Answer:
b=4
Step-by-step explanation:
So, we have the function [tex]f(x)=1/x[/tex]. We need to find b such that the average rate of change or the slope is -1/8 between the intervel [2, b]. First, let's find f(2).
f(2) = 1/(2) = 1/2
So, we have the point (2, 1/2)
At point b, f(b) = 1/b.
Let's plug this into the slope formula:
[tex]\frac{y_2-y_1}{x_2-x_1}=\frac{.5-\frac{1}{b} }{2-b} =-1/8[/tex]
Now, we just need to solve for b. First, let's multiply both the numerator and denominator by b (to get rid of the annoying fraction in the numerator).
[tex]\frac{.5b-1}{2b-b^2} =\frac{-1}{8}[/tex]
Now, cross multiply.
[tex]4b-8=b^2-2b[/tex]
[tex]b^2-6b+8=0[/tex]
Solve for b. Factor using the numbers -4 and -2.
[tex]=(b-4)(b-2)=0[/tex]
Thus, b=4 or b=2.
However, b=2 is not a possible solution since the interval [2,2] means nothing. Thus, b=4.
We want to find an interval such that the given equation, f(x) = 1/x, has an average rate of change of -1/8 in that interval.
We will see that the interval is [2, 4]
-------------------------------
For a function f(x), the average rate of change in the interval [a, b] is given by:
[tex]r = \frac{f(b) - f(a)}{b - a}[/tex]
Here we have:
[tex]f(x) = 1/x[/tex]
And the interval is [2, b] such that r in that interval is -1/8, so we need to solve:
[tex]r = -1/8 = \frac{f(b) - f(2)}{b - 2} = \frac{1/b - 1/2}{b - 2}[/tex]
We can rewrite it to:
[tex]-1/8 *(b - 2)= 1/b - 1/2\\\\-1/8 *(b - 2)= 2/2b - b/2b = (2 - b)/2b = -(b - 2)/2b[/tex]
Now we can remove the term (b - 2) because it appears on both sides, so we get:
[tex]-1/8 = -1/2b\\1/8 = 1/2b\\2/8 = 1/b\\1/4 = 1/b\\b = 4[/tex]
Then we found that b must be equal to 4, so the interval is [2, 4]
If you want to learn more, you can read:
https://brainly.com/question/23483858
Which of the following statements is true about the relation represented in the table? The data in the table is linear. The data in the table is nonlinear.
Answer:
Sacramento
Step-by-step explanation:
S 11+9+14+12+8=54
SF 11+8+8+9+12=48
The statement that is true about the information in the table is that the data is non-linear.
Which statement is true about the given table?
The easier way to study the table is by graphing it. Here we have the points:
(11, 11), (12, 9), (9, 8), (8, 8), and (14, 12).
The graph of these points can be seen below, there you can see that the data in the table is clearly non-linear, as we can't draw a line that contains the points on the table.
So the correct option is non-linear.
If you want to learn more about tables, you can read:
https://brainly.com/question/7301139
Help me with these 2 questions please
Answer:
1st one= B 25 cents
2nd one= D 2 miles
Step-by-step explanation:
1.
8x3=24
6/24=25
= 25 cents
2.
1.6 km= 1 mile
so 1/2 of a mile =
0.8 km
1/4 of an hour = 15 minutes
0.8km= 15 minutes
15x3= 45 minutes
0.8km x 3= 2.4km
2.4km = 2 miles
hope it helps hunney xx
An arithmetic sequence grows
A. at a constant percentage rate
B. linearly
C. quadratically
D. exponentially
A square has diagonals of length 10 cm. Find the sides of the square
Answer:
5[tex]\sqrt{2}[/tex]
Step-by-step explanation:
The diagonal divides the square into 2 right triangles.
let s be the side of the square with the diagonal being the hypotenuse.
Applying Pythagoras' identity to one right triangle, gives
s² + s² = 10² , that is
2s² = 100 ( divide both sides by 2 )
s² = 50 ( take the square root of both sides )
s = [tex]\sqrt{50}[/tex] = [tex]\sqrt{25(2)}[/tex] = [tex]\sqrt{25}[/tex] × [tex]\sqrt{2}[/tex] = 5[tex]\sqrt{2}[/tex]
A tunnel must be made through a hill. As a result, a surveyor and an engineer create a sketch of the area. The sketch, displayed below, includes information they have either researched or measured. They need to build a tunnel from the point E to the point H on the sketch. Calculate the distance from E to H. When similar triangles are used, explain how you know they represent similar triangles before performing the calculation.
Answer:
498 m
Step-by-step explanation:
The AAA theorem states that triangles are similar if all three corresponding angles are equal.
1. Compare triangles FHS and ILS
(a) Reason for similarity
∠F = ∠I = 90°
∠S is common.
∴ ∠H = ∠L
(b) Calculate SL
[tex]\begin{array}{rcl}\dfrac{SF}{SH} & = & \dfrac{SI}{SL}\\\\\dfrac{225}{380} & = & \dfrac{225 + 475}{SL}\\\\225SL & = & 380 \times 700\\& = & 266000\\SL & = & \textbf{1182 m}\\\end{array}[/tex]
2. Compare triangles ILS and GLE
(a) Reason for similarity
∠I = ∠G = 90°
∠L is common.
∴ ∠S = ∠E
(b) Calculate LE
[tex]\begin{array}{rcl}\dfrac{IS}{GE} & = & \dfrac{LS}{LE}\\\\\dfrac{700}{180} & = & \dfrac{1182}{LE}\\\\700LE & = & 180 \times 1182\\& = & 212800\\LE & = & \textbf{304.0 m}\\\end{array}[/tex]
3. Calculate EH
LE + EH + HS = LS
304.0 m + EH + 380 m = 1182 m
EH + 684 m = 1182 m
EH = 498 m
The distance from E to H is 498 m.
An infinite geometric series converges if the common ratio is
Answer:
a proper fraction
Can somebody please answer as many as possible?
Please and thankyou!
A quadrilateral is 360 degrees
I cant make a shape for any! Please help!
Answer:
Simply subtract the sum of the the three angles given from 360° in order to get the measure of the fourth angle!
Step-by-step explanation:
The length and width of a rectangular yard are 11 meters and 5 meters respectively. If each dimension were reduced by x meters to make the ratio of length to width 8 to 3, what would be the value of x
Answer:
x=7/5
Step-by-step explanation:
Original dimensions
Length=11 meters
Width=5 meters
Each dimension reduced by x meters
L=11-x
W=5-x
Length/width=ratio of length/ratio of width
11-x/5-x = 8/3
Cross product
(11-x)3 =( 5-x)8
33-3x=40-8x
-3x+8x=40-33
5x=7
x=7/5
Check:
11-7/5=55-7/5
=48/5
5-7/5=25-7/5
=18/5
48/5÷18/5
=48/5*5/18
=240/90
=24/9
=8/3
Length: width=8:3
I need this answered in ONE minute
Place the indicated product in the proper location on the grid. Write your answer in descending powers of x. (x^ 2 + 3x + 1)(x^2 + x + 2)
Answer:
[tex]x^4 + 4x^3 + 6x^2 + 7x + 2[/tex]
Step-by-step explanation:
We are asked to multiply the given polynomials.
[tex](x^ 2 + 3x + 1) \times (x^2 + x + 2)[/tex]
Multiply each term of the first polynomial to each term of the second polynomial.
[tex]x^ 2 \times (x^2 + x + 2) = x^4 + x^3 + 2x^2[/tex]
[tex]3x \times (x^2 + x + 2) = 3x^3 + 3x^2 + 6x[/tex]
[tex]1 \times (x^2 + x + 2) = x^2 + x + 2[/tex]
Add the results
[tex](x^4 + x^3 + 2x^2) + (3x^3 + 3x^2 + 6x) + ( x^2 + x + 2)[/tex]
Combine the like terms
[tex]x^4 + 4x^3 + 6x^2 + 7x + 2[/tex]
The answer is written in descending powers of x.
look at the picture find the value of z
Answer:
Z=7.9
Step-by-step explanation:
20.4 + 20.4 = 40.8
56.6 - 40.8 = 15.8
15.8/2 = 7.9
Answer:
z=7.9 cm
Step-by-step explanation:
So, what we have to do is gather all the information we already have. The length of the rectangle is 20.4 cm, and the perimeter is 56.6. To find the perimeter, you always add all the sides up. So 20.4+20.4 is 40.8. since 4+4 is 8, and 20+20 is 40. Then, you subtract that from the perimeter to get what is 2z(both sides). 56.6-40.8 is 15.8. So we know 2z is 15.8. To find z, we divide 15.8 by 2 which is 7.9. You can do this with a calculator or write it down.
z=7.9 cm
NEED HELP ON THIS ASAP WEE WOO WEE WOO
Answer:
50
Step-by-step explanation:
Find the surface area of the regular pyramid shown in the accompanying diagram. If necessary, express your answer in simplest radical form.
Answer:
84 squared units.
Step-by-step explanation:
In order to find the surface area of the pyramid, you use the following formula:
[tex]S=b^2+\frac{1}{2}ps[/tex] (1)
b: base of the pyramid = 6
p: perimeter of the base = 6*4 = 24
s: slant height
Then, you first calculate the slant height, by using the Pythagoras' theorem:
[tex]s=\sqrt{(5)^2-(\frac{6}{2})^2}=4[/tex]
Thus, you replace the values of b, p and s in the equation (1):
[tex]S=(6)^2+\frac{1}{2}(24)(4)=84[/tex]
The surface area of the pyramid is 84 squared units.
Answer:
Step-by-step explanation:
wrong
In 2002, the mean expenditure for auto insurance in a certain state was $806. An insurance salesperson in this state believes that the mean expenditure for auto insurance is less today. She obtains a simple random sample of 32 auto insurance policies and determines the mean expenditure to be $781 with a standard deviation of $39.13. Is there enough evidence to support the claim that the mean expenditure for auto insurance is less than the 2002 amount at the α = 0.05 level of significance?
Answer:
No there is not enough evidence to support the claim that the mean expenditure for auto insurance is less than the 2002 amount at the α = 0.05 level of significance
Step-by-step explanation:
Sample Mean = μ1 = $806
Sample Mean = μ2 = $ 781
Standard Deviation= S= σ =39.13
n= 32
Confidence Interval = 95 %
α= 0.05
z∝=± 1.96
We state the null and alternative hypotheses as
H0: μ1 = $806 and Ha: μ1 ≠ $806 two sided tail test
z= μ1 -μ2/σ/√n
z= 806-781/ 39.13/√32
z= 806-781/ 39.13/5.6568
z=806-781/ 6.92
z= 25/6.92
z= 3.613
Z> z∝
3.613 > ± 1.96
No there is not enough evidence to support the claim that the mean expenditure for auto insurance is less than the 2002 amount at the α = 0.05 level of significance
PLEASE HELP ME! I will not accept nonsense answers, but will give BRAINLIEST if you get it correct with solutions:)
Answer: B. He loses 1/5 of his points in the next crash
Plug in x = 0 to get y = 100(4/5)^0 = 100. He starts with 100 points
After x = 1 crash happens, he has y = 100(4/5)^1 = 80 points left. He lost 20/100 = 1/5 of his points after one crash.
PLEASE ANSWER THIS ASPA Which of the following choices is equivalent to -6x > -42? x > 7 x -7 x < -7
Answer:
x < 7
Step-by-step explanation:
-6x > -42
Divide each side by -6, remembering to flip the inequality
-6x/-6 < -42/-6
x < 7
Answer:
[tex]\boxed{x<7}[/tex]
Step-by-step explanation:
[tex]-6x > -42[/tex]
Divide both sides by -6 (flip sign).
[tex]\displaystyle \frac{-6x}{-6} < \frac{-42}{-6}[/tex]
[tex]x<7[/tex]
WILL GIVE BRAINLEST ANSWER IF ANSWERED IN 24 HOURS Determine whether a triangle can be formed with the given side lengths. If so, use Heron's formula to find the area of the triangle. a = 240 b = 132 c = 330
The length of the room is 2½ times the breadth. The perimeter of the room is 70 m. What are the length and breadth of the room?
Answer:
length=25m
breadth=10m
Step-by-step explanation:
2.5units+2.5units+1unit+1unit=7units
70/7=10
length=10x2.5=25
breadth=10
(sorryy im not really sure but i hope it helps :D)
Answer:
Length = 25 cm
Breadth = 10 cm
Step-by-step explanation:
Let breadth of the room be 'x'
Let length of the room be ''
Perimeter ( P ) = 70 cm
Now, let's find the breadth of the room 'x '
Perimeter of rectangle = 2(l+b)
plug the values
70=2(2.5x+x)
Collect the like terms
70=2x3.5x
Calculate the product
70=7x
Swap the sides of the equation
7x=70
Divide both sides of the equation by 7
7x / 7= 70/7
Calculate
x=10cm
Breadth = 10 cm
Now, Let's find the length of the room ' 2.5x '
Length of the room = 2.5x
Plug the value of X
2.5x10
Calculate the product
25cm
Thus , The length and breadth of the room is 25 cm and 10 cm respectively.
Hope this helps..
Best regards!!
There are 4 pieces of paper, numbered 10 to 13, in a hat. After another numbered piece of paper is added, the probability of picking a number between 10 and 13 inclusive is 4/5. Which of the following numbers could
Answer: The fifth piece of paper could have any number 9 and less or 14 and greater.
Step-by-step explanation: The list of choices is not given in the question, but it makes sense that the new number would not be a duplicate of any of the numbers 10, 11, 12, 13. Otherwise that would change the probability to 5/5.
So any other number could be a possibility.
A researcher wants to obtain a sample of 30 preschool children consisting of 10 two-year-old children, 10 three-year-old, and 10 four-year-old children. Assuming that the children are obtained only from local daycare centers, this researcher should use ____ sampling.` Cluster probability quota simple random stratified random
Answer:
Quota Sampling
Step-by-step explanation:
Quota Sampling is a non-probability sampling method in research, where the researcher forms subgroups of individuals who are representative of the entire population through random selection. Quota sampling is often used by researchers who want to get an accurate representation of the entire population. It saves time and money especially if accurate samples are used.
In the example given above, where the research creates subgroups of 30 pre-school children by dividing them into 10 two-year-old children, 10 three-year-old, and 10 four-year-old children, he has applied the quota sampling. These subgroups would give a proper representation of the preschool children in local daycare centers.
At the toy store, you could get 4 board games for $25.84. Online, the price for 5 board games is $32.15. Which place has the highest price for a board game?
Answer:
The board game store
Step-by-step explanation:
Just divide the store price by 4 and online by 5
Answer:
Toy store
Step-by-step explanation:
Let's find the unit rates for the toy store and the online store. To find the unit rate, divide the price by the number of board games.
price/board games
Toy Store
price/board games
The toy store sells 4 board games for $25.84
$25.84 / 4 board games
25.84/5
6.46
Online Store
price/ board games
The online store sells 5 board games for $32.15
$32.15 / 5 board games
32.15/5
6.43
At the toy store, a board game costs $6.46. Online, it costs $6.43.
6.46 is greater than 5.43, therefore, the toy store has the higher price for a board game.
A town currently has a population of 1,000,000, and the population is increasing 6 percent every year
a) using standard function notation , next = nowx1.06, starting at 1,000,000 use p to denote current population, r for the rate of population growth, and t for the number of years explain answer
b)is the function you wrote in the previous task recursive or non recursive?
c)compare the benefits of representing a situation using a recursive function versus using a regular function
Answer:
a) [tex]1,000,000 \times (1.06)^{t}[/tex]
b) The function is recursive
c) The benefits includes;
1) Simplification of information
2) Faster data access
3) Lesser storage requirement
4) Good for forecasting
5) Simplifies information analysis.
Step-by-step explanation:
The given information are;
The current population = 1,000,000
The rate of increase of the population = 6%
a) With the standard function notation is [tex]P_f[/tex] = [tex]P_p[/tex] × [tex](1 + r)^{t}[/tex]
Where;
[tex]P_f[/tex] = Future population
[tex]P_p[/tex] = Present population
r = Rate of population increase
t = The number of years
Therefore, we have;
[tex]P_f[/tex] = 1,000,000 × [tex](1 + 0.06)^{t}[/tex] = 1,000,000 × [tex](1.06)^{t}[/tex]
The population increases by a factor of [tex](1.06)^{t}[/tex] given the number of years, t
b) The function is recursive as it takes account of the number of years and the previous population to calculate the future population
c) The benefits includes;
1) Simplification of the relationship of a given data with time
2) Provides a more faster way to access data that is recursive than using complex regular function with more variables
3) Reduces data storage space for statistical calculations as several particular data can be accessed using one function
4) Provides improved forecasting
5) Enables detailed information analysis.
Use the cubic model y = 10x3 − 12x to find the value of y when x = 9.
Answer:
7182
Step-by-step explanation:
All you shoud do is to replace x by 9
● y = 10 * 9^3 -12*9
● y = 7182
please help me with this
Answer:
see explanation
Step-by-step explanation:
2πr (230/360) = 2(3.142)(40) = 160.59 cm = circumference
160.59 = 2πr
base radius = 25.56 cm
Use pythagorean formula for semi-vertical height
40² = h² + 25.56²
h = 30.77 cm
volume = 1/3πr²h
V = 1/3(3.142)(25.56)²(30.77) = 21,053.98 cm³
Solve for x: |x| − 8 = −5 (2 points) A. x = −13 and x = −3 B. x = 3 and x = −3 C. x = 3 and x = 13 D. No solution
Answer:
x = 3 and x = -3
Step-by-step explanation:
/x/ - 8 = -5
Add 8 to both sides
/x/ -8 + 8 = -5 +8
/x/ = 3
/ x / will be always positive as it is absolute value of x. So, x = 3 & x= -3
A cylindrical container has a radius of 0.3 meter and a height of 0.75 meter. The container is filled with kerosene. The density of kerosene is 815 kg/m³. What is the mass of the kerosene in the container? Enter your answer in the box. Use 3.14 for π. Round your final answer to the nearest whole number.
Answer:
172.83 kg
Step-by-step explanation:
A cylindrical container has a radius (r) of 0.3 meter and a height (h) of 0.75 meter and density of 815 kg/m³.
The density of a substance is the mass per unit volume, it is the ratio of the mass of a substance to the volume occupied. The density is given by the formula:
Density = Mass / volume
The volume of a cylinder is given as:
V = πr²h
V = π × (0.3)² × 0.75 = 0.212 m³
Density = Mass/ volume
Mass = Density × Volume
Mass = 815 kg/m³ × 0.212 m³
Mass = 172.83 kg
Answer:
The answer is 173
Step-by-step explanation:
The other guy's answer was correct, but he forgot to round up to the nearest whole number so just in case you didn't notice the question saying that!
Find the angle of rotation about the center of the regular pentagon that maps A to D.
Answer:
216
Step-by-step explanation:
Find each angle's value. This is a pentagon, so 360/5 = 72. Now, to get from A to D, you have to go 3 spaces counter-clockwise. This'll get you 72 x 3 = 216.
Answer:
216
Step-by-step explanation:
Find each angle's value. This is a pentagon, so 360/5 = 72. Now, to get from A to D, you have to go 3 spaces counter-clockwise. This'll get you 72 x 3 = 216.
Choose the best estimate for the multiplication problem below.
82.17
7.32
X
A. 560
B. 860
C. 420
Hey there!
We see that the first factor is 82.17, which is about 80. Then, we have 7.32, which is about 7.
80 times 7 is just doing 8 times 7 but putting a zero on the end!
So, 80 times 7 is 560, so our best estimate is A.560
Have a wonderful day!
Which figure will tessellate the plane? A. regular pentagon B. regular decagon C. regular octagon D. regular hexagon
A hexagon is composed of 6 congruent equilateral triangles. Each equilateral triangle has interior angle of 60 degrees. Adding 6 such angles together gets you to 360 degrees. So we've done one full rotation and covered every bit of the plane surrounding a given point. Extend this out and you'll be able to cover the plane. A similar situation happens with rectangles as well (think of a grid, or think of tiles on the wall or floor)
In contrast, a regular pentagon has interior angle 108 degrees. This is not a factor of 360, so there is no way to place regular pentagons to have them line up and not be a gap or overlap. This is why regular pentagons do not tessellate the plane. The same can be aside about decagons and octagons as well.
Un estanque tiene 13/2 litros de leche y se le agregan 87/10. ¿Cuánta leche quedó en el estanque? ¿Sí en el estanque caben 65/4 litros, cuántos litros más se pueden agregar?
can u solve these asap pls
Step-by-step explanation:
1We will use the Thales theorem since ED and CB are parallel and A,D and B are in the same lign wich is the same for C,E and A
[tex]\frac{x}{12}[/tex] = [tex]\frac{2}{2+4}[/tex] [tex]\frac{x}{12}[/tex] = [tex]\frac{2}{6}[/tex] [tex]\frac{x}{12}[/tex] = [tex]\frac{1}{3}[/tex] x= [tex]\frac{12*1}{3}[/tex] x= 4 2since we have two similar sides and one similar angle between them it will be SAS similarity