4/1.4)) = 215.905 K

T₄ = T₃ + ([tex]T_{4s}[/tex] - T₃)/[tex]\eta _c[/tex] = 300 + (215.905- 300)/0.8 = 194.881 K

The efficiency = 1 - (T₄ - T₁)/(T₃ - T₂) = 1 - (194.881 -300)/(300 -446.0625 ) = 0.28

T₄ = 446.0625 K

T₆ = 1400 K

[tex]T_{7s}[/tex]/T₆ = (1/√10)^(0.4/1.4)

[tex]T_{7s}[/tex] = 1400×(1/√10)^(0.4/1.4)  = 1007.6 K

T₇ = T₆ - [tex]\eta _t[/tex](T₆ - [tex]T_{7s}[/tex]) = 1400 - 0.8*(1400 - 1007.6) = 1086.08 K

T₈ = 1400 K

T₉ = 1086.08 K

T₅ = T₄ + [tex]\epsilon _{regen}[/tex](T₉ - T₄) = 446.0625 +0.8*(1086.08 - 446.0625) = 958.0765 K

[tex]\eta _{th}[/tex] =(((T₆ - T₇) + (T₈ - T₉)) -((T₂ - T₁) + (T₄ - T₃)))/((T₆ - T₅) + (T₈ - T₇))

(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300)))/((1400 -958.0765 ) + (1400 -1086.08 )) = 0.7765

[tex]\eta _{th}[/tex] = 77.65%

b. Back work ratio, bwr = [tex]bwr = \dfrac{w_{c,in}}{w_{t,out}}[/tex]

((446.0625 - 300)+(194.881 - 300))/((1400 - 1086.08) + (1400 -1086.08 ))

40.9435/627.84 = 6.5%

c. [tex]w_{net, out} = c_p[(T_6 -T_7) + (T_8 - T_9)] - [(T_2 - T_1) + (T_4 -T_3)][/tex]

Power developed is given by the relation;

[tex]\dot m \cdot w_{net, out}[/tex]

[tex]\dot m \cdot w_{net, out}[/tex]= 6*1.005*(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300))) = 3538.986 kW

d. Exergy destruction = 6*(1.005*(300-446.0625 ) - 300*1.005*(-0.3966766)

-163.169 kJ

Who is the best musician in Nigeria

Answers

Answer:

Wizkid

Explanation:

wizkid is the best musician in Nigeria

Explanation:

I have no clue??????????

2. An aluminum (E = 70 GPa) tube of length 8-m is used as a simply supported column carrying a 1.2 kN axial load. If the outer diameter of the tube is 50 mm, compute the inner diameter that would provide a safety factor of 2 on buckling.

Answers

Answer:

1211 N.

Explanation:

Okay, we are given the following data or parameters or information in the question above;

=> "aluminum (E = 70 GPa) tube of length 8-m.

=> "The aluminum is used as a simply supported column carrying a 1.2 kN axial load"

The axial load to provide a factor of safety of 2 against buckling =[ (22/7)^2 × 224348 × 1000 × 70] ÷ (8 × 1000)^2 × 2.

The axial load to provide a factor of safety of 2 against buckling = 1211 N.

Calculate the camacitance-to-neutral in F/m and the admittance-to-neutral in S/km for the three-phase line in problem Neglect the effect of the earth plane.

Answers

Answer:

The answer is given below

Explanation:

A 60 Hz three-phase, three-wire overhead line has solid cylindrical conductors  arranged in the form of an equilateral triangle with 4 ft conductor spacing. Conductor  diameter is 0.5 in.

Given that:

The spacing between the conductors (D) = 4 ft

1 ft = 0.3048 m

D = 4 ft = 4 × 0.3048 m = 1.2192 m

The conductor diameter = 0.5 in

Radius of conductor (r) = 0.5/2 = 0.25 in = 0.00635 m

Frequency (f) = 60 Hz

The capacitance-to-neutral is given by:

[tex]C_n=\frac{2\pi \epsilon_0}{ln(\frac{D}{r} )} =\frac{2\pi *8.854*10^{-12}}{ln(1.2192/0.00635)}=1.058*10^{-11}\ F/m[/tex]

The admittance-to-neutral is given by:

[tex]Y_n=j2\pi fC_n=j*2\pi *60*1.058*10^{-11}*\frac{1000\ m}{1\ km}=j3.989*10^{-6}\ S/km[/tex]

. The job of applications engineer for which Maria was applying requires (a) excellent technical skills with respect to mechanical engineering, (b) a commitment to working in the area of pollution control, (c) the ability to deal well and confidently with customers who have engineering problems, (d) a willingness to travel worldwide, and (e) a very intelligent and well-balanced personality. List 10 questions you would ask when interviewing applicants for the job.

Answers

Answer:

Tell us about your self Are your confident that you are the right candidate for this positionwhy should i hire youDo you like working under supervisionHow do you like to work ( in a group or individually )What is your ultimate workplace goalwhat are your future plansWhat do you expect from the Organization when given the jobDo you like taking on critical problemsHow long can you work in this position

Explanation:

For a job of applications engineer which require excellent technical skills, commitment  to working , ability to deal well and confidently with customers a willingness to travel and very intelligent and well-balanced personality.

The ten questions you should ask Maria to determine if she is qualified for the job are :

Tell us about your self ( functions you have )Are your confident that you are the right candidate for this positionwhy should i hire youDo you like working under supervisionHow do you like to work ( in a group or individually )What is your ultimate workplace goalwhat are your future plansWhat do you expect from the Organization when given the jobDo you like taking on critical problemsHow long can you work in this position

Flank wear data were collected in a series of turning tests using a coated carbide tool on hardened alloy steel at a feed of 0.30 mm/rev and a depth of 4.0 mm. At a speed of 100 m/min, flank wear = 0.12 mm at 1 min, 0.27 mm at 5 min, 0.45 mm at 11 min, 0.58 mm at 15 min, 0.73 at 20 min, and 0.97 mm at 25 min. At a speed of 155 m/min, flank wear = 0.22 mm at 1 min, 0.47 mm at 5 min, 0.70 mm at 9 min, 0.80 mm at 11 min, and 0.99 mm at 13 min. The last value in each case is when final tool failure occurred.(a) On a single piece of linear graph paper, plot flank wear as a function of time for both speeds. You may use Excel to help yourself to plot the curve. Using 0.75 mm of flank wear as the criterion of tool failure, determine the tool lives for the two cutting speeds.(b) Calculate the values of n and C in the Taylor equation solving simultaneous equations.

Answers

Answer:

A) n =  0.6143, c ≈ 640m/min

B) n = 0.6143 , c = 637.53m/min

Explanation:

using the given data

A) A plot of flank wear as a function of time and also A plot for tool when

Flank wear is 0.75 and cutting edge speed is 100m/min, Time of cutting edge is said to be 20.4 min  also for cutting edge speed of 155m/min , time for cutting edge is 10 min

is attached below

calculate for the constant N from the second plot

note : the slope will be negative because cutting speed decreases as time of cutting increase

V1 = 100m/min , V2 = 155m/min,  T1 = 20.4 min, T2 = 10 min

= - N = [tex]\frac{In(V2) - In(V1)}{In(T2)-ln(T1)}[/tex]

therefore  - N = [tex]\frac{5.043 - 4.605}{2.302 -3.015}[/tex]

                       = - 0.6143

THEREFORE  ( N ) = 0.6143

Determine for the constant C from the second plot as well

note : C is the intercept on the cutting speed axis in 1 min tool life

connecting the two points with a line and extend it to touch the cutting speed axis and measure the value at that point

hence   C ≈ 640m/min

B) Calculate the values of  N and C in the Taylor equation solving simultaneous equations

using the above cutting speed and time of cutting values we can find the constant N via Taylor tool life equation

Taylor tool life equation = vT = C ------------- equation 1

cutting speed = v = 100m/min and 155m/min

tool life = T = 20.4 min and 10 min

also constant  n and c are obtained from the previous plot

back to taylor tool life equation = 100 * 20.4 = C

therefore C = (100)(20.4)^n  ---------------- equation 2

also using the second values of  v and T

taylor tool life equation = 155 * 10 = C

therefore C = ( 155 )(10)^n ----------------- equation 3

Equate equation 2 and equation 3 and solve simultaneously

(100)(20.4)^n = (155)(10)^n

To find N

take natural log of both sides of the equation

= In ((100)(20.4)^n) = In((155)(10)^n)

= In (100) + nIn(20.4) = In(155) + nIn(10)^n

= n(3.0155) - n (2.3026) = 5.043 - 4.605

= 0.7129 n = 0.438

therefore n = 0.6143

To find C

substitute 0.6143 for n in equation 2

C = (100)(20.4) ^ 0.6143

C = 637.53 m/min

Attached are the two plots for solution A

Other Questions
Pls help me thank youThe capacity of the container is 350 cm. 50 marbles with the radius of 0.54 cm are put into the container. Find the volume of water needed to fill up the container. [tex]use \: \pi = \frac{22}{7} [/tex] "It is very simple to be happy, but it is very difficult to be simple". Write a speech on the quote said by rabindranath tagore. What group of people formed the military basis of all early modern Islamic empires?A. The ArabiansB. The ChineseC. The GreeksD. The Turks When ______ is released, the subsequent receiving neuron ________ fire because that neurotransmitter is _______. Ill mark brainlist if correct! The binding energies of all nuclei are negative. true or false Where are the sensory receptors for sound? During the first year of Wilkinson Co.'s operations, all purchases were recorded as assets. Supplies in the amount of $28,800 were purchased. Actual year-end supplies amounted to $6,600. The adjusting entry for store supplies will Which statement about excerpts is true? An excerpt should start on a new line. An excerpt is not a quotation. An excerpt does not need to be cited. An excerpt should always be enclosed in quotation marks. Assess the effectiveness of using National Parks as a strategy to protect the taiga. Need this really ASAP as this is due TODAY! Thank you so much and will award brainliest answer. i have received your letter yesterday correct this sentence You overhear your assistant teacher telling one of the children that If they do not clean up they will not get any lunch. You have already told this teacher, two days ago, that food may not be used for discipline. What do you do now? How does the aggregate goods and services market differ from the regular (microeconomic) supply and demand market that was presented in module 2 Which one of the following will not be found in an egg cell human liver cell and an amoeba SOMEONE PLEASE HELP ME ASAP PLEASE!!! Your heart rate can be determined by counting the number of times your heart beats per minute. There are several places you can find your pulsethe rhythmic pressure wave of blood in the arteries. The radial pulse can be found by placing two fingers just below the wrist creases at the base of the thumb. Another common place to feel the pulse is the carotid artery in the neck. Place two fingers, index and middle, between the trachea and large neck muscle. Be sure to sit still without talking, and slowly move the fingers together until you can feel the blood flow. In this experiment, youre collecting data to determine how holding your breath affects your heart rate. Write a hypothesis stating whether your heart rate will increase, decrease, or stay the same after holding your breath for 30 seconds. Also, identify the independent and dependent variables. Hypothesis: _______ Independent variable: _______ Dependent variable: _______ What was the goal of Joseph Stalin's purges?O A. To overthrow the aristocrats who owned Soviet landB. To place all factories under government controlC. To build up resources for a war with GermanyD. To eliminate all people who threatened Stalin's power A bug splatters on the windshield of a moving car. Describe the 1. Forces 2. Impulses 3. Momentum changes 4. And accelerations of both the bug and the car . Kathy works for a pediatrician's office that is beginning the EHR implementation process. She has been asked to research the different systems available and general start-up cost. Create a list of functions the EHR should have specific to the practice's large pediatric office. What are the general start-up costs of EHR systems? What is one way people positively affect water resources?polluting from nonpoint sourcesincreasing farming and constructiondisposing of chemicals in waterlimiting use of acid and other pollutants