Limiting reagent problem. How many grams of H2O is produced from 40.0 g N2O4 and 25.0 g N2H4. N2O4 (l) + 2 N2H4 (l) → 3 N2 (g) + 4 H2O(g)

Answers

Answer 1

Answer:

28.13 g of H2O.

Explanation:

We'll begin by writing the balanced equation for the reaction. This is illustrated below:

N2O4(l) + 2N2H4 (l) → 3N2(g) + 4H2O(g)

Next, we shall determine the masses of N2O4 and N2H4 that reacted and the mass of H2O produced from the balanced equation.

This is illustrated below:

Molar mass of N2O4 = (14x2) + (16x4) = 92 g/mol

Mass of N2O4 from the balanced equation = 1 x 92 = 92g

Molar mass of N2H4 = (14x2) + (4x1) = 32 g/mol

Mass of N2H4 from the balanced equation = 2 x 32 = 64 g

Molar mass of H2O = (2x1) + 16 = 18 g/mol

Mass of H2O from the balanced equation = 4 x 18 = 72 g

Summary:

From the balanced equation above,

92 g of N2O4 reacted with 64 g of N2H4 to produce 72 g of H2O.

Next, we shall determine the limiting reactant.

This can be obtained as follow:

From the balanced equation above,

92 g of N2O4 reacted with 64 g of N2H4.

Therefore, 40 g of N2O4 will react with = (40 x 64)/92 = 27.83 g of N2H4.

From the calculations made above, we can see that it will take a higher mass i.e 27.83 g than what was given i.e 25 g of N2H4 to react completely with 40 g of N2O4.

Therefore, N2H4 is the limiting reactant and N2O4 is the excess reactant.

Finally, we shall determine the mass of H2O produced from the reaction of 40.0 g of N2O4 and 25.0 g of N2H4.

In this case the limiting reactant will be used because it will produce the maximum amount of H2O as all of it is consumed in the reaction.

The limiting reactant is N2H4 and the mass of H2O produced can be obtained as follow:

From the balanced equation above,

64 g of N2H4 reacted to produce 72 g of H2O.

Therefore, 25 g of N2H4 will react to produce = (25 x 72)/64 = 28.13 g of H2O.

Therefore, 28.13 g of H2O were obtained from the reaction.


Related Questions

below are three reactions showing how chlorine from CFCs (chlorofluorocarbons) destroy ozone (O3) in the stratosphere. Ozone blocks harmful ultraviolet radiation from reaching earth’s surface. Show how these 3 equations sum to produce the net equation for the decomposition of two moles of ozone to make three moles of diatomic oxygen (2 O3→ 3 O2), and calculate the enthalpy change. (6 points) R1 O2 (g) → 2 O (g) ΔH1°= 449.2 kJ R2 O3 (g) + Cl (g) → O2 (g) + ClO (g) ΔH2° = -126 kJ R3 ClO (g) + O (g) → O2 (g) + Cl (g) ΔH3°= -268 kJ

Answers

Answer:

ΔH = -338.8kJ

Explanation:

it is possible to sum the enthalpy changes of some reactions to obtain the enthalpy change of the whole reaction (Hess's law).

Using the reactions:

R₁ O₂(g) → 2O(g) ΔH₁°= 449.2 kJ

R₂ O₃(g) + Cl(g) → O₂(g) + ClO(g) ΔH₂° = -126 kJ

R₃ ClO (g) + O (g) → O₂ (g) + Cl (g) ΔH₃°= -268 kJ

By the sum 2R₂ + 2R₃:

(2R₂ + 2R₃) = 2O(g) + 2O₃(g) → 4O₂(g)

ΔH = 2ₓ(-126kJ) + (2ₓ-268kJ) = -788kJ

Now, this reaction + R₁

2O₃(g) → 3O₂(g)

ΔH = -768kJ + 449.2kJ

ΔH = -338.8kJ

Draw a Lewis structure for one important resonance form of HBrO4 (HOBrO3). Include all lone pair electrons in your structure. Do not include formal charges in your structure.

Answers

Answer:

The Lewis structure is attached with the answer -

Explanation:

Lewis structure or Lewis dot diagram are diagrams or representation of showing the bonding between different or same atoms of a molecule in any and also shows lone pairs of electrons that may exist in the molecule as dots.

HBrO₄ is bromine oxoacid which is also known as perbromic acid. It is a unstable inorganic compound.

The Lewis structure is attached in form of image with representation of lone pairs of electrons.

When a solution is diluted with water, the ratio of the initial to final
volumes of solution is equal to the ratio of final to initial molarities
Select one:
True
-​

Answers

Hello!!

The correct answer for this problem would be TRUE.

Explanation: it is true that when a solution is diluted with water, the ratio of the initial to final volumes of solution is equal to the ratio of final to initial molarities.

When a solution is diluted with water, the ratio of the initial to final volumes of solution is equal to the ratio of final to initial molarities. The statement is True.

Concentration refers to the amount of a substance in a defined space. Another definition is that concentration is the ratio of solute in a solution to either solvent or total solution.

There are various methods of expressing the concentration of a solution.

Concentrations are usually expressed in terms of molarity, defined as the number of moles of solute in 1 L of solution.

Solutions of known concentration can be prepared either by dissolving a known mass of solute in a solvent and diluting to a desired final volume or by diluting the appropriate volume of a more concentrated solution (a stock solution) to the desired final volume.

Learn more about Concentrations, here:

https://brainly.com/question/10725862

#SPJ3

How many mL of calcium hydroxide are required to neutralize 25.0 mL of 0.50 M
nitric acid?

Answers

Answer:

6.5 mL

Explanation:

Step 1: Write the balanced reaction

Ca(OH)₂ + 2 HNO₃ ⇒ Ca(NO₃)₂ + 2 H₂O

Step 2: Calculate the reacting moles of nitric acid

25.0 mL of 0.50 M  nitric acid react.

[tex]0.0250L \times \frac{0.50mol}{L} = 0.013 mol[/tex]

Step 3: Calculate the reacting moles of calcium hydroxide

The molar ratio of Ca(OH)₂ to HNO₃ is 1:2. The reacting moles of Ca(OH)₂ are 1/2 × 0.013 mol = 6.5 × 10⁻³ mol

Step 4: Calculate the volume of calcium hydroxide

To answer this, we need the concentration of calcium hydroxide. Since the data is missing, let's suppose it is 1.0 M.

[tex]6.5 \times 10^{-3} mol \times \frac{1,000mL}{1.0mol} = 6.5 mL[/tex]

Complete ionic equation K2CO3(aq)+2CuF(aq) → Cu2CO3(s)+2KF(aq) Examine each of the chemical species involved to determine the ions that would be present in solution. Be sure to consider both the coefficients and subscripts of the molecular equation, and then write this precipitation reaction in the form of a balanced complete ionic equation. Express your answer as a chemical equation including phases.

Answers

Answer:

2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)

Explanation:

K2CO3(aq) + 2CuF(aq) → Cu2CO3(s) + 2KF(aq)

The complete ionic equation for the above equation can be written as follow:

In solution, K2CO3 and CuF will dissociate as follow:

K2CO3(aq) —› 2K+(aq) + CO3²¯(aq)

CuF(aq) —› Ca^2+(aq) + 2F¯(aq)

Thus, we can write the complete ionic equation for the reaction as shown below:

K2CO3(aq) + 2CuF(aq) —›

2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)

What is the molar mass of a protein if a solution of 0.020 g of the protein in 25.0 mL of solution has an osmotic pressure of 0.56 torr at 25 ∘ C

Answers

Answer:

26.5 kD  

Explanation:

Here we can apply the formula ∏ = iMRT, where ∏ = osmotic pressure = 0.56 - ( given ). This is only one part of the information we are given / can conclude in this case ....

i = van’t Hoff factor = 1 for a protein molecule,

R = gas constant = 62.36 L torr / K-mol,

T ( temperature in Kelvin ) = 25 + 273 - conversion factor C° + 273 = 298K

( Known initially ) ∏ = osmotic pressure = 0.56 torr

..... besides the part " M " in the formula, which we have no information on whatsoever, as we have to determine it's value.

_____

Substitute derived / known values to solve for M ( moles / liter ) -

∏ = iMRT

⇒ 0.56 = ( 1 )( M )( 62.36 )( 298 )

⇒ 0.56 = M( 18583.28 )

⇒ M = 0.56 / 18583.28 ≈ 0.00003013461 ....

_____

We know that M = moles / liter, so we can use this to solve for moles, and hence calculate the molar mass by the formula molar mass = g / mol -

M = mol / l

⇒ 0.00003013461 = 0.020 / 25 mL ( 0.025 L ),

0.020 / 0.025 = 0.8 g / L

⇒ 0.8 g = 0.00003013461 moles,

molar mass = 0.8 g / 0.00003013461 moles = 26,548 g / mol = 26.5 kD  

When the following molecular equation is balanced using the smallest possible integer coefficients, the values of these coefficients are:
P2O5 (s) + H2O (l) =H3PO4 (aq)
The balanced chemical equation for the reaction between hydrogen sulfide and oxygen is:
2H2S(g) + 3O2(g) =2H2O(l) + 2SO2(g)
We can interpret this to mean:
3moles of oxygen and_______moles of hydrogen sulfide react to produce______moles of water and_______ moles of sulfur dioxide.

Answers

Answer:

1. The coefficients are: 1, 3, 2

2. From the balanced equation, we obtained the following:

3 moles oxygen, O2 reacted.

2 moles of Hydrogen sulfide, H2S reacted.

2 moles of water were produced.

2 moles of sulphur dioxide, SO2 were produced.

Explanation:

1. Determination of the coefficients of the equation.

This is illustrated below:

P2O5(s) + H2O(l) <==> H3PO4(aq)

There are 2 atoms of P on the left side and 1 atom on the right side. It can be balance by putting 2 in front of H3PO4 as shown below:

P2O5(s) + H2O(l) <==> 2H3PO4(aq)

There are 2 atoms of H on the left side and 6 atoms on the right side. It can be balance by putting 3 in front of H2O as shown below:

P2O5(s) + 3H2O(l) <==> 2H3PO4(aq)

Now the equation is balanced.

The coefficients are: 1, 3, 2.

2. We'll begin by writing the balanced equation for the reaction. This is given below:

2H2S(g) + 3O2(g) => 2H2O(l) + 2SO2(g)

From the balanced equation above,

3 moles of oxygen, O2 reacted with 2 moles of Hydrogen sulfide, H2S to produce 2 moles of water, H2O and 2 moles of sulphur dioxide, SO2.

A sample of neon gas at a pressure of 0.609 atm and a temperature of 25.0 °C, occupies a volume of 19.9 liters. If the gas is compressed at constant temperature to a
volume of 12.7 liters, the pressure of the gas sample will be
atm.​

Answers

Answer:

The pressure of the gas sample will be  0.954 atm.​

Explanation:

Boyle's law states that the pressure of a gas in a closed container is inversely proportional to the volume of the container, when the temperature is constant. That is, if the pressure increases, the volume decreases; conversely if the pressure decreases, the volume increases.

Boyle's law is expressed mathematically as:

Pressure * Volume = constant

o P * V = k

To determine the change in pressure or volume during a transformation at constant temperature, the following is true:

P1 · V1 = P2 · V2

That is, the product between the initial pressure and the initial volume is equal to the product of the final pressure times the final volume.

In this case:

P1= 0.609 atmV1= 19.9 LP2=?V2= 12.7 L

Replacing:

0.609 atm* 19.9 L= P2* 12.7 L

Solving:

[tex]P2=\frac{0.609 atm* 19.9 L}{12.7 L}[/tex]

P2= 0.954 atm

The pressure of the gas sample will be  0.954 atm.​

The reaction, 2 SO3(g) <--> 2 SO2(g) + O2(g) is endothermic. Predict what will happen if the tem­perature is increased.

Answers

Explanation:

This reaction is in equilibrium and would hence obey lechatelier's principle. This principle states that whenever a system at equilibrium undergoes a change, it would react in way so as to annul that change.

Since it is an endothermic reaction, increasing the temperature would cause the reaction to shift towards the right.

This means that it favours product formation and more of the product would be formed.

Draw the Lewis structure for methane (CH4) and ethane (C2H6) in the box below. Then predict which would have the higher boiling point. Finally, explain how you came to that conclusion.

Answers

Answer:

Ethane would have a higher boiling point.

Explanation:

In this case, for the lewis structures, we have to keep in mind that all atoms must have 8 electrons (except hydrogen). Additionally, each carbon would have 4 valence electrons, with this in mind, for methane we have to put the hydrogens around the carbon, and with this structure, we will have 8 electrons for the carbon. In ethane, we will have a bond between the carbons, therefore we have to put three hydrogens around each carbon to obtain 8 electrons for each carbon.

Now, the main difference between methane and ethane is an additional carbon. In ethane, we have an additional carbon, therefore due to this additional carbon, we will have more area of interaction for ethane. If we have more area of interaction we have to give more energy to the molecule to convert from liquid to gas, so, the ethane will have a higher boiling point.

I hope it helps!

The Lewis structure shows the valence electrons in a molecule. Ethane will have a higher boiling point than methane.

We can deduce the number of valence electrons in a molecule by drawing the Lewis structure of the molecule. The Lewis structure consists of the symbols of elements in the compound and the valence electrons in the compound.

We know that the higher the molar mass of a compound the greater its boiling point. Looking at the Lewis structures of methane and ethane, we cam see that ethane has a higher molecular mass (more atoms) and consequently a higher boiling point than methane.

Learn more: https://brainly.com/question/2510654

11. How did the solubility product constant Ksp of KHT in pure water compare to its solubility product constant Ksp of KHT in KCl solution? Are these results what you would expect? Why?

Answers

Answer:

Explanation:

KHT is a salt which ionises in water as follows

KHT ⇄ K⁺ + HT⁻

Solubility product Kw= [ K⁺ ] [ HT⁻ ]

product of concentration of K⁺ and HT⁻ in water

In KCl solution , the solubility product of KHT will be decreased .

In KCl solution , there is already presence of K⁺  ion in the solution . So

in the equation  

[ K⁺ ] [ HT⁻ ]  = constant

when K⁺ increases [ HT⁻ ] decreases . Hence less of KHT dissociates due to which its  solubility decreases . It is called common ion effect . It is so because here the presence of common ion that is K⁺ in both salt to be dissolved and in solvent , results in decrease of solubility of the salt .

Q1. Calculate the amount of copper produced in 1.0 hour when aqueous CuBr2 solution was electrolyzed by using a current of 4.50 A. Q2. In another electroplating experiment, if electric current was passed for 3 hours and 2.00 g of silver was deposited from a AgNO3 solution, what was the current used in amperes

Answers

Answer:

[tex]\boxed{\text{Q1. 3.6 g; Q2. 0.2 A}}[/tex]

Explanation:

Q1. Mass of Cu

(a) Write the equation for the half-reaction.

Cu²⁺ + 2e⁻ ⟶ Cu

The number of electrons transferred (z) is 2 mol per mole of Cu.

(b) Calculate the number of coulombs

q  = It  

[tex]\text{t} = \text{1.0 h} \times \dfrac{\text{3600 s}}{\text{1 h}} = \text{3600 s}\\\\q = \text{3 C/s} \times \text{ 3600 s} = \textbf{10 800 C}[/tex]

(c) Mass of Cu

We can summarize Faraday's laws of electrolysis as

[tex]\begin{array}{rcl}m &=& \dfrac{qM}{zF}\\\\& = &\dfrac{10 800 \times 63.55}{2 \times 96 485}\\\\& = & \textbf{3.6 g}\\\end{array}\\\text{The mass of Cu produced is $\boxed{\textbf{3.6 g}}$}[/tex]

Note: The answer can have only two significant figures because that is all you gave for the time.

Q2. Current used

(a) Write the equation for the half-reaction.

Ag⁺ + e⁻ ⟶ Ag

The number of electrons transferred (z) is 1 mol per mole of Ag.  

(a) Calculate q

[tex]\begin{array}{rcl}m &=& \dfrac{qM}{zF}\\\\2.00& = &\dfrac{q \times 107.87}{1 \times 96 485}\\\\q &=& \dfrac{2.00 \times 96485}{107.87}\\\\& = & \textbf{1789 C}\\\end{array}[/tex]

(b) Calculate the current

t = 3 h = 3 × 3600 s = 10 800 s

[tex]\begin{array}{rcl}q&=& It\\1789 & = & I \times 10800\\I & = & \dfrac{1789}{10800}\\\\& = & \textbf{0.2 A}\\\end{array}\\\text{The current used was $\large \boxed{\textbf{0.2 A}}$}[/tex]

Note: The answer can have only one significant figure because that is all you gave for the time.

Drag each image to the correct location on the model. Each image can be used more than once. Apply the rules and principles of electron configuration to draw the orbital diagram of aluminum. Use the periodic table to help you.

Answers

Answer:

The answer to your question is given below.

Explanation:

Aluminium has atomic number of 13. Thus, the electronic configuration of aluminium can be written as:

Al (13) —› 1s² 2s²2p⁶ 3s²3p¹

The orbital diagram is shown on the attached photo.

Answer: screen shot

Explanation:

Identify the elements that have the following abbreviated electron configurations.
A) [Ne] 3s23p5.
B) [Ar] 4s23d7.
C) [Xe] 6s1.

Answers

Answer:

A) Chlorine (Cl)

B) Cobalt (Co)

C) Caesium (Cs)

Hope this helps.

The abbreviated electron configurations that was given in the question belongs to

Chlorine (Cl)

Cobalt (Co)

Caesium (Cs) respectively.

Electronic configurations can be regarded as the  electronic structure, which is the way an electrons is arranged in energy levels towards an atomic nucleus.

The electron configurations is very useful when  describing  the orbitals of an atom in its ground state.

To calculate an electron configuration, we can put the periodic table into sections, and this section will represent the atomic orbitals which is the  regions that house the electrons.

Groups one of the period table and two belongs to s-block, group  3 through 12 belongs to the d-block, while  13 to 18 can be attributed to p-block ,The  rows that is found at bottom are the f-block

Therefore, electron configurations  explain orbitals of an atom when it is in it's ground state.

Learn more at:https://brainly.com/question/21940070?referrer=searchResults

AB2AB2 has a molar solubility of 3.72×10−4 M3.72×10−4 M. What is the value of the solubility product constant for AB2AB2? Express your answer numerically.

Answers

Answer:

Ksp = 2.06x10⁻¹⁰

Explanation:

For AB₂. solubility product constant, Ksp, is written as follows:

AB₂(s) ⇄ A²⁺ + 2Br⁻

Ksp = [A²⁺] [Br⁻]²

Molar solubility represents how many moles of AB₂ are soluble per liter of solution. and is obtained from Ksp:

AB₂(s) ⇄ A²⁺ + 2Br⁻

AB₂(s) ⇄ X + 2X

where X are moles that are soluble (Molar solubility)

Ksp = [X] [2X]²

Ksp = 4X³

As molar solubility of the salt is 3.72x10⁻⁴M:

Ksp = 4X³

Ksp = 4(3.72x10⁻⁴)³

Ksp = 2.06x10⁻¹⁰

Carbon-14 has a half-life of 5720 years and this is a fast-order reaction. If a piece of wood has converted 75 % of the carbon-14, then how old is it?

Answers

Answer:

11445.8years

Explanation:

Half-life of carbon-14 = 5720 years

First we have to calculate the rate constant, we use the formula :

cetylene gas is often used in welding torches because of the very high heat produced when it reacts with oxygen gas, producing carbon dioxide gas and water vapor. Calculate the moles of oxygen needed to produce of water.

Answers

Answer:

0.60 mol

Explanation:

There is some info missing. I think this is the original question.

Acetylene gas is often used in welding torches because of the very high heat produced when it reacts with oxygen gas, producing carbon dioxide gas and water vapor. Calculate the moles of oxygen needed to produce 1.5 mol of water.

Step 1: Given data

Moles of water required: 1.5 mol

Step 2: Write the balanced equation

C₂H₂(g) + 2.5 O₂(g) ⇒ 2 CO₂(g) + H₂O(g)

Step 3: Calculate the moles of oxygen needed to produce 1.5 mol of water

The molar ratio of O₂ to H₂O is 2.5:1. The moles of oxygen needed to produce 1.5 mol of water are (1/2.5) × 1.5 mol = 0.60 mol

Other Questions
ohnson, LLCs bonds have exhibited a substantial trading volume in the past few years. Its bonds would be referred to a Recall that within the ArrayBoundedQueue the front variable and the rear variable hold the indices of the elements array where the current front and rear elements, respectively, of the queue are stored. Which of the following code sequences could be used to correctly enqueue element into the queue, assuming that enqueue is called on a non-full queue and that the code also correctly increments numElements?a. numElements++; elements[rear) - element: b. front++; elements(front) - element: c. rear = (rear + 1) % elements.length; elements[rear) - element; d. front = (front + 1) % elements.length; elements[front) - element; Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more? at the rate of 15 per 6 oz. bar of chocolate, how much would a pound Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.5 m diameter and a mass of 250 kg. Its maximum angular velocity is 1200 rpm.How long does it take the flywheel to reach top angular speed of 1200 rpm? Which is the best estimate for the percent equivalent of 7 Over 15 These tables of values represent continuous functions. For which function will the y-values be the greatest for very large values of x? Use the quadratic formula to find the exact solutions of x2 5x 2 = 0. x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a x equals 5 plus or minus the square root of 33, all over 2 x equals negative 5 plus or minus the square root of 33, all over 2 x equals 5 plus or minus the square root of 17, all over 2 x equals negative 5 plus or minus the square root of 17, all over 2 Read and choose the correct option to complete the sentence. Pablo, no sales con amigos y ests ________; visita a la terapeuta para recibir ayuda. activo contento saludable triste Please help. Ill mark you as brainliest if correct! Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value Zhi bought 18 tickets for games at a fair. Each game requires 3 tickets. Zhi wrote the expression 18 3g to find the number of tickets she has left after playing g games. Diego correctly wrote another expression, 3(6 g), that will also find the number of tickets Zhi has left after playing g games. Use the drop-down menus to explain what each part of Zhi's and Diego's expressions mean. can someone please help me HELP ME PLEASSSSEE On a winter morning, the temperature before sunrise was -10. The temperature then rose by 1 each hour for 7 hours before dropping by 2 each hour for 3 hours. What was the temperature, in degrees Fahrenheit, after 10 hours? After the 1600s, how did observations of light being refracted change the way most scientists thought about light? Please help! "Create a real-life scenario involving an angle of elevation or depression. Draw an appropriate diagram and explain how to solve your example." An investment earns 35% the first year, earns 40% the second year, and loses 37% the third year. The total compound return over the 3 years was ______. Multiple Choice 158.93% 19.07% 38.00% 6.36% Refer to the following wage breakdown for a garment factory: Hourly Wages Number of employees$4 up to $7 18 7 up to 10 36 10 up to 13 20 13 up to 16 6 What is the class interval for the preceding table of wages?A. $4B. $2C. $5D. $3 Determine the position in the oscillation where an object in simple harmonic motion: (Be very specific, and give some reasoning to your answer.) has the greatest speed has the greatest acceleration experiences the greatest restoring force experiences zero restoring force g Angiosperms (flowering plants) and vertebrates obtain nutrients from their environment in different ways. a. Discuss the type of nutrition and the nutritional requirements of angiosperms and vertebrates. b. Describe 2 structural adaptations in angiosperms for obtaining nutrients from the environment. Relate structure to function. c. Interdependence in nature is evident in symbiosis. Explain two symbiotic relationships that aid in nutrient uptake, using examples from angiosperms and/or vertebrates. (Both examples may be angiosperms, both may be vertebrates, or one may be from each group.)