Answer:
{ 1,2}
Step-by-step explanation:
The ∩ means intersection, or what is in common for the two sets
The intersection of A and B is what is in the overlapping circles
The intersection of A and B is { 1,2}
For what value of x does 5^x-2 not equal zero?
a. all except 2
b. all except 0
c. all except -4
d. all except -2
e. all real numbers
Answer:
E: all real numbers
Step-by-step explanation:
Please help me with this problem! If anybody answers first in this, i will give brainliest to you! Be the first one to answer this then i will give out a brainliest award to you!
Are you sure your that person?
Answer:
32 remainder 2
Step-by-step explanation:
To divide 162 by 5, we simply do the following:
5 goes into 16 => 3
Multiply 5 by 3 => 3 × 5 = 15
Subtract 15 from 16 => 16 – 15 = 1
Put the 1 before 2 => 12
5 goes into 12 => 2
Multiply 5 by 2 => 5 × 2 = 10
Subtract 10 from 12 => 12 – 10 => 2
In summary,
162 divided by 5 => 32 remainder 2
Please see attached photo for further details.
Which statements are true regarding undefinable terms in geometry?
C. A line has one dimension, length.
E. A plane consists of an infinite set of lines.
11. How many kilometers is it from the main gate to Manatee Springs? (Hint: To convert from
yards to kilometers, multiply by 0.0009144). Round answer to the nearest hundredth kilometer.
Manatee Springs
Elephant
House
3,500 yds
4,200 yds
Train Depot
2,000 yds
Bird Sanctuary
Main Gate
(SHOW WORK)
Answer:
6 km
Step-by-step explanation:
Let us assume the following items
the Point at Train depot = T
The Point at Main gate = M
The Point at Bird sanctuary = B
The Point at Elephant house = E
The Point at manatee Springs = S
As we can see that there are two triangles namely TMB and TSE.
Mentioned that
MTB = ∠STE
∠TMB = ∠TSE
∠TBM = ∠TES.
According to the Angle-angle-angle (AAA similarity)
So, the triangles TMB and TSE are the same.
[tex]\frac{TM}{TS} = \frac{TB}{TE} \\\\ \frac{TM}{4,200} = \frac{2,000}{3,500}[/tex]
So, the TM is 2400 yds
Now the Distance between Main gate M and manatee Spring S is
MS = MT + TS
= 2,400 + 4200
= 6600 yds
Now the MS is
= 6600 × 0.0009144 km
= 6.035 km
≅ 6 km
The function f(t) = -6r+ 11 has the range {- 37. - 25. - 13, -1). Select the domain values from the list
1. 2. 3. 4. 5. 6. 7. 8. Justify your choices by explaining how you determined the domain values.
answer
-6r+-11=-37
-6r=-37+11
-6r=-48
r=8
The population of a city increase exponentially at a rate of x% every 5 years
In 1960 the population was 60100
In 2015 the population was 120150
Calculate the value of x
Answer:
1.1460277. Put in your decimal place given to you.
This is the percentage rate.
Step-by-step explanation:
f(x)=0=60100
55=120150
60100=a*b^0
120150/60100=60100/60100*b^5
b^5^(1/5)=5square root(120150/60100)=1.14860277
WILL GIVE BRAINLEIST!!!!!
Find the surface area of the right triangular prism shown below.
Answer:
144 units²
Step-by-step explanation:
Surface area of a traingular prism is given as:
Area = 2(B.A) + P*L
Where,
B.A = base area of the triangular prism = ½*b*h
b = base of the triangular base = 4 units
h = height of the triangular base = 3 units
Base Area (B.A) = ½*4*3 = 2*3 = 6 units²
P = Perimeter of triangular face = sum of all sides the triangle = 3 + 4 + 5 = 12 units
L = length or height of prism = 11 units
Plug in all values into the formula for surface area of triangular prism = 2(B.A) + P*L
[tex] Area = 2(6) + 12*11 [/tex]
[tex] = 12 + 132 [/tex]
[tex] Surface Area = 144 [/tex]
Surface area of the triangular prism = 144 units²
Romeo is using a common algorithm to find the product of 8,125 × 9. Drag the correct numbers to the problem to show the partial products and to complete the multiplication for Romeo.
Answer:
its harddd
Step-by-step explanation:
rightttttttt
NEED HELP ASAP I DONT GET THIS
Answer:
x = 60
Step-by-step explanation:
In a circle, the sum of the angles that meet at a point is 360 degrees. So now that we have the total, we can subtract all the given information in the picture. We have 84, 75, 68, and x + 73. Now let us set up and equation for this problem.
360 = 84 + 75 + 68 + x + 73
Now combine like terms.
360 = x + 300
Now subtract 300 on both sides.
x = 60
And this is the value of x.
Answer:
50 degrees
Step-by-step explanation:
84 + 75 + 68 = 227
227 - 360 = 133
133 - 73 = 50
The answer is 50 degrees.
The distance from Parrot Point Airport to the Ivy Cliffs is 178 miles at and angle of 7.1 degrees northeast. There is a wind blowing southeast at 30 miles per hour. You want to make this trip in 2 hours by flying straight there. At what speed* and heading should you fly? * Round the speed to the nearest tenth of a mile per hour and angle to the nearest tenth of a degree. Where north is 0 degrees and positive is clockwise.
Answer:
The speed is 74.0 miles per hour and the angle is 65.1° north-east
Step-by-step explanation:
We resolve the distance moved by the wind and plane into horizontal and vertical components. The direction moved horizontally by the plane is 178sin7.1 = 22 miles.
Since the wind is moving south east, it is at 45 south of east or a bearing of 135.
Since the wind speed is 30 mph and it takes 2 hours to complete the trip, the horizontal distance moved by the wind is vtcos135 = 30 × 2cos45 = 42.43 miles
Also, the vertical displacement moved by the wind is vtsin135 = -30 × 2 sin45 = -42.43 miles
The displacement moved vertically by the plane is 178cos7.1 = 176.64 miles
The total horizontal displacement of the plane is 22 miles + 42.43 miles = 62.43 miles
The total vertical displacement of the plane is 176.64 miles - 42.43 miles = 134.21 miles
The resultant displacement is thus d = √(62.43² + 134.21²) = 148.02 miles
The direction of this displacement is thus
Ф = tan⁻¹(total vertical displacement/total horizontal displacement)
= tan⁻¹(134.21/62.43)
= tan⁻¹(2.1498)
= 65.05°
= 65.1° to the nearest tenth degree.
The speed is thus v = distance/ time = 148.02 miles/ 2 hours = 74.01 mph ≅ 74 mph. Since the direction of the displacement is the direction of the velocity, the velocity is thus 74 miles per hour at 65.1° north-east.
So the speed is 74.0 miles per hour and the angle is 65.1° north-east
A penny is dropped from a height of 144 feet. Calculate the time between when the rock was dropped and when it landed. If we choose
"down" as positive and ignore air friction, the function is h(t) 16t2 - 144.
Answer:
3 seconds
Step-by-step explanation:
Given the function :
h(t) = 16t2 - 144.
h = height = 144 and t = time after t seconds the ball penny was dropped.
When the penny lands, h = 0
Therefore, our function becomes ;
16t2 - 144 = 0
The we can solve for t
16t^2 - 144 = 0
16t^2 = 144
Divide both sides by 16
(16t^2 / 16) = 144 / 16
t^2 = 9
Take the square root of both sides
t = 3
Therefore, the time between when the rock was dropped and when it landed is 3seconds
Answer:
t = 3 seconds
Step-by-step explanation:
WILL MARK BRAINLIEST!!!!!!!! :))))))))))))))))
Answer:
(A) No solution
(B) One solution
(C) One solution
(D) One solution
(E) No solution
Please tell me if this is incorrect. I hope this helps!
The points (- 1, – 2), (1, 0), (- 1, 2), (- 3, 0) forms a quadrilateral of type:
Answer:
A square.
Step-by-step explanation:
What is the result of subtracting the second equation from the first? \begin{aligned} -2x+7y &= 10 \\\\ 3x+7y &= 2 \end{aligned} −2x+7y=10 3x+7y=2
Answer:
-5x = 8
Step-by-step explanation:
The result is shown here. The y-terms cancel.
[tex]\begin{array}{rccc}& -2x+7y &= &10 \\-&(\ \,3x+7y &= &2)\\\cline{1-4}&-5x+0y&=&8 \end{array}[/tex]
The simplified result is ...
-5x = 8
Answer:
The result is that 5x = -8
Step-by-step explanation:
Here, we want to subtract 3x + 7y = 2 from -2x + 7y = 10
Mathematically that would be;
(-2x+7y)-(3x+7y) = 10-2
-2x + 7y -3x -7y = 8
-2x -3x + 0 = 8
-5x = 8 or 5x = -8
Adding Rational Numbers Using Properties of Operations we can
add integers in any order using the
and
properties of addition.
Consider the integers a, b, c, and -d. We can add this group of
integers in several different ways:
a + (-b) + C+ (-0)
a+c+ (-6) + (-d)
(a + c) + [(-b) + (-d)]
The sum of the integers remains the
regardless of
their arrangement. We can use the commutative and associative
properties to break up numbers by
to find the sum of two or more rational numbers.
Answer:
First blank: Commutative
Second blank: Associative
Third blank: Same
Fourth blank and fifth blank: Rearranging them? (Not entirely sure)
Hope this helps :)
The Department of Education would like to test the hypothesis that the average debt load of graduating students with a bachelor's degree is equal to $17,600. A random sample of 28 students had an average debt load of $18,800. It is believed that the population standard deviation for student debt load is $4800. The α is set to 0.05. The confidence interval for this hypothesis test would be ________.
Answer:
A 95% confidence interval for the population average debt load of graduating students with a bachelor's degree is [$17,022.05, $20,577.94].
Step-by-step explanation:
We are given that a random sample of 28 students had an average debt load of $18,800. It is believed that the population standard deviation for student debt load is $4800. The α is set to 0.05.
Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample average debt load = $18,800
[tex]\sigma[/tex] = population standard deviation = $4,800
n = sample of students = 28
[tex]\mu[/tex] = population average debt load
Here for constructing a 95% confidence interval we have used a One-sample z-test statistics because we know about population standard deviation.
So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 5% level of
significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]
= [ [tex]\$18,800-1.96 \times {\frac{\$4,800}{\sqrt{28} } }[/tex] , [tex]\$18,800+1.96 \times {\frac{\$4,800}{\sqrt{28} } }[/tex] ]
= [$17,022.05, $20,577.94]
Therefore, a 95% confidence interval for the population average debt load of graduating students with a bachelor's degree is [$17,022.05, $20,577.94].
what is the product of (-a+3)(a+4)?
[tex](-a+3)(a+4)=-a^2-a+12[/tex].
Hope this helps.
Answer:
-a²-a+12
Step-by-step explanation:
-a²+3a-4a+12
-a²-a+12
what is the domain of the function represented by the graph.?
Answer:
all real numbers
Step-by-step explanation:
There is nothing on the graph to indicate the function is undefined for any values of x. The domain is all real numbers.
Answer:
Domain is all real numbers.
Step-by-step explanation:
The domain of a quadratic function in standard form is always all real numbers, meaning you can substitute any real number for x.
Is the following relation a function?
Answer:
No, Given relation is not a function.Explanation:
We know that , if any vertical line cuts the given graph of relation at exactly one point, then the relation can be called as function.
From Given graph , we find that the vertical line through any point on x-axis greater than zero (ex : X = 5) cuts the graph at more than one point.
Hence, Given relation is not a function.
Hope this helps...
Good luck on your assignment...
Help me with this please I have no idea what to do. It says solve for a if the line through the two given points has the given slope a, 3) and (-3, - 1), m = -2
Answer:
a=-5
Step-by-step explanation:
When you do this every time the slope will go down 2 and over 1 which is rise over run or slope. You can see the y coordinates go down 4 points and every time is should go down 2 so you will know that it would have gone down 2 times so a+2 should equal -3 so if we subtract 2 from both sides we would get a=-5 and that is our answer.
Answer:
a = - 5
Step-by-step explanation:
Calculate the slope m using the slope formula and equate to - 2
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = (- 3, - 1) and (x₂, y₂ ) = (a, 3)
m = [tex]\frac{3+1}{a+3}[/tex] = [tex]\frac{4}{a+3}[/tex] = - 2 ( multiply both sides by a + 3 )
- 2(a + 3) = 4 ( divide both sides by - 2 )
a + 3 = - 2 ( subtract 3 from both sides )
a = - 5
Which expression is equivalent to 10 to the 4 power? A.) 10 times 10 times 10 times 10 B.) 40 C.) 4 times 4 times 4 times 4 times 4 times 4 times 4 times 4 times 4 times 4 D.) 4,444,444,444
Answer:
A
Step-by-step explanation:
Here in this question, we want to select which of the options particularly represents what was given in the question.
Mathematically 10^4 means that we are raising 10 into a continued exponential raising up to 4 times.
So 10^4 is pronounced as the first option in the question.
10 raised to power 10 , raised to power 10 etc
Our school's girls volleyball team has 14 players, including a set of 3 triplets: Alicia, Amanda, and Anna. In how many ways can we choose 6 starters if exactly two of the triplets are in the starting lineup?
Answer:
990 ways to choose 6 starters out of 14 with exactly two of the three triplets.
Step-by-step explanation:
Ways to choose 2 of the triplets
= C(3,2) = 3! / (2!1!) = 3
Ways to choose the remaining 4 starters out of 11 players left
= C(11,4) = 11! / (4!7!) = 330
Total number of ways to choose 6 starters
= 3*330 = 990
Explain why f(x) = x^2-x-6/x^2-9 is not continuous at x = 3.
Answer:
See Explanation
Step-by-step explanation:
Given
[tex]f(x) = \frac{x^2 - x -6}{x^2 - 9}[/tex]
Required
Why is the function not continuous at x = 3
First substitute 3 for x at the denominator
[tex]f(x) = \frac{x^2 - x -6}{x^2 - 9}[/tex]
Factorize the numerator and the denominator
[tex]f(x) = \frac{x^2 - 3x+2x -6}{x^2 - 3^2}[/tex]
[tex]f(x) = \frac{x(x - 3)+2(x -3)}{(x - 3)(x+3)}[/tex]
[tex]f(x) = \frac{(x+2)(x - 3)}{(x - 3)(x+3)}[/tex]
Divide the numerator and denominator by (x - 3)
[tex]f(x) = \frac{x+2}{x+3}[/tex]
Substitute 3 for x
[tex]f(3) = \frac{3+2}{3+3}[/tex]
[tex]f(3) = \frac{5}{6}[/tex]
Because [tex]f(x) = \frac{x^2 - x -6}{x^2 - 9}[/tex] is defined when x = 3;
Then the function is continuous
Answer:
A: f is not defined at x = -3
Step-by-step explanation: EDGE 2020
Keats Library purchases a number of new books, all in the category of biography; the library does not acquire any other books. With the addition of the new biographies, the biography collection of the library amounts to 37.5% of the new total number of books in the library. If prior to the purchase, only 20% of the books in Keats Library were biographies, by what percent has the number of biographies in the library increased
Answer:
[tex]\large \boxed{87.5 \, \%}[/tex]
Step-by-step explanation:
Let x = the original number of books
Then 0.375x = the total number of biographies
and 0.20 x = the original number of biographies
[tex]\text{Percent increase} = \dfrac{\text{ New number - Old number }}{\text{Old number }} \times 100\, \%\\\\= \dfrac{0.375x - 0.20x}{0.20x} \times 100\, \% = \dfrac{0.175x}{0.20x} \times 100\, \% = 0.875 \times 100\, \% = \mathbf{87.5 \, \%}\\\\\text{The number of biographies has increased by $\large \boxed{\mathbf{87.5 \, \%}}$}[/tex]
(1/16)^(x+3) = (1/4)^(x+1)
Answer:
x=-5
Step-by-step explanation:
The answer is x = -5. The explanation and answer is in the image below.
Can someone help me solve this :): ?
( brainliest to the correct answer/explanation)
Answer:
1and1/2yrs ago
Step-by-step explanation:
price dis year= 56545
reduction per year= 11309
...number of years ago = 73810-56545=17265
and is about 20% of annual deductions
so if 56545 +20% + 1/2 20% = 1nd1/2 yrs
Pls help me with this question
Answer:
[tex]\sqrt[5]{x^7}[/tex]
or (x ^ 1/5) ^7
or ([tex]\sqrt[5]{x}[/tex])^7
Step-by-step explanation:
x ^ 1.4
Rewriting the decimal as an improper fraction
x ^ 14/10
x ^ 7/5
The top is the power and the bottom is the root
[tex]\sqrt[5]{x^7}[/tex]
or (x ^ 1/5) ^7
or ([tex]\sqrt[5]{x}[/tex])^7
I need help i will mark brainliest please
Answer:
1) true
2) false
hope it worked
and pls mark me as BRAINLIEST
how do you find y=-4x+3 on a table
Find the ratio in which the line joining the points (2, 4, 16) and (3, 5, -4) is divided by the plane 2x – 3y+ z+ 6 = 0. Also find the co-ordinates of the point of division
Answer:
Step-by-step explanation:
let the plane intersects the join of points in the ratio k:1
let (x,y,z) be the point of intersection.
[tex]x=\frac{3k+2}{k+1} \\y=\frac{5k+4}{k+1} \\z=\frac{-4k+16}{k+1} \\\because ~(x,y,z)~lies~on~the~plane.\\2(\frac{3k+2}{k+1} )-3(\frac{5k+4}{k+1} )+\frac{-4k+16}{k+1} +6=0\\multiply~by~k+1\\2(3k+2)-3(5k+4)+(-4k+16)+6(k+1)=0\\6k+4-15k-12-4k+16+6k+6=0\\-7k+14=0\\k=2\\x=\frac{3*2+2}{2+1} =\frac{8}{3} \\y=\frac{5*2+4}{2+1}= \frac{14}{3} \\z=\frac{-4*2+16}{2+1} =\frac{8}{3}[/tex]
point of intersection is (8/3,14/3,8/3)
and ratio of division is 2:1