Liquidated damages are intended to represent anticipated losses to the owner based upon circumstances existing at the time the contract was made. List at least five types of potential losses to the owner that would qualify for determination of such potential losses.

Answers

Answer 1

Answer:

1. Loss of income.

2. Rental costs.

3. Utility bills.

4. Loss of rent.

5. Storage costs.

Explanation:

Liquidated damages can be defined as pre-determined damages or clauses that are highlighted or indicated at the time of entering into a contract between a contractor and a client which is mainly based on evaluation of the actual loss the client may incur should the contractor fail to meet the agreed completion date.

Generally, liquidated damages are meant to be fair rather than being a penalty or punitive to the defaulter. It is usually calculated on a daily basis for the loss.

When entering into a contract with another, liquidated damages are intended to represent anticipated losses to the owner based upon circumstances existing at the time the contract was made.

Listed below are five (5) types of potential losses to the owner that would qualify for determination of such potential losses;

1. Loss of income.

2. Rental costs.

3. Utility bills.

4. Loss of rent.

5. Storage costs.


Related Questions

The effectiveness of a heat exchanger is defined as the ratio of the maximum possible heat transfer rate to the actual heat transfer rate.

a. True
b. False

Answers

Answer:

False

Explanation:

Because

The effectiveness (ϵ) of a heat exchanger is defined as the ratio of the actual heat transfer to the maximum possible heat transfer.

An example of a transient analysis involving the 1st law of thermodynamics and conservation of mass is the filling of a compressed air tank. Assume that an air tank is being filled using a compressor to a pressure of 5 atm, and that it is being fed with air at a temperature of 25°C and 1 atm pressure. The compression process is adiabatic. Will the temperature of the air in the tank when it is done being filled i.e. once the pressure in the tank reaches 5 atm), be greater than, equal to, or less that the temperature of the 25°C air feeding the compressor?
A. Greater than 25°C
B. Unable to determine
C. Same as 25°C
D. Less than 25°C

Answers

Answer:

The temperature will be greater than 25°C

Explanation:

In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.

mathematically

Change in the internal energy of a system ΔU = ΔQ + ΔW

in an adiabatic process, ΔQ = 0

therefore

ΔU = ΔW

where ΔQ is the change in heat into the system

ΔW is the work done by or done on the system

when work is done on the system, it is conventionally negative, and vice versa.

also W = pΔv

where p is the pressure, and

Δv = change in volume of the system.

In this case, work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C

Commutation is the process of converting the ac voltages and currents in the rotor of a dc machine to dc voltages and currents at its terminals. True False

Answers

Answer:

false

Explanation:

the changing of a prisoner sentence or another penalty to another less severe

A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16% of the cylinder volume at bottom dead center and the crankshaft rotates at 2400 RPM. The processes within each cylinder are modeled as an air-standard Otto cycle with a pressure of 14.5 lbf/in. 2 and a temperature of 60 8 F at the beginning of compression. The maximum temperature in the cycle is 5200 8 R.
Based on this model,
1- Write possible Assumptions no less than three assumptions
2- Draw clear schematic for this problem
3- Determine possible Assumptions no less than three assumptions
4- Draw clear schematic for this problem.
5- calculate the net work per cycle, in Btu, and the power developed by the engine, in horsepower.

Answers

Answer:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The net work per cycle is 845.88 kJ/kg

The power developed in horsepower ≈ 45374 hP

Explanation:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The dimension of the cylinder bore diameter = 3.7 in. = 0.09398 m

Stroke length = 3.4 in. = 0.08636 m.

The volume of the cylinder v₁= 0.08636 ×(0.09398²)/4 = 5.99×10⁻⁴ m³

The clearance volume = 16% of cylinder volume = 0.16×5.99×10⁻⁴ m³

The clearance volume, v₂  = 9.59 × 10⁻⁵ m³

p₁ = 14.5 lbf/in.² = 99973.981 Pa

T₁ = 60 F = 288.706 K

[tex]\dfrac{T_{2}}{T_{1}} = \left (\dfrac{v_{1}}{v_{2}} \right )^{K-1}[/tex]

Otto cycle T-S diagram

T₂ = 288.706*[tex]6.25^{0.393}[/tex] = 592.984 K

The maximum temperature = T₃ = 5200 R = 2888.89 K

[tex]\dfrac{T_{3}}{T_{4}} = \left (\dfrac{v_{4}}{v_{3}} \right )^{K-1}[/tex]

T₄ = 2888.89 / [tex]6.25^{0.393}[/tex] = 1406.5 K

Work done, W = [tex]c_v[/tex]×(T₃ - T₂) - [tex]c_v[/tex]×(T₄ - T₁)

0.718×(2888.89  - 592.984) - 0.718×(1406.5 - 288.706) = 845.88 kJ/kg

The power developed in an Otto cycle = W×Cycle per second

= 845.88 × 2400 / 60  = 33,835.377 kW = 45373.99 ≈ 45374 hP.

For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _______ and using the Maximum Shear Stress Theory the material will __________
a. fail / not fail
b. fail /fail
c. not fail/fail
d. not fail/not fail

Answers

Answer:

Option A - fail/ not fail

Explanation:

For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _fail______ and using the Maximum Shear Stress Theory the material will ___not fail_______

Compute the volume percent of graphite, VGr, in a 3.2 wt% C cast iron, assuming that all the carbon exists as the graphite phase. Assume densities of 7.9 and 2.3 g/cm3 for ferrite and graphite, respectively.

Answers

Answer:

The volume percentage of graphite is 10.197 per cent.

Explanation:

The volume percent of graphite is the ratio of the volume occupied by the graphite phase to the volume occupied by the graphite and ferrite phases. The weight percent in the cast iron is 3.2 wt% (graphite) and 96.8 wt% (ferrite). The volume percentage of graphite is:

[tex]\%V_{gr} = \frac{V_{gr}}{V_{gr}+V_{fe}} \times 100\,\%[/tex]

Where:

[tex]V_{gr}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

[tex]V_{fe}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

The expression is expanded by using the definition of density and subsequently simplified:

[tex]\%V_{gr} = \frac{\frac{m_{gr}}{\rho_{gr}} }{\frac{m_{gr}}{\rho_{gr}}+\frac{m_{fe}}{\rho_{fe}}}\times 100\,\%[/tex]

Where:

[tex]m_{fe}[/tex], [tex]m_{gr}[/tex] - Masses of the ferrite and graphite phases, measured in grams.

[tex]\rho_{fe}, \rho_{gr}[/tex] - Densities of the ferrite and graphite phases, measured in grams per cubic centimeter.

[tex]\%V_{gr} = \frac{1}{1+\frac{\frac{m_{fe}}{\rho_{fe}} }{\frac{m_{gr}}{\rho_{gr}} } }\times 100\,\%[/tex]

[tex]\%V_{gr} = \frac{1}{1 + \left(\frac{\rho_{gr}}{\rho_{fe}} \right)\cdot\left(\frac{m_{fe}}{m_{gr}} \right)} \times 100\,\%[/tex]

If [tex]\rho_{gr} = 2.3\,\frac{g}{cm^{3}}[/tex], [tex]\rho_{fe} = 7.9\,\frac{g}{cm^{3}}[/tex], [tex]m_{gr} = 3.2\,g[/tex] and [tex]m_{fe} = 96.8\,g[/tex], the volume percentage of graphite is:

[tex]\%V_{gr} = \frac{1}{1+\left(\frac{2.3\,\frac{g}{cm^{3}} }{7.9\,\frac{g}{cm^{3}} } \right)\cdot \left(\frac{96.8\,g}{3.2\,g} \right)} \times 100\,\%[/tex]

[tex]\%V_{gr} = 10.197\,\%V[/tex]

The volume percentage of graphite is 10.197 per cent.

Following are the solution to the given points:

[tex]\to C_{Gr} = 100\\\\ \to C_{\alpha}= 0[/tex]From [tex]Fe-F_{\frac{e}{3}} c[/tex] diagram.  

[tex]\to W_{\alpha} =\frac{C_{Gr}-C_{o}}{C_{Gr}-C_{\alpha}}[/tex]

           [tex]= \frac{100-3.6}{100-0} \\\\= \frac{100-3.6}{100} \\\\= \frac{96.4}{100} \\\\=0.964[/tex]

Calculating the weight fraction of graphite:  

[tex]\to W_{Gr}=\frac{C_0 - c_d}{C_{Gr} -c_d}[/tex]

            [tex]= \frac{3.6-0}{100-0} \\\\ = \frac{3.6}{100} \\\\= 0.036[/tex]

Calculating the volume percent of graphite:

[tex]\to V_{Gr}=\frac{\frac{W_{Gr}}{P_{Gr}}}{\frac{w_{\alpha}}{P_{\alpha}}+ \frac{W_{Gr}}{P_{Gr}}}[/tex]

           [tex]=\frac{\frac{0.036}{2.3}}{\frac{0.964}{7.9}+\frac{0.036}{2.3}}\\\\=0.11368 \times 100\%\\\\=11.368\%[/tex]

Therefore, the final answer is "0.964, 0.036, and 11.368%"

Learn more Graphite:

brainly.com/question/4770832

Which of the following are the main psychological domains?

Answers

Answer:

Domain 1: Biological (includes neuroscience, consciousness, and sensation) Domain 2: Cognitive (includes the study of perception, cognition, memory, and intelligence) Domain 3: Development (includes learning and conditioning, lifespan development, and language) i hope this helps you.

Anytime scaffolds are assembled or __________, a competent person must oversee the operation.

a. Drawn
b. Disassembled
c. Thought
d. Made

Answers

B because of health and safety regulations

When scaffolds are now being construct or deconstruct, a competent person must supervise the work and train everybody who'll be assisting, and the further discussion can be defined as follows:

The competent person is also responsible for proposing whether fall protection is required for each scaffold erected. In constructing a scaffold, there are specific criteria for the ground the scaffold is constructed. On the products and components used to build the scaffold, its height in relation to the foundation. It's platform's design, and whether or not high efficiency is needed to supervise the installation.

Therefore, the final answer is "Option B".

Learn more:

brainly.com/question/16049673

A steam turbine receives 8 kg/s of steam at 9 MPa, 650 C and 60 m/s (pressure, temperature and velocity). It discharges liquid-vapor mixture with a quality of 0.94 at a pressure of 325 kPa and a velocity of 15 m/s. In addition, there is heat transfer from the turbine to the surroundings for 560 kW. Find the power produced by the turbine and express it in kW?

Answers

Answer:

The power produced by the turbine is 23309.1856 kW

Explanation:

h₁ = 3755.39

s₁ = 7.0955

s₂ = sf + x₂sfg  =

Interpolating fot the pressure at 3.25 bar gives;

570.935 +(3.25 - 3.2)/(3.3 - 3.2)*(575.500 - 570.935) = 573.2175

2156.92 +(3.25 - 3.2)/(3.3 - 3.2)*(2153.77- 2156.92) = 2155.345

h₂ = 573.2175 + 0.94*2155.345 = 2599.2418 kJ/kg

Power output of the turbine formula =

[tex]Q - \dot{W } = \dot{m}\left [ \left (h_{2}-h_{1} \right )+\dfrac{v_{2}^{2}- v_{1}^{2}}{2} + g(z_{2}-z_{1})\right ][/tex]

Which gives;

[tex]560 - \dot{W } = 8\left [ \left (2599.2418-3755.39 \right )+\dfrac{15^{2}- 60^{2}}{2} \right ][/tex]

= -8*((2599.2418 - 3755.39)+(15^2 - 60^2)/2 ) = -22749.1856

[tex]- \dot{W }[/tex] = -22749.1856 - 560 = -23309.1856 kJ

[tex]\dot{W }[/tex] = 23309.1856 kJ

Power produced by the turbine = Work done per second = 23309.1856 kW.

A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed to a length of 0.50 m and a mass of 2.2 kg is placed at its free end on a frictionless slope which makes an angle of 41 ∘ with respect to the horizontal. The spring is then released.

Required:
a. If the mass is not attached to the spring, how far up the slope from the compressed point will the mass move before coming to rest?
b. If the mass is attached to the spring, how far up the slope from the compressed point will the mass move before coming to rest?
c. Now the incline has a coefficient of kinetic friction μk. If the block, attached to the spring, is observed to stop just as it reaches the spring's equilibrium position, what is the coefficient of friction μk?

Answers

Answer:

a) The mass moves a distance of 0.625 m up the slope before coming to rest

b) The distance moved by the mass when it is connected to the spring is 0.6 m

c) [tex]\mu = 0.206[/tex]

Explanation:

Spring constant, k = 70 N/m

Compression, x = 0.50 m

Mass placed at the free end, m = 2.2 kg

angle, θ = 41°

Potential Energy stored in the spring, [tex]PE= 0.5 kx^2[/tex]

[tex]PE = 0.5 * 70 * 0.5^2\\PE = 8.75 J[/tex]

According to the principle of energy conservation

PE = mgh

8.75 = 2.2 * 9.8 * h

h = 0.41

If the mass moves a distance d from the spring

sin 41 = h/d

sin 41 = 0.41/d

d = 0.41/(sin 41)

d = 0.625 m

The mass moves a distance of 0.625 m up the slope before coming to rest

b) If the mass is attached to the spring

According to energy conservation principle:

Initial PE of spring = Final PE of spring + PE of block

[tex]0.5kx_1^2 = 0.5kx_2^2 + mgh\\x_2 = d - x_1 = d - 0.5\\h = d sin 41\\0.5*70*0.5^2 = 0.5*70*(d-0.5)^2 + 2.2*9.8*d*sin41\\8.75 = 35(d^2 - d + 0.25) + 14.15d\\8.75 = 35d^2 - 35d + 8.75 + 14.15d\\35d^2 = 20.85d\\d = 0.6 m[/tex]

The distance moved by the mass when it is connected to the spring is 0.6 m

3) The spring potential is converted to increased PE and work within the system.

mgh = Fd + 0.5kx²...........(1)

d = x , h = dsinθ

kinetic friction force , F = μmgcosθ

mgdsinθ + μmg(cosθ)d = 0.5kd²

mgsinθ + μmgcosθ = 0.5kd

sinθ + μcosθ = kd/(2mg)

[tex]\mu = \frac{\frac{kd}{2mg} - sin\theta}{cos\theta} \\\\\mu = \frac{\frac{70*0.5}{2*2.2*9.8} - sin41}{cos41} \\\\\mu = 0.206[/tex]

Answer:

A) l = 0.619m

B) l = 0.596m

C) μ = 0.314

Explanation:

The data given is:

k = 70 N/m

x = 0.5 m

m = 2.2 kg

θ = 41°

(FIGURES FOR EACH PART ARE ATTACHED AT THE BOTTOM. CONSULT THEM FOR BETTER UNDERSTANDING)

Part A

Gain in Gravitational Potential Energy = Loss in Elastic Potential Energy

mgh = (1/2)kx²

(2.2)(9.8)h = (1/2)(70)(0.5)²

h = 0.406 m

sinθ = h/l

l = h / sinθ

l = 0.406/sin41

l = 0.619m

Part B

Loss in Elastic Potential Energy in compressed spring = Gain in Gravitational Potential Energy + Gain in Elastic Potential Energy in stretched spring

(1/2)kx² = mgh + (1/2)k(l - 0.5)²

(1/2)(70)(0.5)² = (2.2)(9.8)(l·sin41)) + (1/2)(70)(l² - l + 1/4)

8.75 = 14.15(l) + 35(l²) - 35(l) + 8.75

35(l²) -20.85(l) = 0

l = 0.596m

Part C

Loss in Elastic Potential Energy = Gain in Gravitational Potential Energy + Work done against friction

(1/2)kx² = mgh + Fd

(1/2)kx² = mg(dsinθ) + μRd

(1/2)kx² = mg(dsinθ) + μ(mg · cosθ)d

(1/2)kx² = mgd (sinθ + μ(cosθ))

(1/2)(70)(0.5)² = (2)(9.8)(0.5) (sin41 + μcos41)

8.75 = 6.43 + 7.4μ

μ = 0.314

Select True/False for each of the following statements regarding aluminum / aluminum alloys: (a) Aluminum alloys are generally not viable as lightweight structural materials in humid environments because they are highly susceptible to corrosion by water vapor. (b) Aluminum alloys are generally superior to pure aluminum, in terms of yield strength, because their microstructures often contain precipitate phases that strain the lattice, thereby hardening the alloy relative to pure aluminum. (c) Aluminum is not very workable at high temperatures in air, in terms of extrusion and rolling, because a non-protective oxide grows and consumes the metal, converting it to a hard and brittle ceramic. (d) Compared to most other metals, like steel, pure aluminum is very resistant to creep deformation. (e) The relatively low melting point of aluminum is often considered a significant limitation for high-temperature structural applications.

Answers

Explanation:

(a) Aluminum alloys are generally not viable as lightweight structural materials in humid environments because they are highly susceptible to corrosion by water vapor.

False, aluminium is not susceptible to any corrosion by the presence of water vapor.

(b) Aluminum alloys are generally superior to pure aluminum, in terms of yield strength, because their micro structures often contain precipitate phases that strain the lattice, thereby hardening the alloy relative to pure aluminum.

True.

(c) Aluminum is not very workable at high temperatures in air, in terms of extrusion and rolling, because a non-protective oxide grows and consumes the metal, converting it to a hard and brittle ceramic.

False, aluminium is stable at high temperatures and does not oxidizes.

(d) Compared to most other metals, like steel, pure aluminum is very resistant to creep deformation.

False,pure aluminium is not resistant to the creep deformation.

(e) The relatively low melting point of aluminum is often considered a significant limitation for high-temperature structural applications.

False.

In this exercise, we have to analyze the statements that deal with aluminum and its properties, thus classifying it as true or false:

A) False

B) True

C) False

D) False

E) True

Analyzing the statements we can classify them as:

(a) For this statement we can say that it is False, aluminium is not susceptible to any corrosion by the presence of water vapor.

(b) For this statement we can say that it is True.

(c) For this statement we can say that it is False, aluminium is stable at high temperatures and does not oxidizes.

(d) For this statement we can say that it is False, pure aluminium is not resistant to the creep deformation.

(e) For this statement we can say that it is True.

See more about aluminum properties at brainly.com/question/12867973

Calculate the resistance using Voltage and current, again using voltage and power, again using current and power, and again using R1 and R2 recording the calculations for Run 3 rows 41-56

Answers

Answer:

R = V / I ,   R = V² / P,     R = P / I²

Explanation:

For this exercise let's use ohm's law

      V = I R

      R = V / I

Electric power is defined by

      P = V I

ohm's law

      I = V / R

we substitute

      P = V (V / R)

      P = V² / R

      R = V² / P

 

the third way of calculation

      P = (i R) I

      P = R I²

      R = P / I²

An inverted tee lintel is made of two 8" x 1/2" steel plates. Calculate the maximum bending stress in tension and compression when the lintel carries a total uniformly distributed load of 10000 lb on a simple span of 6 ft. Also, calculate the average shear stress at the neutral axis and the average shear stresses at the web and the flange

Answers

Answer:

hello your question lacks some information attached is the complete question

A) (i)maximum bending stress in tension = 0.287 * 10^6 Ib-in

    (ii) maximum bending stress in compression =  0.7413*10^6 Ib-in

B) (i)  The average shear stress at the neutral axis = 0.7904 *10 ^5 psi

    (ii)  Average shear stress at the web = 18.289 * 10^5 psi

    (iii) Average shear stress at the Flange = 1.143 *10^5 psi

Explanation:

First we calculate the centroid of the section,then we calculate the moment of inertia and maximum moment of the beam( find attached the calculation)

A) Calculate the maximum bending stress in tension and compression

lintel load = 10000 Ib

simple span = 6 ft

( (moment of inertia*Y)/ I ) = MAXIMUM BENDING STRESS

I = 53.54

i) The maximum bending stress (fb) in tension=

= [tex]\frac{M_{mm}Y }{I}[/tex]  = [tex]\frac{6.48 * 10^6 * 2.375}{53.54}[/tex] =  0.287 * 10^6 Ib-in

ii) The maximum bending stress (fb) in compression

= [tex]\frac{M_{mm}Y }{I}[/tex] = [tex]\frac{6.48 *10^6*(8.5-2.375)}{53.54}[/tex] = 0.7413*10^6 Ib-in

B) calculate the average shear stress at the neutral axis and the average shear stresses at the web and the flange

i) The average shear stress at the neutral axis

V = [tex]\frac{wL}{2}[/tex] = [tex]\frac{1000*6*12}{2}[/tex] = 3.6*10^5 Ib

Ay = 8 * 0.5 * (2.375 - 0.5 ) + 0.5 * (2.375 - [tex]\frac{0.5}{2}[/tex] ) * [tex]\frac{(2.375 - (\frac{0.5}{2} ))}{2}[/tex]

= 5.878 in^3

t = VQ / Ib  = ( 3.6*10^5 * 5.878 ) / (53.54 8 0.5) = 0.7904 *10 ^5 psi

ii) Average shear stress at the web ( value gotten from the shear stress at the flange )

t = 1.143 * 10^5 * (8 / 0.5 )  psi

  = 18.289 * 10^5 psi

iii) Average shear stress at the Flange

t = VQ / Ib = [tex]\frac{3.6*10^5 * 8*0.5*(2.375*(0.5/2))}{53.54 *0.5}[/tex]

= 1.143 *10^5

If the contact surface between the 20-kg block and the ground is smooth, determine the power of force F when t = 4 s. Initially, the block is at rest

Answers

Answer:

The power of force F is 115.2 W

Explanation:

Use following formula

Power  = F x V

[tex]F_{H}[/tex] = F cos0

[tex]F_{H}[/tex] = (30) x 4/5

[tex]F_{H}[/tex] = 24N

Now Calculate V using following formula

V = [tex]V_{0}[/tex] + at

[tex]V_{0}[/tex] = 0

a = [tex]F_{H}[/tex] / m

a = 24N / 20 kg

a = 1.2m / [tex]S^{2}[/tex]

no place value in the formula of V

V = 0 + (1.2)(4)

V = 4.8 m/s

So,

Power = [tex]F_{H}[/tex] x V

Power = 24 x 4.8

Power = 115.2 W

A furnace wall composed of 200 mm, of fire brick. 120 mm common brick 50mm 80% magnesia and 3mm of steel plate on the outside. If the inside surface temperature is 1450 °C and outer surface temperature is 90°C, estimate the temperature between layers and calculate the heat loss in KJ/h-m2. Assume k for fire brick 4 KJ/m-h°C, k for common brick= 2.8 KJ/m-h°C, k for 85% magnesia = 0.25 KJ/m-h°C and k for steel 240 KJ/m-h°C, k

Answers

Answer:

fire brick / common brick : 1218 °Ccommon brick / magnesia : 1019 °Cmagnesia / steel : 90.06 °Cheat loss: 4644 kJ/m^2/h

Explanation:

The thermal resistance (R) of a layer of thickness d given in °C·m²·h/kJ is ...

  R = d/k

so the thermal resistances of the layers of furnace wall are ...

  R₁ = 0.200/4 = 0.05 °C·m²·h/kJ

  R₂ = 0.120 2.8 = 3/70 °C·m²·h/kJ

  R₃ = 0.05/0.25 = 0.2 °C·m²·h/kJ

  R₄ = 0.003/240 = 1.25×10⁻⁵ °C·m²·h/kJ

So, the total thermal resistance is ...

  R₁ +R₂ +R₃ +R₄ = R ≈ 0.29286 °C·m²·h/kJ

__

The rate of heat loss is ΔT/R = (1450 -90)/0.29286 = 4643.70 kJ/(m²·h)

__

The temperature drops across the various layers will be found by multiplying this heat rate by the thermal resistance for the layer:

  fire brick: (4543.79 kJ/(m²·h))(0.05 °C·m²·h/kJ) = 232 °C

so, the fire brick interface temperature at the common brick is ...

  1450 -232 = 1218 °C

For the next layers, the interface temperatures are ...

  common brick to magnesia = 1218 °C - (3/70)(4643.7) = 1019 °C

  magnesia to steel = 1019 °C -0.2(4643.7) = 90.06 °C

_____

Comment on temperatures

Most temperatures are rounded to the nearest degree. We wanted to show the small temperature drop across the steel plate, so we showed the inside boundary temperature to enough digits to give the idea of the magnitude of that.

why is the peak value of the rectified output less than the peak value of the ac input and by how much g

Answers

Answer:

The Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Explanation:

This is what we called HALF WAVE RECTIFIER in which the Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Therefore this is the formula for Half wave rectifier

Vrms = Vm/2 and Vdc

= Vm/π:

Where,

Vrms = rms value of input

Vdc = Average value of input

Vm = peak value of output

Hence, half wave rectifier is a rectifier which allows one half-cycle of an AC voltage waveform to pass which inturn block the other half-cycle which is why this type of rectifiers are often been used to help convert AC voltage to a DC voltage, because they only require a single diode to inorder to construct.

Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The compressor pressure ratio is 10, and the inlet temperature for each turbine stage is 1400 K. The pressure ratios across each turbine stage are equal. The turbine stages and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k= 1.4.

Calculate:
a. the thermal efficiency of the cycle.
b. the back work ratio.
c. the net power developed, in kW.

Answers

Answer:

a. 47.48%

b. 35.58%

c. 2957.715 KW

Explanation:

[tex]T_2 =T_1 + \dfrac{T_{2s} - T_1}{\eta _c}[/tex]

T₁ = 300 K

[tex]\dfrac{T_{2s}}{T_1} = \left( \dfrac{P_{2}}{P_1} \right)^{\dfrac{k-1}{k} }[/tex]

[tex]T_{2s} = 300 \times (10) ^{\dfrac{0.4}{1.4} }[/tex]

[tex]T_{2s}[/tex] = 579.21 K

T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K

T₃ = T₂ + [tex]\epsilon _{regen}[/tex](T₅ - T₂)

T₄ = 1400 K

Given that the pressure ratios across each turbine stage are equal, we have;

[tex]\dfrac{T_{5s}}{T_4} = \left( \dfrac{P_{5}}{P_4} \right)^{\dfrac{k-1}{k} }[/tex]

[tex]T_{5s}[/tex] = 1400×[tex]\left( 1/\sqrt{10} \right)^{\dfrac{0.4}{1.4} }[/tex]  = 1007.6 K

T₅ = T₄ + ([tex]T_{5s}[/tex] - T₄)/[tex]\eta _t[/tex] = 1400 + (1007.6- 1400)/0.8 = 909.5 K

T₃ = T₂ + [tex]\epsilon _{regen}[/tex](T₅ - T₂)

T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K

T₆ = 1400 K

[tex]\dfrac{T_{7s}}{T_6} = \left( \dfrac{P_{7}}{P_6} \right)^{\dfrac{k-1}{k} }[/tex]

[tex]T_{7s}[/tex] = 1400×[tex]\left( 1/\sqrt{10} \right)^{\dfrac{0.4}{1.4} }[/tex]   = 1007.6 K

T₇ = T₆ + ([tex]T_{7s}[/tex] - T₆)/[tex]\eta _t[/tex] = 1400 + (1007.6 - 1400)/0.8 = 909.5 K

a. [tex]W_{net \ out}[/tex] = cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg

Heat supplied is given by the relation

cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg

Thermal efficiency of the cycle = (Net work output)/(Heat supplied)

Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%

b. [tex]bwr = \dfrac{W_{c,in}}{W_{t,out}}[/tex]

bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)]  = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%

c. Power = 6 kg *492.9525 KJ/kg  = 2957.715 KW

A nail gun operates using pressurized air, which is supplied through a 1/4-in diameter hose. The gun requires 75 psi to operate with a 2.6 ft3 /min airflow. If the air compressor develops 90 psi, determine the maximum allowable length of hose that can be used for its operation. Assume incompressible flow and a smooth pipe. Take =0.000238 slug/ft3 and = 1.6×10-4 ft2 /s.

Answers

Answer:

If we assumed flow was laminar, L = 1840 m

But in reality, this flow is in the turbulent region and L = 0.00000304 m = (1.197 × 10⁻⁴) inch

Explanation:

We first check the region of flow of the fluid by computing the Reynolds number

Re = (ρvD/μ)

Listing all the parameters and converting to SI units

ρ = density of the fluid = 0.000238 slug/ft³ = 0.123 kg/m³

v = velocity of flow = (Q/A)

Q = volumetric flowrate of the air = 2.6 ft³/min = 0.0012271 m³/s

A = Cross sectional Area of the pipe = (πD²/4)

D = Pipe diameter = (1/4) inch = 0.00635 m

A = (π×0.00635²/4) = 0.00003167 m²

v = (0.0012271/0.00003167) = 38.746 m/s

μ = dynamic viscosity of the fluid = (Kinematic viscosity) × (density)

Kinematic viscosity = (1.6 × 10⁻⁴) ft²/s = (1.486 × 10⁻⁵) m²/s

μ = (1.486 × 10⁻⁵) × (0.123) = 0.0000018278 = (1.83 × 10⁻⁶) Pa.s

Re = (0.123×38.746×0.00635)/(1.83 × 10⁻⁶) = 16,556.824214903

This Reynolds number is in the turbulent flow region.

From Hagen-Poiseulle equation, the volumetric flowrate for laminar and turbulent flow is given as

Q = (πD⁴ΔP)/(128μL) for laminar flow

ΔP = (0.241 × ρ⁰•⁷⁵ × μ⁰•²⁵ × L × Q¹•⁷⁵)/D⁴•⁷⁵ for turbulent flow

Since our flow is turbulent

ΔP = (0.241 × ρ⁰•⁷⁵ × μ⁰•²⁵ × L × Q¹•⁷⁵)/D⁴•⁷⁵

L = (ΔP.D⁴•⁷⁵)/(0.241 ρ⁰•⁷⁵ μ⁰•²⁵ Q¹•⁷⁵)

Listing all the parameters and converting to SI units

L = Length of the pipe = ?

ΔP = Pressure drop across the flow channel = 90 - 75 = 15 psi = 103421.4 Pa

D = Pipe diameter = (1/4) inch = 0.00635 m

ρ = density of the fluid = 0.000238 slug/ft³ = 0.123 kg/m³

μ = dynamic viscosity of the fluid = (1.83 × 10⁻⁶) Pa.s

Q = volumetric flowrate of the air = 2.6 ft³/min = 0.0012271 m³/s

L = (0.123 × 0.00635⁴•⁷⁵) ÷ (0.241 × 0.123⁰•⁷⁵ × 0.0000018278⁰•²⁵ × 0.0012271¹•⁷⁵)

L = (4.4986 × 10⁻¹²) ÷ (1.481 × 10⁻⁶)

L = 0.0000030378 m = 0.00000304 m = (1.197 × 10⁻⁴) inch

If we assumed that flow was laminar

Q = (πD⁴ΔP)/(128μL)

L = (πD⁴ΔP)/(128μQ)

L = (π × 0.00635⁴ × 103421.4) ÷ (128 × 0.0000018278 × 0.0012271)

L = (0.0005282691) ÷ (0.0000002871)

L = 1840 m

Hope this Helps!!!

Identify the advantages of using 6 tube passes instead of just 2 of the same diameter in shell-and-tube heat exchanger.What are the advantages and disadvantages of using 6 tube passes instead of just 2 of the same diameter?

Answers

Answer:

Please check explanation for answer

Explanation:

Here, we are concerned with stating the advantages and disadvantages  of using a 6 tube passes instead of a 2 tube passes of the same diameter:

Advantages

* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface

* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too

            Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.

Disadvantages

* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.

* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of  manufacturing costs

help mhee why are you u an enigner

Answers

Answer:

help me why are you an enginer

Explanation:

because lives

For a fluid flowing through a pipe assuming that pressure drop per unit length of pipe (P/L) depends on the diameter of the pipe , the velocity of fluid, the density of fluid and the viscosity of the fluid. Show that = ∅ ൬ ൰

Answers

Answer:

Explanation:

La vaca

El pato

Describe experimental factors that could be modified, and unalterable properties of materials used.

Answers

Answer:

a. mechanical properties

b. thermal properties

c. chemical properties

d. electical properties

e. magnetic properties

Explanation:

a. The mechanical properties of a material are those properties that involve a reaction to an applied load.The most common properties considered are strength, ductility, hardness, impact resistance, and fracture toughness, elasticity, malleability, youngs' modulus etc.

b. Thermal properties such as boiling point , coefficient of thermal expansion , critical temperature  , flammability  , heat of vaporization , melting point ,thermal conductivity , thermal expansion ,triple point , specific heat capacity

c. Chemical properties such as corrosion resistance , hygroscopy , pH , reactivity , specific internal surface area , surface energy , surface tension

d. electrical properties such as capacitance , dielectric constant , dielectric strength , electrical resistivity and conductivity , electric susceptibility , nernst coefficient (thermoelectric effect) , permittivity  etc.

e. magnetic properties such as diamagnetism,  hysteresis,  magnetostriction , magnetocaloric coefficient , magnetoresistance , permeability , piezomagnetism , pyromagnetic coefficient

Solid solution strengthening is achieved byGroup of answer choicesstrain hardening restricting the dislocation motion increasing the dislocation motion increasing the grain boundary g

Answers

Answer:

B. restricting the dislocation motion

Explanation:

Solid solution strengthening is a type of alloying that is carried out by the addition of the atoms of the element used for the alloying to the crystallized lattice structure of the base metal, which the metal that would be strengthened. The purpose of this act is to increase the strength of metals. It actually works by impeding or restricting the motion in the crystal lattice structure of metals thus making them more difficult to deform.

The solute atoms used for strengthening could be interstitial or substitutional. The interstitial solute atoms work by moving in between the space in the atoms of the base metal while the substitutional solute atoms make a replacement with the solvent atoms in the base metal.

Air enters the first compressor stage of a cold-air standard Brayton cycle with regeneration and intercooling at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The overall compressor pressure ratio is 10, and the pressure ratios are the same across each compressor stage. The temperature at the inlet to the second compressor stage is 300 K. The turbine inlet temperature is 1400 K. The compressor stages and turbine each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k = 1.4, calculate:
a. the thermal efficiency of the cycle
b. the back work ratio
c. the net power developed, in kW
d. the rates of exergy destruction in each compressor stage and the turbine stage as well as the regenerator, in kW, for T 0 = 300 K.

Answers

Answer:

a. [tex]\eta _{th}[/tex] = 77.65%

b. bwr = 6.5%

c. 3538.986 kW

d. -163.169 kJ

Explanation:

a. The given property  are;

P₂/P₁ = 10, P₂ = 10 * 100 kPa = 1000 kPa

p₄/p₁ = 10

P₂/P₁ = p₄/p₃ = √10

p₂ = 100·√10

[tex]T_{2s}[/tex] = T₁×(√10)^(0.4/1.4) = 300 × (√10)^(0.4/1.4) = 416.85 K

T₂ = T₁ + ([tex]T_{2s}[/tex] - T₁)/[tex]\eta _c[/tex] = 300 + (416.85 - 300)/0.8 = 446.0625 K

p₄ = 10×p₁ = 10×100 = 1000 kPa

p₄/p₃ = √10 =

p₃ = 100·√10

T₃ = 300 K

T₃/[tex]T_{4s}[/tex] = (P₂/P₁)^((k - 1)/k) = (√10)^(0.4/1.4)

[tex]T_{4s}[/tex] = T₃/((√10)^(0.4/1.4) ) = 300/((√10)^(0.4/1.4)) = 215.905 K

T₄ = T₃ + ([tex]T_{4s}[/tex] - T₃)/[tex]\eta _c[/tex] = 300 + (215.905- 300)/0.8 = 194.881 K

The efficiency = 1 - (T₄ - T₁)/(T₃ - T₂) = 1 - (194.881 -300)/(300 -446.0625 ) = 0.28

T₄ = 446.0625 K

T₆ = 1400 K

[tex]T_{7s}[/tex]/T₆ = (1/√10)^(0.4/1.4)

[tex]T_{7s}[/tex] = 1400×(1/√10)^(0.4/1.4)  = 1007.6 K

T₇ = T₆ - [tex]\eta _t[/tex](T₆ - [tex]T_{7s}[/tex]) = 1400 - 0.8*(1400 - 1007.6) = 1086.08 K

T₈ = 1400 K

T₉ = 1086.08 K

T₅ = T₄ + [tex]\epsilon _{regen}[/tex](T₉ - T₄) = 446.0625 +0.8*(1086.08 - 446.0625) = 958.0765 K

[tex]\eta _{th}[/tex] =(((T₆ - T₇) + (T₈ - T₉)) -((T₂ - T₁) + (T₄ - T₃)))/((T₆ - T₅) + (T₈ - T₇))

(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300)))/((1400 -958.0765 ) + (1400 -1086.08 )) = 0.7765

[tex]\eta _{th}[/tex] = 77.65%

b. Back work ratio, bwr = [tex]bwr = \dfrac{w_{c,in}}{w_{t,out}}[/tex]

((446.0625 - 300)+(194.881 - 300))/((1400 - 1086.08) + (1400 -1086.08 ))

40.9435/627.84 = 6.5%

c. [tex]w_{net, out} = c_p[(T_6 -T_7) + (T_8 - T_9)] - [(T_2 - T_1) + (T_4 -T_3)][/tex]

Power developed is given by the relation;

[tex]\dot m \cdot w_{net, out}[/tex]

[tex]\dot m \cdot w_{net, out}[/tex]= 6*1.005*(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300))) = 3538.986 kW

d. Exergy destruction = 6*(1.005*(300-446.0625 ) - 300*1.005*(-0.3966766)

-163.169 kJ

. The job of applications engineer for which Maria was applying requires (a) excellent technical skills with respect to mechanical engineering, (b) a commitment to working in the area of pollution control, (c) the ability to deal well and confidently with customers who have engineering problems, (d) a willingness to travel worldwide, and (e) a very intelligent and well-balanced personality. List 10 questions you would ask when interviewing applicants for the job.

Answers

Answer:

Tell us about your self Are your confident that you are the right candidate for this positionwhy should i hire youDo you like working under supervisionHow do you like to work ( in a group or individually )What is your ultimate workplace goalwhat are your future plansWhat do you expect from the Organization when given the jobDo you like taking on critical problemsHow long can you work in this position

Explanation:

For a job of applications engineer which require excellent technical skills, commitment  to working , ability to deal well and confidently with customers a willingness to travel and very intelligent and well-balanced personality.

The ten questions you should ask Maria to determine if she is qualified for the job are :

Tell us about your self ( functions you have )Are your confident that you are the right candidate for this positionwhy should i hire youDo you like working under supervisionHow do you like to work ( in a group or individually )What is your ultimate workplace goalwhat are your future plansWhat do you expect from the Organization when given the jobDo you like taking on critical problemsHow long can you work in this position

Consider a double-pipe counter-flow heat exchanger. In order to enhance its heat transfer, the length of the heat exchanger is doubled. Will the effectiveness of the exchanger double?

Answers

Answer:

effectiveness of the heat exchanger will not be double when the length of the heat exchanger is doubled.

Because effectiveness depends on NTU and not necessarily the length of the heat exchanger

which solution causes cells to shrink

Answers

Answer: Hypertonic

Explain: a hypertonic solution has increased solute and a net movement of water outside causing the cell to shrink. A hypotonic has decreased solute concentration, and a net movement of water inside the cell, causing swelling or breakage.

It is to be noted that a hypertonic solution have the capacity to make cells to shrink.

What happens in a hypertonic solution?

In a hypertonic solution, the concentration of solutes (e.g., salts, sugars) outside the cell is higher than inside the cell.

As a result, water moves out of the cell through osmosis, trying to equalize the concentration, causing the cell to lose water and shrink.

This process is commonly observed in biology when examining the effect of different solutions on cells, such as in red blood cells or plant cells.

Learn more about hypertonic solution at:

https://brainly.com/question/4237735

#SPJ6

If there are 16 signal combinations (states) and a baud rate (number of signals/second) of 8000/second, how many bps could I send

Answers

Answer:

32000 bits/seconds

Explanation:

Given that :

there are 16  signal combinations (states) = 2⁴

bits  n = 4

and a baud rate (number of signals/second) = 8000/second

Therefore; the number of bits per seconds can be calculated as follows:

Number of bits per seconds = bits  n × number of signal per seconds

Number of bits per seconds =  4 × 8000/second

Number of bits per seconds = 32000 bits/seconds

Identify the correct statements in the context of friction factors of laminar and turbulent flows
a) In turbulent flow, the tubes with rough surfaces have much higher friction factors than the tubes with smooth surfaces
b) In turbulent flow, the tubes with rough surfaces have much lower friction factors than the tubes with smooth surfaces.
c) In laminar flow, the friction factor is dependent on the surface roughness
d) In laminar flow, the friction factor is independent of the surface roughness.

Answers

Answer:

a) In turbulent flow, the tubes with rough surfaces have much higher friction factors than the tubes with smooth surfaces.

Explanation:

Turbulent flow is a type of fluid flow in which fluid will undergo irregular fluctuations. The tubes with rough surfaces have higher friction factors than the tubes with smooth surfaces. In laminar flow the effect of effect of surface roughness is negligible on friction factors.

A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 mL of the base. Assuming complete neutralization of the acid,
1) What was the normality of the acid solution?
2) What was the molarity of the acid solution?

Answers

Answer:

a. 0.4544 N

b. [tex]5.112 \times 10^{-5 M}[/tex]

Explanation:

For computing the normality and molarity of the acid solution first we need to do the following calculations

The balanced reaction

[tex]H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O[/tex]

[tex]NaOH\ Mass = Normality \times equivalent\ weight \times\ volume[/tex]

[tex]= 0.3200 \times 40 g \times 21.30 mL \times 1L/1000mL[/tex]

= 0.27264 g

[tex]NaOH\ mass = \frac{mass}{molecular\ weight}[/tex]

[tex]= \frac{0.27264\ g}{40g/mol}[/tex]

= 0.006816 mol

Now

Moles of [tex]H_2SO_4[/tex] needed  is

[tex]= \frac{0.006816}{2}[/tex]

= 0.003408 mol

[tex]Mass\ of\ H_2SO_4 = moles \times molecular\ weight[/tex]

[tex]= 0.003408\ mol \times 98g/mol[/tex]

= 0.333984 g

Now based on the above calculation

a. Normality of acid is

[tex]= \frac{acid\ mass}{equivalent\ weight \times volume}[/tex]

[tex]= \frac{0.333984 g}{49 \times 0.015}[/tex]

= 0.4544 N

b. And, the acid solution molarity is

[tex]= \frac{moles}{Volume}[/tex]

[tex]= \frac{0.003408 mol}{15\ mL \times 1L/1000\ mL}[/tex]

= 0.00005112

=[tex]5.112 \times 10^{-5 M}[/tex]

We simply applied the above formulas

The volume of the 0.3200 M, NaOH required to neutralize the H₂SO₄, is

21.30 mL, which gives the following acid solution approximate values;

1) Normality of the acid solution is 0.4544 N

2) The molarity of the acid is 0.2272

How can the normality, molarity of the solution be found?

Molarity of the NaOH = 0.3200 M

Volume of NaOH required = 21.30 mL

1) The normality of the acid solution is found as follows;

The chemical reaction is presented as follows;

H₂SO₄(aq) + 2NaOH (aq) → Na₂SO₄ (aq) + H₂O

Number of moles of NaOH in the reaction is found as follows;

[tex]n = \dfrac{21.30}{1,000} \times 0.3200 \, M = \mathbf{0.006816 \, M}[/tex]

Therefore;

The number of moles of H₂SO₄ = 0.006816 M ÷ 2 = 0.003408 M

[tex]Normality = \mathbf{ \dfrac{Mass \ of \, Acid \ in \ reaction}{Equivalent \ mass \times Volume \ of \ soltute}}[/tex]

Which gives;

[tex]Normality = \dfrac{ 98 \times 0.003408 }{49 \times 0.015} = \mathbf{0.4544}[/tex]

The normality of the acid solution, H₂SO₄(aq), N ≈ 0.4544

2) The molarity is found as follows;

[tex]Molarity = \dfrac{0.003408 \, moles}{0.015 \, L} = \mathbf{0.2272 \, M}[/tex]

The molarity of the acid solution is 0.2272 M

Learn more about the normality and the molarity of a solution here:

https://brainly.com/question/6532653

https://brainly.com/question/14112872

Other Questions
Hondas BP program involves: a. A formalized approach for teaching the supplier to improve its own processes b. Tight control of suppliers c. Elimination of the bottom 10% of suppliers at the end of the program d. All of the above e. Only a and b Perhaps the aspect of internal investigation that has instigated the greatest amountof litigation isdrug testinggenetic testinghealth history inquirymental health review Question 15 PLEASE HELP Find the y-intercepts of -x+2y=12. Y-intercept: (0,___) Congress passed the Clean Air Act in 1970. Since this act was passed, emissions of the six main air pollutants Group of answer choices cannot be measured since Congress failed to appropriate money to monitor the level of emissions. have fallen by more than one-half. have remained essentially constant, even though significant economic growth has occurred in the United States since 1970. have increased significantly due to the growth of the U.S. economy. Is trial by jury Athens or Rome? Pause at line 121. Whydoesn't Mrs. Jones ask Rogerpersonal questions?Please help! Please HELP!!! :( How do the stages of prenatal development applies to you? I need examples so that I know how to detail mine :) The term "the Troubles" refers to a period of violence (from the late 1960suntil 1998) between Catholics and Protestants in Northern Ireland.Protestants tended to have higher incomes than Catholics, while moreCatholics were dependent on state benefits. Most Protestants wanted toremain part of the United Kingdom, while most Catholics wanted to be part ofthe separate Republic of Ireland. The two groups disagreed about socialissues. Protestants formed the majority, so they controlled the government.In what way were "the Troubles" a conflict over ideology?A. Members of the minority group had lower incomes.B. Two groups used violence for constitutional goals.O C. Two groups were fighting over different beliefs.O D. The minority group was shut out of political power. What is a control in an experiment?A. A version of the experiment that is unchanged to make sure the experimental data is not due to chance.B. A person who oversees the experiment to make sure it is following proper procedures.C. The variable controlled by the scientist to affect the dependent variable.D. The name for the set of independent and dependent variables that will be controlled by the scientist.need help asap got 1 minute Choose a character from the novel, White Dolphin, and then write a speech keeping in mind the character's point of view about 'saving the dolphins and marine life'. The speech can be in favor or against, depending on the character you are choosing. i will give 50 points and brainliest Find the coordinates of the midpoint. Please help, thank you! what's the best prouduct of these fractions 4/78/914/15 Tuliskan dua kebaikan jika mengutamakan kebersihan dan keindahan alam sekitar. the ratio 2.5m to 60cm can be written in the form 1:n find the value of n. someone please help asap if straykids hyunjin had 50,000 won and wanted to by lots of 45rings for 500 won how much will he have left? b) if changbin and han had 145 lightsicks and sold 75? how much lighsticks will they have now? A company wants to administer a satisfaction survey to its current customers. Using their customer database, the company randomly selects 100 customers and asks them about their level of satisfaction with the company.what type of sampling method is use Select the correct car trips. Listed are the distances traveled by four cars and the time it took each car to cover that distance. Identify which cars traveled at the same speed. What was the experience of minority groups during the Great Depression? A. They experienced increased discrimination because of the competition for jobs. B. They received government assistance in starting their own businesses. C.They migrated to the Midwest and found success in farming. Identify the distance between points (3,8, 0) and (-2,9,-4), and identify the midpoint of thesegment for which these are the endpoints. Round to the nearest tenth if necessaryA) d-3.5 units; M(-0.5, 8.5.2)B) d-3.5 units; M(0.5, 8.5.-2)C) d-6.5 units: M(0.5, 8.5.-2)D) d-6.5 units: M(-0.5, 8.5.2)