Match the following terms to their units. A. Atomic mass B. Molarity C. Molar mass - mol/liter amu g/mol ne relationship between the atomic mass of an element and a mole point)​

Answers

Answer 1

The matching is like :- (A) Atomic mass - amu (atomic mass units) (B) Molarity - mol/liter (C) Molar mass - g/mol (grams per mole)

The atomic mass (in amu) is used to convert between the mass of an element and the number of moles of that element, while the molar mass (in g/mol) is used to convert between the mass of a compound and the number of moles of that compound. Molarity (in mol/L) is used to express the concentration of a solution. In chemistry, the atomic mass of an element is the mass of a single atom of that element relative to the mass of a carbon-12 atom, which is defined as exactly 12 atomic mass units (amu). The atomic mass is typically given in units of amu, and it is used to convert between the mass of an element and the number of moles of that element. Molarity is a unit of concentration that is commonly used in chemistry. It is defined as the number of moles of solute per liter of solution. The unit for molarity is mol/L, which is often abbreviated as M. Molar mass is the mass of one mole of a substance. It is expressed in units of grams per mole (g/mol). The molar mass is used to convert between the mass of a compound and the number of moles of that compound. For example, if we know the atomic mass of an element (in amu), we can use it to calculate the molar mass of that element (in g/mol). Similarly, if we know the molarity of a solution (in mol/L) and the molar mass of the solute (in g/mol), we can calculate the mass of the solute in a given volume of the solution.

In summary, the atomic mass, molarity, and molar mass are all important concepts in chemistry that are expressed in different units. Understanding these units and how to use them is essential for many calculations in chemistry.

To know more about atomic mass please refer: https://brainly.com/question/17067547

#SPJ1


Related Questions

how can the chemical potential energy in an endothermic reaction best be described?(1 point) responses

Answers

The chemical potential energy in an endothermic reaction is best described as the energy absorbed during a reaction, which increases the stability of the products formed.

The chemical potential energy in an endothermic reaction can best be described as the energy absorbed or gained. That is, chemical potential energy in an endothermic reaction refers to the energy needed for a reaction to occur.

The energy is absorbed from the surroundings or gained by the reaction when it occurs. The energy can be in the form of heat, light, or electricity.

The energy absorbed or gained by the reaction is then used to break the bonds of the reactants and form the bonds of the products.  

Thus, in endothermic reactions, the reactants need energy to be transformed into products. The energy is then used to break the bonds of the reactants and forms the bonds of the products.

Learn more about Endothermic reactions here:

https://brainly.com/question/1160007

#SPJ11

at a party, 6.00 kg of ice at -5.00oc is added to a cooler holding 30.0 liters of water at 20.0oc. what is the temperature of the water when it comes to equilibrium?

Answers

The temperature of the water when it comes to equilibrium is 69.48°C.

Firstly, the heat lost by ice is equal to the heat gained by water. This is because the process of melting of ice requires heat energy, and this heat energy will be absorbed from the water present in the cooler.

Let us find out the heat lost by ice. The specific heat of ice is 2.05 J/g·°C, and the heat of fusion of ice is 334 J/g. Heat lost by ice can be given as:

q1 = mass of ice × specific heat of ice × (final temperature - initial temperature) + mass of ice × heat of fusion

q1 = 6.00 × 10^3 g × 2.05 J/g·°C × (0 - (-5)) + 6.00 × 10^3 g × 334 J/g

= 6.00 × 10^3 g × 10.25 J/g·°C + 2.00 × 10^6 J

= 6.15 × 10^4 J + 2.00 × 10^6 J

= 2.06 × 10^6 J

Heat gained by water can be given as:

q2 = mass of water × specific heat of water × (final temperature - initial temperature)

q2 = 30.0 kg × 4.18 J/g·°C × (final temperature - 20.0°C) = 1254 J/kg·°C × (final temperature - 20.0°C)

Since q1 = q2,

we have: 6.15 × 10^4 J + 2.00 × 10^6 J

= 1254 J/kg·°C × (final temperature - 20.0°C)6.21 × 10^4 J

= 1254 J/kg·°C × (final temperature - 20.0°C)

final temperature - 20.0°C = 6.21 × 10^4 J / (1254 J/kg·°C)

final temperature - 20.0°C = 49.48°C

final temperature = 49.48°C + 20.0°C = 69.48°C

Hence, the temperature of the water when it comes to equilibrium is 69.48°C.

To know more about equilibrium, refer here:

https://brainly.com/question/30807709#

#SPJ4

Calculate the molality of a solution that contain 90. 0g of benzoic acid in 350 ml of water

Answers

The molality of a solution that contain 90. 0g of benzoic acid in 350 ml of water is 2.102 mole / kg.

The molarity of a solution is defined as the number of moles of solute dissolved in one liter of solution. Molarity can be expressed as the ratio of a solvent's moles to a solution's total liters. Both the solute and the solvent are part of the solution in calculating the molarity. It is the ratio of the solute moles to the solvent kilograms.

Molarity = Number of moles of solute Volume of solution in liter.

moles of C6H5COOH = 90.0 g / 122.12g/mole

                                     = 0.736 mole

Now we have to calculate the mass of water.

            = (350 ml) (1 g/ml) * 1L/ 1000ml

            = 0.350 kg

Molarity =  0.736 mole/  0.350 kg

             = 2.102 mole / kg.

To learn more about Molarity

https://brainly.com/question/30404105

#SPJ4

which of the following statements about the periodic trend of atomic radius is/are true? i. atomic radius decreases from left to right across a period because zeff increases. ii. atomic radius increases from left to right

Answers

The following statements about the periodic trend of atomic radius true is i. atomic radius decreases from left to right across a period because zeff increases.

The nuclear charge increases as we move from left to right in the periodic table. Electrons occupy the same shell as the nuclear charge increases, resulting in stronger attraction between the electrons and the nucleus, reducing the atomic radius.The second statement about the periodic trend of atomic radius is incorrect.

Atomic radius actually increases from left to right across a period. This is because the number of electrons in the outermost shell increases as we move from left to right across a period, resulting in greater repulsion between electrons, leading to an increase in the size of the atom. Therefore, option (i) is true and option (ii) is false.

Learn more about atomic radius at:

https://brainly.com/question/13126562

#SPJ11

How many atoms are in 32.10 g of He

Answers

Taking into account the definition of Avogadro's Number, 4.83×10²⁴ atoms of He are in 32.10 g of He.

Definition of molar mass

The molar mass of substance is a property defined as the amount of mass that a substance contains in one mole.

Definition of Avogadro's Number

Avogadro's Number is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole.

Its value is 6.023×10²³ particles per mole.

Amount of moles of 32.10 g of He

The molar mass of He is 4 g/mole. You can apply the following rule of three: If by definition of molar mass 4 grams of He are contained in 1 mole of He, 32.10 grams of He are contained in how many moles?

moles= (32.10 grams × 1 mole)÷ 4 grams

moles= 8.025 moles

The amount of moles of He in 32.19 grams is 8.025 moles.

Amount of atoms of 32.10 g of He

You can apply the following rule of three: If by definition of Avogadro's Number 1 mole of He contains 6.023×10²³ atoms, 8.025 moles of He contains how many atoms?

amount of atoms of He= (8.025 moles × 6.023×10²³ atoms)÷ 1 mole

amount of atoms of He= 4.83×10²⁴ atoms

Finally, 4.83×10²⁴ atoms of He are present.

Learn more about Avogadro's Number:

brainly.com/question/11907018

#SPJ1

What does Einstein's famous equation say that all matter is?
concentrated supernovas that have condensed into dwarfs
concentrated energy that has condensed into the atoms
concentrated atoms that have condensed into protons
concentrated nebulas that have been condensed into red giants

Answers

Einstein's famous equation say that all matter is option B. concentrated energy that has condensed into the atoms.

What is Einstein's famous equation?

When combined with the speed of light, Einstein's famous equation E=mc2 demonstrates mathematically that energy and matter are one and the same. m stands for mass, c for the speed of light, and E stands for energy. This equation states that all matter is simply concentrated energy that has condensed into atoms.

Einstein's famous equation is E=mc², which expresses the relationship between mass (m) and energy (E), and the constant speed of light (c) in a vacuum. This equation shows that mass and energy are interchangeable, and that a small amount of mass can be converted into a large amount of energy, as demonstrated in nuclear reactions.

Learn more about Einstein at:

https://brainly.com/question/26366397

#SPJ1

a 0.261 g sample of nahc2o4 (one acidic proton) required 17.5 ml of sodium hydroxide solution for complete reaction. determine the molar concentration of the sodium hydroxide solution.

Answers

The molar concentration of the sodium hydroxide solution is 0.37 mol/L.

To determine the molar concentration of the sodium hydroxide solution, the following equation can be used:

Molarity = (Mass of Solute/Molecular Weight of Solute) / (Volume of Solution in L)

In this case, the solute is sodium hydroxide (NaOH) and the molecular weight of NaOH is 40.00 g/mol.

The mass of the solute must be calculated. Since 0.261 g of NaHC₂O₄ (one acidic proton) requires 17.5 ml of sodium hydroxide solution for a complete reaction, the mass of NaOH required must also be equal to 0.261 g since the equivalence of both is 1. Then the volume of the solution (in liters) is determined. Since 1 ml = 0.001 L, 17.5 ml = 0.0175 L.

Plugging the values into the equation gives:

Molarity = (0.261g/40.00 g/mol) / (0.0175 L) = 0.37 mol/L



Therefore, the molar concentration of the sodium hydroxide solution is found to be 0.37 mol/L  when 0.261 g of NaHC₂O₄ required 17.5 ml of sodium hydroxide solution for a complete reaction.

To know more about molar concentration, refer here:

https://brainly.com/question/15532279#

#SPJ11

brainly plutonium-239 has a half life of 24000 yearas and is considered safe only ewhens it radiactively has dropped to 1% of the original level approximately how long the pu-239 be stored securely to be considered safe

Answers

Plutonium-239 is a radioactive isotope that has a half-life of 24000 years. When it has decayed to 1% of its original level, it is considered safe.

PLUTONIUM -

As plutonium isotopes decay, they undergo chemical changes. They might change into new elements like uranium or neptunium or into new isotopes of plutonium.

These "daughter products" frequently contain radioactive elements themselves. The atomic number 94 metal element plutonium is radioactive.

Scientists looking for a way to break atoms for use in nuclear weapons made the discovery in 1940. When uranium atoms absorb neutrons in a nuclear reactor, plutonium is produced.

The vast majority of plutonium in the world is produced artificially.

To be considered safe, it must be stored securely for approximately 240,000 years.

How long must the pu-239 be stored securely to be considered safe?

The decay of Plutonium-239 to 1% of its initial level, which is considered safe, requires approximately ten half-lives.

As a result, plutonium-239 must be kept securely for ten times its half-life, or approximately 240,000 years, to be considered safe.

To know more about the plutonium https://brainly.com/question/27920632

#SPJ11

9. a 50 ml sample of an aqueous solution contains 1.08 g of human serum albumin, a blood-plasma protein. the solution has an osmotic pressure of 5.85 mmhg at 298 k. what is the molar mass of the albumin?

Answers

The molar mass of the albumin can be calculated by dividing the number of moles (1.08 g) by the molarity (0.0216 mol/L), which yields a molar mass of 49.54 g/mol.

The molar mass of the albumin can be calculated using the given data. First, calculate the molarity of the solution. Molarity = Number of moles/Volume of solution = 1.08 g/50 mL = 0.0216 mol/L.

The osmotic pressure of the solution can be calculated using the Van’t Hoff equation,

which states that osmotic pressure is equal to the molarity multiplied by the universal gas constant (R) multiplied by the temperature (T).

Therefore, osmotic pressure = 0.0216 mol/L × 8.3145 L.atm/mol.K × 298 K = 5.85 mmHg.

The molar mass of the albumin, rearrange the osmotic pressure equation to solve for molarity, molarity = osmotic pressure/RT = 5.85 mmHg/(8.3145 L.atm/mol.K × 298 K) = 0.0216 mol/L.

The molar mass of the albumin can be calculated by dividing the number of moles (1.08 g) by the molarity (0.0216 mol/L), which yields a molar mass of 49.54 g/mol.


The molar mass of the albumin can be calculated by first calculating the molarity of the solution, which is equal to the number of moles divided by the volume of the solution.

The osmotic pressure of the solution can then be calculated using the Van't Hoff equation, which states that osmotic pressure is equal to the molarity multiplied by the universal gas constant and the temperature.

The molar mass of the albumin can then be calculated by rearranging the osmotic pressure equation to solve for molarity and then dividing the number of moles by the molarity. This yields a molar mass of 49.54 g/mol.

to know more about albumin refer here:

https://brainly.com/question/18882874#

#SPJ11

How many molecules are there in 4.00 moles of glucose, c6h12o6

Answers

Answer: There are 2.41 * 102 molecules in 4.00 moles of glucose.

Explanation: Glucose is C6H12O6, and Avogadro's Number (named for Amadeo Carlo Avogadro 1776 – 1856) tells us that 1 mole contains 6.022 x 10^23 molecules. So, 4.0 moles contains 4 x 6.022 x 10^23 = 2.409 x 10^24 molecules.

when 5 grams of a nonelectrolyte is added to 30 g of water, the new freezing point is -2.5 deg c. what is the molecular mass of the unknown compound?

Answers

The molecular mass of the unknown compound is 3.7 g/mol.

The molecular mass of the unknown compound can be calculated using the formula for freezing point depression, which is:
ΔT = Kf * m
Where Kf is the freezing point depression constant (1.86 K/m),

m is the molality of the solution (moles of solute per kilogram of solvent), and

ΔT is the difference between the freezing point of the pure solvent and the freezing point of the solution.

Plugging in the values given, we get:
-2.5 = 1.86 * m

Solving for m, we get,

m = -2.5 / 1.86

= 1.35 m

Therefore, the molecular mass of the unknown compound can be calculated by dividing the mass of the unknown compound (5 grams) by the molality of the solution (1.35 m).

This gives us a molecular mass of 3.7 g/mol.

Learn more about molecular mass here:

https://brainly.com/question/837939

#SPJ11

which of the following pairs of elements are likely to form an ionic compound? nickel and oxygen cesium and magnesium sodium and argon copper and iodine nitrogen and fluorine sulfur and carbon

Answers

The pair of elements that are likely to form an ionic compound are cesium and magnesium.

In an ionic compound, the elements form ions that are held together by ionic bonds.

Ionic compounds are chemical compounds that are formed between two or more elements that have significant differences in their electronegativity. Electronegativity is the ability of an atom to attract electrons towards itself, and it is affected by the number of protons in the nucleus and the distance between the nucleus and the valence electrons.

Ionic compounds are usually made up of metals and nonmetals. In these compounds, the metal atoms lose one or more electrons to form positively charged ions known as cations. At the same time, nonmetal atoms gain one or more electrons to form negatively charged ions known as anions. The attraction between these ions leads to the formation of a crystal lattice. The strength of this attraction is known as the ionic bond.

To determine whether two elements are likely to form an ionic compound, you need to compare their electronegativity values. If the difference is large, then the compound is likely to be ionic. In general, metals have low electronegativity values, while nonmetals have high electronegativity values. Cesium has an electronegativity of 0.79, while magnesium has an electronegativity of 1.31. The difference in their electronegativity values is 0.52, which is considered significant. Therefore, cesium and magnesium are likely to form an ionic compound.

For more such questions on ionic compound, click on:

https://brainly.com/question/2687188

#SPJ11

which of the following accounts for the difference in phase observed at room temperature? choose one or more: a. one structure forms hydrogen bonds which are stronger than the dipole-dipole interactions formed by the other structure. b. one structure has ionic intramolecular interactions compared to covalent intermolecular interactions observed in the other structure. c. one structure is larger (greater molecular weight) and has stronger dispersion forces than the other structure. d. one structure has polar bonds compared to the nonpolar bonds observed in the other structure.

Answers

The variation in phase observed at room temperature can be explained by the presence of polar bonds in one structure as opposed to nonpolar bonds in the other structure.

Why do most dipole dipole forces weaken in comparison to hydrogen bonds 53?

Due to the formation of hydrogen bonds between highly electronegative atoms (F, O, and N) and hydrogen, they are stronger than dipole-dipole interactions. As compared to any polar bond that has dipole-dipole interactions, the dipole is stronger because of the greater electronegativity differential.

What are hydrogen bonding and dipole dipole dispersion?

Dipole-dipole interactions, London dispersion interactions (sometimes referred to as Van der Waals interactions), hydrogen bonds, and ionic bonds are the four basic intermolecular interaction types in charge of a compound's physical characteristics.

To know more about polar bonds visit:-

https://brainly.com/question/10777799

#SPJ1

if 254 ml of a 2.10 m sucrose solution is diluted to 850.0 ml , what is the molarity of the diluted solution?

Answers

If 254 ml of a 2.10 m sucrose solution is diluted to 850.0 ml ,  the molarity of the diluted solution is 0.63 M.

Given:

Initial volume of sucrose solution, V1 = 254 mL

Initial molarity of sucrose solution, M1 = 2.10 M

Initial volume of diluted solution, V2 = 850 mL

To calculate Molarity of the diluted solution, M2

We can use the formula of Molarity, given as:

Molarity = (Number of moles of solute) / (Volume of solution in liters)

or

M1V1 = M2V2

Let's apply this formula in the given data:

M1V1 = M2V2(2.10 M) x (254 mL) = M2 x (850 mL)

Now, convert mL to L:

M1V1 = M2V2(2.10 M) x (0.254 L)

= M2 x (0.850 L)M2

= (2.10 M x 0.254 L) / 0.850 LM2

= 0.63 M

Therefore, the molarity of the diluted solution is 0.63 M.

For more such questions on molarity , Visit:

https://brainly.com/question/30404105

#SPJ11

the diagram to the right represents ice in a room, the temperature of which is above 0 c. explain why the entropy of the system is increasing

Answers

The entropy of the system is increasing. The reason for this is that entropy is a measure of disorder, and as the temperature of the room rises, the ice will begin to melt, which increases the disorder of the system.

The melting of the ice results in an increase in entropy because the solid ice has a lower entropy than the liquid water.

The melting of the ice results in an increase in entropy because the solid ice has a lower entropy than the liquid water. As the ice melts, its molecules become more disordered, and the system's entropy increases.

This increase in entropy is due to the change in the state of the system from a solid to a liquid.

Entropy is a measure of the disorder or randomness of a system. When ice is exposed to a temperature above 0°C, it begins to melt, which increases the disorder or randomness of the system.

The process of melting involves the breaking of the crystal structure of ice into random liquid water molecules. As a result, the entropy of the system increases.

Another way to look at it is that the melting of the ice results in an increase in the number of ways in which the water molecules can be arranged.

In the solid state, the water molecules are arranged in a rigid crystal lattice, which limits the number of ways in which they can be arranged.

In the liquid state, the water molecules are free to move and arrange themselves in a much greater number of ways, resulting in an increase in entropy.

The entropy of the system increases when ice is exposed to a temperature above 0°C because the melting of the ice results in an increase in the disorder or randomness of the system.

This increase in entropy is due to the change in the state of the system from a solid to a liquid, which results in an increase in the number of ways in which the water molecules can be arranged.

to know more about entropy refer here:

https://brainly.com/question/13135498#

#SPJ11

n the combustion analysis of 0.1127 g of glucose (c6 h12 o6 ), what mass, in grams, of co2 would be produced?

Answers

Answer: The combustion analysis of 0.1127 g of glucose (C6H12O6) yields 0.3283 g of CO2.

The equation for the combustion of glucose is:

C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O(g)

When glucose is combusted, the number of CO2 and H2O molecules is equal. Here, 1 mole of CO2 is produced for every mole of glucose that is burned.

Thus, the mass of CO2 produced can be calculated using the formula:

mass of CO2 produced = moles of CO2 produced x molar mass of CO2

The first step is to determine the number of moles of glucose that was burned. The molecular weight of glucose is:

Molecular weight of glucose = (6 x 12.01 g/mol) + (12 x 1.01 g/mol) + (6 x 16.00 g/mol)

= 180.18 g/mol

Next, we need to calculate the number of moles of glucose in the 0.1127 g of glucose given:

n = m/Mw = 0.1127 g / 180.18 g/mol

= 0.000625 mol

Now that we know the number of moles of glucose that was burned, we can calculate the number of moles of CO2 produced.

Since 1 mole of glucose produces 6 moles of CO2, the number of moles of CO2 produced is:

= 0.000625 mol x 6

= 0.00375 mol

Finally, we can use the molar mass of CO2 to calculate the mass of CO2 produced:

= 0.00375 mol x 44.01 g/mol

= 0.1659 g ≈ 0.3013 g

Therefore, the mass of CO2 produced in the combustion of 0.1127 g of glucose is approximately 0.3013 g.

What is a combustion analysis?

The combustion analysis is a method used to determine the empirical formula of organic compounds. The sample is burned in the presence of excess oxygen to form carbon dioxide and water.

The masses of these products are measured and used to calculate the empirical formula of the compound.


Learn more about combustion analysis here:

https://brainly.com/question/28547293#



#SPJ11

calculate the heat released when 30.0 g of so2(g) reacts with 20.0 g of o2(g), assuming the reaction goes to completion.

Answers

The heat released when 30.0 g of [tex]SO_{2}[/tex](g) reacts with 20.0 g of [tex]O_{2}[/tex](g) is 184.8 kJ.

To calculate the heat released when 30.0 g of [tex]SO_{2}[/tex](g) reacts with 20.0 g of [tex]O_{2}[/tex](g), we first need to determine the balanced chemical equation for the reaction:
[tex]SO_{2} (g) + 1/2 O_{2}(g)[/tex]  →  [tex]SO_{3}(g)[/tex]
Now, we need to find the limiting reactant. First, let's calculate the moles of each reactant:

moles of [tex]SO_{2}[/tex] = mass of [tex]SO_{2}[/tex] / molar mass of [tex]SO_{2}[/tex]
moles of [tex]SO_{2}[/tex] = 30.0 g / (32.1 g/mol + 32.0 g/mol) = 0.468 moles

moles of [tex]O_{2}[/tex] = mass of [tex]O_{2}[/tex] / molar mass of [tex]O_{2}[/tex]
moles of [tex]O_{2}[/tex] = 20.0 g / 32.0 g/mol = 0.625 moles

Now, we'll find the mole ratio:

mole ratio = moles of [tex]O_{2}[/tex] / (1/2 * moles of [tex]SO_{2}[/tex])
mole ratio = 0.625 / (1/2 * 0.468) = 2.67

Since the mole ratio is greater than 1, [tex]SO_{2}[/tex] is the limiting reactant.

Now, we need to find the heat released. The standard enthalpy change of the reaction (ΔH°) for the formation of [tex]SO_{3}[/tex] is -395.2 kJ/mol. Therefore, the heat released can be calculated as follows:

heat released = moles of limiting reactant * ΔH°
heat released = 0.468 moles * -395.2 kJ/mol = -184.8 kJ

So, the heat released when 30.0 g of [tex]SO_{2}[/tex](g) reacts with 20.0 g of [tex]O_{2}[/tex](g) is 184.8 kJ.

To learn more about heat released; https://brainly.com/question/22862842

#SPJ11

you have been called to the site of an overturned railroad tank car leaking potassium hydroxide. your task is to determine the corrosivity of the spill. the best monitoring equipment for the job is a:

Answers



The best monitoring equipment for determining the corrosivity of a potassium hydroxide spill is a pH meter.

A pH meter is a device that measures the acidity or alkalinity of a solution and provides a numerical value from 0 to 14. A pH value of 7 is neutral, while a pH below 7 is acidic and a pH above 7 is basic (alkaline).


Potassium hydroxide is a strong alkali with a pH value of approximately 13. This means it can corrode metals, concrete, and other materials it comes in contact with.

By measuring the pH of the spill, we can determine how corrosive it is and take the necessary steps to mitigate the corrosive effects. It is important to note that corrosion is not the same as toxicity.

Corrosion can cause serious damage, but the effects can often be reversed with proper mitigation and cleaning.


In order to measure the pH of a potassium hydroxide spill, it is important to use a pH meter with a temperature probe. This is because the pH of a solution can vary with temperature.

The pH meter should also be calibrated correctly before use, as incorrect readings can lead to incorrect conclusions.

After the pH meter is in place, readings can be taken of the spill and compared to a baseline reading from an uncontaminated sample in order to determine the level of corrosivity of the spill.

Appropriate actions can then be taken to mitigate the corrosive effects.

to know more about corrosivity refer here:

https://brainly.com/question/30057568#

#SPJ11

calculate the volume in ml of 100% ethanol required to make 900 ml of 60% (v/v) solution ethanol in water.

Answers

The volume of 100% ethanol required to make 900 ml of 60% (v/v) solution ethanol in water is 540 ml.

To calculate the volume in ml of 100% ethanol required to make 900 ml of 60% (v/v) solution ethanol in water, you will need the following formula:

C1V1 = C2V2

Where C1 is the initial concentration of the solution (in this case, 100%), V1 is the initial volume of the solution (unknown), C2 is the final concentration of the solution (in this case, 60%), and V2 is the final volume of the solution (900 ml).

To solve for V1, we can rearrange the formula as follows:

V1 = (C2V2) / C1

Plugging in the values, we get:

V1 = (0.60 * 900) / 1.00

V1 = 540 ml

Therefore, you will need 540 ml of 100% ethanol to make 900 ml of a 60% (v/v) solution of ethanol in water.

To know more about ethanol, refer here:

https://brainly.com/question/30263729#

#SPJ11

if molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy which molecule will be moving the fastest? a) hydrogen b) nitrogen c) oxygen d) chlorine e) all molecules will have the same speed.

Answers

The answer to the question is "e) all molecules will have the same speed." This is because all molecules, regardless of what elements they are made up of, have the same kinetic energy, so they will be moving at the same speed.

To better understand this concept, it is important to note that kinetic energy is the energy of an object due to its motion. Kinetic energy is determined by the mass and speed of the object, with the equation being KE = 1/2 x m x v^2 (where m is the mass and v is the velocity). So, if two objects have the same kinetic energy, they must have the same velocity, regardless of their mass.

As all molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy, they must also have the same velocity, meaning that all molecules will be moving at the same speed. This is because the molecules' masses differ, but as the kinetic energy is the same, the velocity must be the same as well.

It is also important to note that kinetic energy is not the same as momentum. Momentum is determined by the mass and velocity of an object, but is not dependent on the kinetic energy of the object. So, while all molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy, they may still have different momentum, due to their different masses.

In conclusion, all molecules of hydrogen, nitrogen, oxygen and chlorine will have the same speed, as they all have the same kinetic energy.



Learn more about Kinetic energy here:

https://brainly.com/question/15764612#

#SPJ11

For another researcher's data the starting mass of apparatus + solid was 113.249 g. After the reaction was complete the apparatus was reweighed. The resulting mass was 113.276 g. Which of the following could have caused the mass gain?
Select all that apply
Group of answer choices
The apparatus had a gas leak and room air could enter the apparatus.
The apparatus picked up extra water droplets between weighings
They forgot to weigh the mass of the gas-generating solid before the reaction.
Matter was created in the reaction.

Answers

The mass gain that happened after the reaction could have been caused due to the matter was created in the reaction .  

What is mass gain?

In physics, mass gain refers to an increase in mass in a chemical or nuclear reaction. It is the difference between the mass of the reactants and the mass of the products after a chemical reaction has occurred.

What happened in the given problem?

According to the given problem, the starting mass of the apparatus and solid was 113.249 g. After the reaction was complete, the apparatus was reweighed. The resulting mass was 113.276 g. The problem asks which of the following could have caused the mass gain.

The mass gain could have been caused by the following:

They forgot to weigh the mass of the gas-generating solid before the reaction

The apparatus picked up extra water droplets between weighing's.

Matter was created in the reaction.

The apparatus picked up extra water droplets between weighings, but they forgot to weigh the mass of the gas-generating solid before the reaction, and matter was created in the reaction.

To know more about the mass https://brainly.com/question/19694949

#SPJ11

How many moles are there in 6.02 x1023 molecules of oxygen?

Answers

Answer: 1 mole 

Explanation:

1 mole.

Avogadros Number; 6.02x 10^23 molecules in 1 mole

an acidic solution has a ph of 4.00. if i dilute 10.0 ml of this solution to a final volume of 1000. ml, what is the ph of the resulting solution?

Answers

When we dilute an acidic solution, the pH increases because the concentration of H+ ions decreases. In this case, the pH increased from 4.00 to 6.00, which means that the solution became less acidic and closer to neutral. The pH of the resulting solution is 6.00.

pH is a measure of the concentration of hydrogen ions (H+) in a solution, which determines whether it is acidic, neutral, or basic. When the concentration of H+ ions is high, the solution is acidic, while when the concentration of OH- ions is high, the solution is basic. The pH of a solution is calculated as the negative logarithm of the concentration of H+ ions, and the formula is pH = -log[H+].

An acidic solution has a pH of 4.00. This means that the concentration of H+ ions is 10^-4.00 M, which is 0.0001 M. If you dilute 10.0 mL of this solution to a final volume of 1000.0 mL, you can calculate the new concentration of H+ ions by using the equation: C1V1 = C2V2, where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume. C1V1 = C2V210^-4.00 M x 10.0 mL = C2 x 1000.0 MLC2 = (10^-4.00 M x 10.0 mL)/1000.0 MLC2 = 10^-6.00 M = 0.000001 M

Now, we can calculate the pH of the resulting solution by using the formula: pH = -log[H+].pH = -log[0.000001].pH = 6.00

Know more about pH here:

https://brainly.com/question/491373

#SPJ11

assume that the equilibrium represented around point (a) in the titration can generically be described as

Answers

The pH at which the ratio of [HA₂⁻] to [H₂A⁻] is 25:1 is 11.1.

Titration is a technique used to determine the concentration of a solution by reacting it with a standardized solution. This process can be used to determine the acidity or basicity of a solution.

Assume that the equilibrium represented around point (A) in the titration can generically be described as:

                         H₃A + OH⁻ → H₂A⁻ + HOH

Ka₁ = 6.76 x 10⁻³

Ka₂ = 9.12 x 10⁻¹⁰

There are three stages to the titration curve. The first stage corresponds to the point at which there is an excess of strong base, and the pH changes rapidly with each addition of base. The second stage corresponds to the buffer region, and the pH changes only slightly with each addition of base. Finally, the third stage corresponds to the point at which the excess base is equal to the amount of acid present in the solution, and the pH changes rapidly once again.

In the equation H₃A + OH⁻ → H₂A⁻ + HOH the first dissociation constant, Ka₁, is equal to

[ H₂A⁻ ][H⁺]/[H₃A]

The second dissociation constant, Ka₂, is equal to

[H₃A⁻ ][OH⁻ ]/[H₂A⁻ ]

Let's assume that the equilibrium is initially set up at pH pKa₁, such that [H₃A] = [H₂A⁻ ].

The pH of the solution at equilibrium will be equal to pKa₁.

Let's suppose that a strong base is added to the solution, and the amount of [OH⁻ ] added is x.

As a result, [H₃A] and [H₂A⁻ ] will be reduced by x, while [HA₂⁻] will be increased by x.

[H₃A] = [HA₂⁻] = [H+];

[OH⁻] = x;

[HA₂⁻] = [OH⁻-];

[H₃A] - x;

[H₂A⁻] - x

We can then calculate the concentration of each species using the expression for the acid dissociation constant:

[H₃A] = [H2A⁻] = [H+];

[OH⁻] = x;

[HA₂⁻] = [OH⁻];

[H₃A] - x;

[H₂A-] - x

Ka₁ = [H₂A⁻][H+]/[H₃A]

Ka₁ = x^2 / ([H+]-x)

Ka₂ = [HA₂⁻][OH⁻]/[H₂A⁻]

Ka₂ = [x][x] / ([H+]-x)

Ka₂= x²/([H+]-x) = 25

Ka₁ is used to calculate [H+]

Ka₂ is used to calculate:

Ka₂ [HA₂⁻] / [H₂A⁻][H+] = 2.06 x 10⁻⁶,

pH = 5.68

[H₂A⁻] / [HA₂⁻] = 0.04,

[HA₂⁻] = [HA₂⁻] * 25 = 1.00 x 10⁻⁴

[OH-] = Ka₂ [H₂A-] / [HA₂⁻] = 9.12 x 10⁻¹⁰ * [H₂A⁻] / [HA₂⁻] = 2.28 x 10⁻¹⁴

pOH = 13.64

pH = 11.1

Therefore, at pH 11.1, the ratio of [HA₂⁻] to [H₂A⁻] is 25:1.

Learn more about titration at https://brainly.com/question/186765

#SPJ11

what is the substance undergoing a chemical or physical change known as?

Answers

The substance undergoing a chemical or physical change is called a reactant. Reactants are starting materials that participate in a chemical reaction, which can result in the formation of new chemical compounds or changes in the physical properties of the substances involved.

In a physical change, the reactants retain their chemical identity, but undergo a change in their physical state or properties, such as melting, freezing, boiling, or changing color. In a chemical change, the reactants undergo a chemical reaction that results in the formation of new chemical compounds, breaking of chemical bonds, or release of energy. Understanding the properties and behavior of reactants is crucial in predicting and controlling chemical reactions in various fields, from materials science to biochemistry.

To know more about Reactants, here

brainly.com/question/17096236

#SPJ4

How many moles are in 6. 4 x 1024 molecules of HBr?

Answers

There are 1.06 moles in 6.4 x 10²⁴ molecules of HBr.

The chemical formula of hydrogen bromide is HBr. A mole is a unit of measurement that expresses the amount of a chemical substance that includes a fixed number of units of that substance. One mole of a substance is equal to the Avogadro number or 6.022 x 10²³ of that substance.In this problem, we need to figure out how many moles are in 6.4 x 10²⁴ molecules of HBr. We'll start by using Avogadro's number to convert the number of molecules to moles.

According to Avogadro's number, 6.022 x 10²³ molecules are in one mole.

Therefore, to figure out how many moles there are in 6.4 x 10²⁴ molecules,

we will use the following formula:

moles = number of molecules ÷ Avogadro's numbermoles = 6.4 x 10²⁴ ÷ (6.022 x 10²³)moles = 1.06 moles

So, there are 1.06 moles in 6.4 x 10²⁴ molecules of HBr.

For more such questions on hydrogen bromide, click on:

https://brainly.com/question/20460954

#SPJ11

PLEASE HELP AND FAST
Heredity Lab Report
Instructions: In the Heredity lab, you investigated how hamsters inherit traits from their parents. Record your observations in the lab report below. You will submit your completed report.

Name and Title:
Include your name, instructor's name, date, and name of lab.


Objective(s):
In your own words, what was the purpose of this lab?


Hypothesis:
In this section, please include the if/then statements you developed during your lab activity. These statements reflect your predicted outcomes for the experiment.

Test One: If I breed a short fur, FF female with a short fur, Ff male, then I will expect to see (all short fur; some short and some long fur; all long fur) offspring.

Test Two: If I breed a short fur, Ff female with a short fur, Ff male, then I will expect to see (all short fur; some short and some long fur; all long fur) offspring.

Test Three: If I breed a long fur, ff female with a long fur, ff male, then I will expect to see (all short fur; some short and some long fur; all long fur) offspring.


Procedure:
The procedures are listed in your virtual lab. You do not need to repeat them here. Please be sure to identify the test variable (independent variable) and the outcome variable (dependent variable) for this investigation.

Remember, the test variable is what is changing in this investigation. The outcome variable is what you are measuring in this investigation.

Test variable (independent variable):
Outcome variable (dependent variable):


Data:
Record the data from each trial in the data chart below. Be sure to fill in the chart completely.

Test One

Parent 1: FF

Parent 2: Ff


Phenotype ratio:
________ :

________
short fur :

long fur

Test Two

Parent 1: Ff

Parent 2: Ff


Phenotype ratio:
________ :

________
short fur :

long fur

Test Three

Parent 1: ff

Parent 2: ff


Phenotype ratio:
________ :

________
short fur :

long fur

Conclusion:
Your conclusion will include a summary of the lab results and an interpretation of the results. Please write in complete sentences.

Which genotype(s) and phenotype for fur length are dominant?
Which genotype(s) and phenotype for fur length are recessive?
If you have a hamster with short fur, what possible genotypes could the hamster have?
If you have a hamster with long fur, what possible genotypes could the hamster have?
Did your data support your hypotheses? Use evidence to support your answer for each test.
Test One:
Test Two:
Test Three:
Which hamsters are the parents of the mystery hamster? Include evidence to prove that they are the correct parents.

Answers

The parents of the mystery hamster are most likely Test Two parents (Ff x Ff), as they have the possibility of producing both short fur and long fur offspring, which matches the observed phenotype of the mystery hamster.

What is Genotype?

The genotype of an organism can be represented using letters to denote the alleles inherited from each parent. For example, in humans, the gene for eye color has two alleles: brown (B) and blue (b). A person with brown eyes would have a BB or Bb genotype, while a person with blue eyes would have a bb genotype.

Test variable (independent variable): Genotype of parents

Outcome variable (dependent variable): Phenotype of offspring (fur length)

Data:

Test One

Parent 1: FF

Parent 2: Ff

Phenotype ratio:

3 : 0

short fur : long fur

Test Two

Parent 1: Ff

Parent 2: Ff

Phenotype ratio:

3 : 1

short fur : long fur

Test Three

Parent 1: ff

Parent 2: ff

Phenotype ratio:

0 : 4

short fur : long fur

From the lab results, we can conclude that the genotype for short fur length is dominant over the genotype for long fur length. The genotype for long fur length is recessive.

If you have a hamster with short fur, the possible genotypes could be FF or Ff.

If you have a hamster with long fur, the genotype could only be ff.

The data supports the hypothesis that the genotype for short fur is dominant and the genotype for long fur is recessive.

Learn more about Genotype from the given link

https://brainly.com/question/22117

#SPJ1

whit is the molarity of a NH3 solution if it has a density of 0.982g/mL

Answers

The molarity of the NH3 solution is 0.0576 M.

How to determine the molarity of a NH3 solution

We can use the following steps to calculate the molarity of the NH3 solution:

Determine the mass of 1 mL of the NH3 solution using the given density:

mass of 1 mL of NH3 solution = density x volume of 1 mL

mass of 1 mL of NH3 solution = 0.982 g/mL x 1 mL = 0.982 g

Determine the number of moles of NH3 in 1 mL of the solution using the molar mass of NH3 (17.03 g/mol):

moles of NH3 in 1 mL of solution = mass of NH3 / molar mass of NH3

moles of NH3 in 1 mL of solution = 0.982 g / 17.03 g/mol = 0.0576 mol

Calculate the molarity of the NH3 solution using the number of moles of NH3 in 1 liter of the solution (1000 mL):

molarity of NH3 solution = moles of NH3 / volume of solution in liters

molarity of NH3 solution = 0.0576 mol / 1 L = 0.0576 M

Learn more about molarity at:

https://brainly.com/question/14469428

#SPJ1

An acid donates a proton to form its ________ , which therefore has one less _______ , and one more _______ than its acid.

Answers

The complete statement is: An acid donates a proton to form its conjugate base, which therefore has one less proton, and one more electron than its acid.

An acid is a substance that can donate hydrogen ions (H+) or accept electron pairs, while a base is a substance that can accept hydrogen ions (H+) or donate electron pairs.

When an acid donates a proton to form its conjugate base, the acid loses one hydrogen ion (H+) and becomes a negative ion with a charge of -1. The conjugate base, on the other hand, gains one hydrogen ion (H+) and becomes a positive ion with a charge of +1.

learn more about conjugate base here:

https://brainly.com/question/30225100

#SPJ11

was the weight of nylon a week later very different from the weight of nylon at the end of the lab period? provide a possible explanation.

Answers

The most significant commercially produced fibers include nylons.

Weight of nylon Nylon fibers are utilized in toothbrushes and tents, so chances are you've used them. Nylon may, however, be more than just fibers. Self-lubricating bearings and gears are also made with it. Automotive interior elements made of nylon-clay composites are utilized in vehicles.Nylon 6 and Nylon 6 are the two most significant varieties of nylon. Nearly all the features of these two nylons are the same. Both were developed in the late 1930s. First identified was nylon 6,6. Wallace Carothers, a DuPont employee, came up with the idea in the United States. 10 Paul Schlack, who was working for I.G. Farben at the time, soon after created Nylon 6 in Germany.

For more information on nylon kindly visit to

https://brainly.com/question/10278626

#SPJ1

Other Questions
As the leader of your workgroup, you want to encourage a positive working environment. You decide to make posters for the hallway with tips for improving communication between the diverse members of your group.1. How to always win an argument.2. Build on similarities. Coexist peacefully.3. Diversity training on Friday, February 18, at 5 p.m. Managers and their wives encouraged to attend. or questions 46-55, choose the correct answer A, B, C or D. 5. Could you..... A. borrow B. hire me your laptop for a few days; mine is being fixed. C. fix D. lend Excuse me; do you have any rooms for A. budget B. let ? C. rent D. hired Despite a poor performance in the interview, we've decided to ...... A. hire C. fire B. dismiss D. admit what is a final good? multiple select question. a good that is counted as part of gdp a good that is counted twice while calculating gdp a good used only in the production of other products a good directly consumed by individuals or businesses You have been saving pennies in a jar, and you now have 125 pennies. You want to know the total mass of the pennies before you take them to the bank. If the average penny has a mass of 2.50 g, what is the total mass of the pennies? leading up to the 2010 midterm elections, there was lively debate on whether the bush tax cuts, enacted in 2003, should be allowed to expire for families with annual incomes over $250,000. what would be the impact of allowing income taxes on these families to rise on their incomes and the number of labor participants? How does the textbook define public opinion? An aggregate measure of the beliefs, attitudes, judgements, and/or preferences of a population over matters of public concern. What does it mean that public opinion is focused on a target population? jacob asks imad to explain to jacob how the number of field lines and the magnitude of the charge are related. which response is correct? which of the following is not an example of the dark side of social media for public relations professionals? group of answer choices blog usage by discontented shareholders, stock manipulators, and angry customers secure, unedited sites where employees can discuss corporate policies and strategies urban legends about corporate horror stories spread by email rogue websites that confront organizations with negative information the classical paradigm includes all these except [the]... a. taylor's scientific management. b. fayol's classical management theory. c. weber's bureaucracy. d. human resource paradigm. 2. for each of the following variables, tell me level of measurement and what statistic you would use to quantify central tendency and variability. a. body weight in pounds b. number of cigarettes smoked in a day c. ethnicity d. birth order (i.e., first born, second born, etc.) the first step of the organizational buying process is anticipation or recognition of a need or problem. group of answer choices true false while there is a divide on issues such as gay marriage among conservatives and liberals, a real divide in public opinion on gay marriage involves what demographic factor assuming ideal behavior, how many liters hcl gas are required to make concentrated hydrochloric acid (11.6 mol/l) at 25oc and 1 atm pressure? I'M PANICKING! DESPERATE HELLLLP!!!!!!!!!!!!!!DO THE LAST ONE PLEASE!!!!!!!!!!!SCREENSHOTWILL MARK CROWN!!!!!!PLS ANSWERRRRR!!!!!!!!!!!!!! joan has an adjustable-rate mortgage (arm). it has an initial interest rate of 7% adjusted annually with a 2/5 interest rate cap. if interest rates go up, what is the highest interest rate joan could pay in the second year? The ________ Act seeks to improve the reliability and accuracy of financial reporting, as well as increase the accountability of corporate governance, in publicly traded companies.O Sarbanes-OxleyO Freedom of InformationO Digital Millennium Copyright Act (DMCA)O Association of Computing Machinery which protostome phyla successfully made the transition from water to land? select all that apply. which protostome phyla successfully made the transition from water to land?select all that apply. nematoda echinodermata arthropoda chordata annelida mollusc The number of milligrams D(h) in a patients bloodstream h hours after the drug is injected is modeled by the following function D (h) =50e^-0.2h Find the initial amount injected and the amount in the bloodstream after 7 hours. Round your answers to the nearest hundredth as necessary (Write any two causes of corruption which of the 17 interventions is often preceded by outreach activities and frequently follows surveillance?