Answer:
See connections below
Explanation:
1 [tex]\Rightarrow[/tex] b
2 [tex]\Rightarrow[/tex] a
3 [tex]\Rightarrow[/tex] d
4 [tex]\Rightarrow[/tex] i
5 [tex]\Rightarrow[/tex] g
6 [tex]\Rightarrow[/tex] h
7 [tex]\Rightarrow[/tex] c
8 [tex]\Rightarrow[/tex] e
9 [tex]\Rightarrow[/tex] f
Having established that a sound wave corresponds to pressure fluctuations in the medium, what can you conclude about the direction in which such pressure fluctuations travel?A) The direction of motion of pressure fluctuations is independent of the direction of motion of the sound wave.B) Pressure fluctuations travel perpendicularly to the direction of propagation of the sound wave.C) Pressure fluctuations travel along the direction of propagation of the sound wave.D) Propagation of energy that passes through empty spaces between the particles that comprise the mediumDoes air play a role in the propagation of the human voice from one end of a lecture hall to the other?a) yesb) no
Answer:
None of them: the direction of the pressure fluctuations is parallel to the direction of motion of the wave
Explanation:
WHAT IS TRANS ATLANTIC SLAVE TRADE
A television of mass 15 kg sits on a table. The coefficient of static friction
between the table and the television is 0.35. What is the minimum applied
force that will cause the television to slide?
A) 38 N
B) 147 N
C) 51 N
D) 79 N
Answer:
more than 51.45 N
__________________________________________________________
We are given:
Mass of the television = 15 kg
Coefficient of Static friction = 0.35
Minimum force required to move the television:
Normal Force:
We know that the normal force is equal and opposite to the Weight of the television
Weight of the television = Mg
[where m is the mass and g is the acceleration due to gravity]
Weight = 15 * 9.8
Weight = 147 N
Force of Friction:
We are given the coefficient of Friction = 0.35
We know that coefficient of Friction = Force of friction / Normal Force
replacing the variables
0.35 = Force of Friction / 147
Force of Friction = 147 * 0.35 [multiplying both sides by 147]
Force of Friction = 51.45 N
Since a force of 51.45 N is will be applied opposite to the direction of application of Force, the television will only move when we apply more force than 51.45 N
Answer:
it is C
Explanation:
Select all correct answers....Covalent compounds
car driving on a circular test track shows a constant speedometer reading of 100 kph for one lap. a. Describe the car's speed during this time. b.
Answer:
Speed = 100 km/h
Explanation:
Given:
Speedometer reading = 100 kph for one lap
Assume;
Time taken to complete one lap = 1 hour
Computation:
Speed = Distance / Time
Speed = 100 / 1
Speed = 100 km/h
10points asap
A force of 30 N acts upon a 7 kg block. Calculate its acceleration.
At an accident scene on a level road, investigators measure a car's skid mark to be 98 m long. It was a rainy day and the coefficient of friction was estimated to be 0.38. a) Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes.b) Why does the car's mass not matter?
Answer:
a. V = 19.1m/s
b. The mass of the car does not matter
Explanation:
A.
KE = 1/2mv² = fd --------(1)
Fd = umgd ---------(2)
Therefore,
1/2mv² = umgd ---------(3)
M will cancel itself out from both sides of equation 3.
Then we will have:
1/2v² = ugd
Then we cross multiply to make v² the subject of the formula
V² = 2ugd
V = √2ugd -------(4)
U = 0.38
g = 9.81
d = 98
When we input these values into equation 4, we will have:
V = √2x0.38x9.81x98
V = √730.6488
V = 27.03m/s
B.
The mass of the car does not actually matter as the mass was cancelled out on the both sides of equation 3
Which possible component of initial energy is caused by molecular motion within a material?
Answer: thermal energy
Answer:
Thermal energy
Explanation:
The internal energy of a system is widely known as thermal energy. Now, thermal energy is also called heat energy and it is an internal energy of a component which is produced when an increase in temperature causes atoms and molecules within the component to move faster and start colliding with one other.
Therefore, the more heat the is applied to the component, the hotter the substance and the more its particles move which in turn leads to a higher thermal energy.
A satellite was in two separate crashes. In both crashes, the satellite had the same mass. Engineers want to know about the speed and direction of the satellite after the crashes. Why would the crash affect the motion of the satellite, and which crash caused a greater change in motion for the satellite?
WILL GIVE BRAINLIEST
Answer:
The fastest satellite must change orbit
The most massive body (m₁) transfers more momentum to the satellite,
Explanation:
For this problem we consider a system formed by the satellite and each of the bodies with which it collides, in this system the forces during the collision are internal, the amount of movement must be conserved. Let's write the momentum is two instants
Most massive body (m1)
initial. Before the crash
p₀₁ = M v + m₁ v₁
after the crash
[tex]p_{f1}[/tex] = M v´ + m₁ v₁´
how momentum is conserved
p₀ = p_{f}
Lighter body (m2)
p₀₂ = M v + m₂ v₂
p_{f2} = M v´ + m₂ v₂´
Let's clarify that the speed of the satellite and the object do not have the same direction, in general these shocks are elastic.
We can see that p₀₁> p₀₂
Let us analyze the two cases when the body collides, The most massive body (m₁) transfers more momentum to the satellite, therefore there must be a greater change in its momentum and velocity.
The fastest satellite must change orbit, thus rotating at a different distance from Earth
A football player runs down the field at a speed of 8 m/s how long will it take him to run 20 m?
Sam heats an 8kg sample of sand, with a specific heat of 664 J/kg·C°, from 20° to 40°. What is the change in thermal energy?
Answer:
106.24 kJ.
Explanation:
Given that,
Mass of sample of sand, m = 8 kg
Specific heat of sand, c = 664 J/kg-°C
The temperature changes from 20° C to 40° C. We need to find the change in thermal energy. It is given by :
[tex]Q=mc\Delta T\\\\Q=8\times 664(40-20)\\\\=106240\ J\\\\=106.24\ kJ[/tex]
So, the change in thermal energy is 106.24 kJ.
A wire of radius 0.8 cm carries a current of 106 A that is uniformly distributed over its cross-sectional area. Find the magnetic field B at a distance of 0.07 cm from the center of the wire.
Answer:
The magnetic field is [tex]B = 2.319 *10^{-3} \ T[/tex]
Explanation:
From the question we are told that
The radius of the wire is [tex]r = 0.8 \ cm = 0.008 \ m[/tex]
The current is [tex]I = 106 \ A[/tex]
The position considered is d = 0.07 cm = 0.0007 m
Generally the magnetic field is mathematically represented as
[tex]B = \frac{\mu_o * I}{2\pi * \frac{r^2}{d} }[/tex]
Here [tex]\mu_o[/tex] is the permeability of free space with value [tex] 4\pi * 10^{-7} N/A^2[/tex]
So
[tex]B = \frac{ 4\pi * 10^{-7} * 106 }{2 * 3.142 * \frac{0.008^2}{0.0007} }[/tex]
=> [tex]B = 2.319 *10^{-3} \ T[/tex]
Which of the following requires the expenditure of more work?
a. Lifting a 110 newton [N] weight a height of 3 meters [m].
b. Exerting a force of 60 pounds-force [lbf] on a sofa to slide it 30 feet [ft] across a room.
Answer:
The correct answer is option B
Explanation:
Step one:
given data
a. force F= 110N
distance s= 3meters
we know that work= Force* distance
work= 110*3
Work= 330Joules
Step two:
data
Force= 60 pounds
distance= 30 ft
convert pounds to Newton
1 pound= 4.44822N
60 pounds= 60*4.44822
=266.9N
convert ft to meteres
1 ft = 0.3048meter
30ft= 0.3048*30
=9.144N
we know that work= Force* distance
work= 266.9N*9.144N
Work= 2440.53Joules
If a ball rolls down an incline with a starting velocity of 0m/s and a final velocity of 6m/s
and it takes a total of 1.4 seconds, calculate its acceleration.
Answer:
If a ball rolls down an incline with a starting velocity of 0m/s and a final velocity of 6m/s
and it takes a total of 1.4 seconds, calculate its acceleration.
Answer:
Acceleration is 4.28 m/s²
Explanation:
Acceleration is change of speed in time. To solve this, we will assume that the acceleration is constant, meaning that every second the velocity increases for the same constant value.
a = ∆v/t
∆v is the difference between two measured velocities:
a = (v2 - v1) / t
v1 = 0m/s
v2 = 6m/s
t = 1.4 s
Now, we only plug in the given values:
a = (6 - 0) / 1.4
a = 6 m/s / 1.4 s
a = 4.28 m/s²
when is thermal equilibrium achived between two identical objects
need help ASAP
Answer: When two objects in contact with each other are at different temperatures, they are said to be in thermal equilibrium.
Explanation: . When two objects not in contact with each other are at the same pressure, they are said to be in thermal equilibrium.
A 8.45μC particle with a mass of 6.15 x 10^-5 kg moves perpendicular to a 0.493-T magnetic field in a circular path of radius 34.1 m. How much time will it take for the particle to complete one orbit?
a. 92.7 s
b. 0.0927 s
c. 9.27 s
d. 927 s
This question is incomplete, the complete question is;
A 8.45μC particle with a mass of 6.15 x 10⁻⁵ kg moves perpendicular to a 0.493-T magnetic field in a circular path of radius 34.1 m.
How much time will it take for the particle to complete one orbit?
a. 92.7 s
b. 0.0927 s
c. 9.27 s
d. 927 s
Answer:
it will take 92.7 seconds for the particle to complete one orbit.
Option a) 92.7 s is the correct option
Explanation:
Given that;
mass m = 6.15 x 10⁻⁵ kg
q = 8.45μC = 8.45 × 10⁻⁶ C
B = 0.493
we know that
Time period T = 2πr / V
where r = mv/qB
so T = 2πm/qB
we substitute
T = (2 × 3.14 × 6.15 x 10⁻⁵) / ( 8.45 × 10⁻⁶ × 0.493)
T = 0.0003862 / 0.000004165
T = 92.7 sec
Therefore it will take 92.7 seconds for the particle to complete one orbit.
Option a) 92.7 s is the correct option
Which statement explains how it is possible to carry books to school without changing the kinetic or potential energy of the books or doing any work?
a. by moving the book without acceleration and keeping the height of the book constant
b. by moving the book with acceleration and keeping the height of the book constant
c. by moving the book without acceleration and changing the height of the book
d. by moving the book with acceleration and changing the height of the book
Answer:
a. by moving the book without acceleration and keeping the height of the book constant
Explanation:
FOR CONSTANT KINETIC ENERGY:
The kinetic energy of a body depends upon its speed according to its formula:
ΔK.E = (1/2)mΔv²
So, for Δv = 0 m/s
ΔK.E = 0 J
So, for keeping kinetic energy constant, the books must be moved at constant speed without acceleration.
FOR CONSTANT POTENTIAL ENERGY:
The potential energy of a body depends upon its height according to its formula:
ΔP.E = mgΔh
So, for Δh = 0 m/s
ΔP.E = 0 J
So, for keeping potential energy constant, the books must be moved at constant height.
So, the correct option is:
a. by moving the book without acceleration and keeping the height of the book constant
a car accelerates at a constant rate from 15 m/s to 25 m/s while it travels a distance of 125 m. How long does it take to achieve this speed?
The time taken by the car to achieve the final speed is 6.25 seconds.
What is the equation of motion?The equations of motion can be defined as the equation that represents the relationship between the time, velocity, acceleration, and displacement of a moving object.
The mathematical expressions for the equations of motions can be written as:
[tex]v= u+at\\S=ut+(1/2)at^2\\v^2-u^2=2aS[/tex]
Given, the initial speed of the car, u = 15 m/s
The final speed of the given car, v = 25m/s
The distance covered by car, S = 125 m
From the third equation of motion: v² = u²+ 2aS
(25)² = (15)² + 2×a× 125
a = 1.6 m/s²
From the first equation of motion we can find the time to achieve the final speed:
v = u+ at
25 = 15 + (1.6) × t
t = 6.25 sec
Therefore, 6.25 seconds will be taken by the car to catch the final speed.
Learn more about the equation of motion, here:
brainly.com/question/16982759
#SPJ5
An engineer is designing the runway for an airport. Of the planes that will use the airport, the lowest acceleration rate is likely to be 3 m/s2. The takeoff speed for this plane will be 65 m/s. All airplanes will start from rest(0m/s). Assuming this minimum acceleration, what is the minimum allowed length for the runway for take off?
Answer:
x = 704 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.
[tex]v_{f} ^{2} =v_{o} ^{2} +2*a*x[/tex]
where:
Vf = final velocity = 65 [m/s]
Vo = initial velocity = 0 (starts from rest)
a = acceleration = 3 [m/s²]
x = distance [m]
Now replacing we have:
65² = 0 + 2*3*x
4225 = 6*x
x = 704 [m]
A typical elevator car with people has a mass of 1500.0 kg. Elevators are currently approaching speeds of 20.0 m/s - faster than the speed.
Required:
What is the upward force required if the elevator moves upward 200.0 meters before reaching 20.0 m/s?
Answer:
1500NExplanation:
Force = mass * acceleration
Given
Mass = 1500kg
Get the acceleration using the equation of motion;
v² = u²+2aS
20² = 0+2s(200)
400 = 400a
a = 400/400
a = 1m/s²
Get the upward force required
F = 1500 * 1
F = 1500N
Hence the upward force required if the elevator moves upward 200.0 meters before reaching 20.0 m/s is 1500N
an object falls from a hovering helicopter and hits the ground at a speed of 30m per seconds. how long does it take the object to reach the ground and how far does it fall? sketch a velocity-time graph for the object ( ignore air resistance
Answer:
45.9m
Explanation:
Given parameters:
Final velocity = 30m/s
Initial velocity = 0m/s
Unknown:
Time it takes for the object of fall = ?
Height of fall = ?
Solution:
For the first problem, we use the equation below to solve for t;
V = U + gt
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
30 = 0 + 9.8 x t
30 = 9.8t
t = [tex]\frac{30}{9.8}[/tex] = 3.1s
Now, height of fall;
V² = U² + 2gH
30² = 0² + 2 x 9.8 x H
900 = 19.6H
H = 45.9m
1. What does the pH scale measure?
Answer:
The pH scale measures of how acidic or basic water is.
The pH scale also measures whether there is more hydronium or hydroxide in a solution.
Explanation:
The range goes from 0-14, with 7 being neutral. Less than 7 indicates acidity and more than seven indicates the substance is a base.
What specific changes in two climate variables are expected to lead to major decreases in soil moisture southern Africa and the Mediterranean region?
Answer:
Less precipitation, droughts9: How might agriculture in southern Europe change by the end of the century if conditions follow the RCP8.
Explanation:
Precipitation and droughts are the specific changes in two climate variables that are expected to lead to major decreases in soil moisture.
What is drought?
Drought is defined as a period of protracted water scarcity, whether it is due to atmospheric surface water, or groundwater constraints.
Droughts can last months or years, although they can be proclaimed in as little as 15 days.
It has the potential to have a significant influence on the afflicted region's ecology and agriculture as well as harm the local economy.
Precipitation and droughts are the specific changes in two climate variables that are expected to lead to major decreases in soil moisture in southern Africa and the Mediterranean region.
Hence Precipitation and droughts are the specific changes in two climate variables.
To learn more about the drought refer to the link;
https://brainly.com/question/26693108
Find the change in thermal energy of a 25kg severed clown doll head that heats up from 25°C to 35°C, and has the specific heat of 1,700 J/(kg°C).
Answer:
Q = 425 kJ
Explanation:
Given that,
Mass, m = 25 kg
The clown doll head that heats up from 25°C to 35°C
The specific heat is 1700 J/kg°C
We need to find the internal energy of it. The heat required to raise the temperature is given by the formula as follows :
[tex]Q=mc\Delta T\\\\Q=25\times 1700\times (35-25)\\\\Q=425000\ J\\\\Q=425\ kJ[/tex]
So, 425 kJ of thermal energy is severed.
Your teacher placed a 3.5 kg block at the position marked with a “ + ” (horizontally, 0.5 m from the origin) on a large incline outlined on the graph below and let it slide, starting from rest. ***There are two images included!***
Answer:
x = 10.75 m
Explanation:
For this problem we will solve it in two parts, the first using energy and the second with kinematics
Let's use the energy work relationship to find the velocity of the block as it exits the ramp
W = [tex]Em_{f}[/tex] - Em₀
Starting point. Higher
Em₀ = U = m g h
the height from the edge of the ramp of the graph has a value
h = 9-3 = 6 m
Final point. At the bottom of the ramp
Em_{f} = K = ½ m v²
Friction force work
W = - fr d
The friction force has the formula
fr = μ N
On the ramp, we can use Newton's second law
N - W cos θ = 0
N = W cos θ
where the angle is obtained from the graph
tan θ = (9-3) / (0.5-4) = -6 / 3.5
θ = tan⁻¹ (-1,714)
θ = -59.7º
the distance d is
d = √ (Δx² + Δy²)
d = √ [(0.5-4)² + (9-3)²]
d = 6.95 m
for which the work is
W = - μ mg cos 59.7 d
we substitute
W = Em_{f} -Em₀
- μ mg cos 59.7 d = ½ m v² - m g h
In the graph o text the value of the friction coefficient is not observed, suppose that it is μvery = 0.2
- μ g cos 59.7 d = ½ v² - g h
v² = 2g (h - very d coss 59.7)
let's calculate
v² = 2 9.8 (6 - 0.2 6.95 cos 59.7)
v = √ 103.8546
v = 10.19 m / s
in the same direction as the ramp
in the second part we use projectile launch kinematics
let's look for the components of velocity
v₀ₓ = vo cos -59.7
[tex]v_{oy}[/tex] = vo sin (-59,7)
v₀ₓ = 10.19 cos (-59.7) = 5.14 m / s
v_{oy} = 10.19 if (-59.7) = -8.798 m / s
Let's find the time to get to the floor (y = o)
y = y₀ + v_{oy} t - ½ g t²
to de groph y₀=3 m
0 = 3 - 8.798 t - ½ 9.8 t²
t² - 1.796 t - 0.612 = 0
we solve the quadratic equation
t = [1.796 ±√(1.796² + 4 0.612)] / 2
t = [1,795 ± 2,382] / 2
t₁ = 2.09 s
t₂ = -0.29 s
since time must be a positive quantity the correct value is t = 2.09 s
we calculate the horizontal displacement
x = v₀ₓ t
x = 5.14 2.09
x = 10.75 m
The motion of the box, after it exits the incline is the motion and trajectory
of a projectile.
Horizontal distance from the right-hand edge of the incline to the point of
contact with the floor is approximately 1.24613 m.
Reasons:
Mass of the block, m = 3.5 kg
Coefficient of kinetic friction, μ = 1.2
Location of the = 0.5 m from the origin
Required:
Horizontal distance between the block's point of contact with the floor and
the bottom right-hand edge of the incline.
Solution:
Let θ represent the angle the incline make with the horizontal.
The normal reaction of the incline on the block, [tex]F_N[/tex] = m·g·cos(θ)
Work done on friction = [tex]F_N[/tex]×μ×Length of the incline, L
Rise of the incline = 10 - 3 = 7
Run of the incline = 4
L = √(6.125² + 3.5²) = [tex]\dfrac{7 \times \sqrt{65} }{8}[/tex]
Let ΔP.E.₁ represent the potential energy transferred to kinetic energy
and work along the incline, we have;
Energy of the block at the bottom of the incline, M.E.₂, is found as follows;
K.E.₂ = mgh - m·g·μ·cos(θ)·L
[tex]K.E. =\frac{1}{2} \times 3.5 \times v^2 = 3.5 \times 9.81 \times 6.125 - 3.5 \times 9.81 \times 1.2 \times \dfrac{4}{\sqrt{65} } \times \dfrac{7 \times \sqrt{65} }{8}[/tex]
v ≈ 6.1456 m/s
The vertical component of the velocity is therefore;
[tex]v_y = v \cdot sin(\theta)[/tex]
[tex]v_y = 6.1456 \times \dfrac{7}{\sqrt{65} } \approx 5.33588[/tex]
From the equation, h = u·t + 0.5·g·t² derived from Newton's Laws of motion, we have;
ΔP.E.₁ = 3.5×9.81×7
3 = 5.33588·t + 0.5×9.81·t²
Factorizing, the above quadratic equation, we get;
The time it takes the block to reach the floor, t ≈ 0.40869 seconds
Horizontal component of the velocity is [tex]v_x \approx 6.1456 \times \dfrac{4}{\sqrt{65} } \approx 3.04908[/tex]
The horizontal distance, x = vₓ × t
∴ x = 3.04908 × 0.40869 ≈ 1.08194
Horizontal distance from the right-hand edge of the incline to the point of
contact with the floor, x ≈ 1.24613 m.
Learn more here:
https://brainly.com/question/24888457
please help i will mark brainliest
what does a speedometer measure?
a. accerlation
b. velocity
c. speed
d. average speed.
Answer:
c. speed
Explanation:
Speedometer is a device used to measure the speed of a vehicle. I am pretty sure this is the correct option.
A medicine ball has a mass of 5kg and is thrown with a speed of 3 m/sec what is it's kinetic energy
Please help, I'm really struggling here, I can't do science :(
The mass of Jupiter is about 320 times the mass of Earth. However, Jupiter’s gravity affects Earth very little because_____________. a Earth is so far from Jupiter. b Earth is so small. c Jupiter is made of gas. d Jupiter is nearer to the sun than Earth is.
Answer:no sure sorry
Explanation:
2
10 points
Find the total displacement of each of the motions.
a) You walk 45 m W, then 34 mW
b) You drive 5 km N, then 7 km S
c) You cycle 350 m E, then 800 m W, then 200 m E
d) You fly 850 km N then 850 km S
Answer:
a) s = 79 m W
b) s = 2 km S
c) s = 250 m W
d) s = 0 km
Explanation:
We take the following sign convention for the directions:
North (N) ---> positive
South (S) ---> negative
East (E) ---> negative
West (W) ---> positive
a)
45 m W, 34 m W
s = 45 m + 34 m
s = 79 m W
b)
5 km N, 7 km S
s = 5 km - 7 km
s = - 2 km
s = 2 km S
c)
350 m E , 800 m W, 200 m E
s = -350 m + 800 m - 200 m
s = 250 m
s = 250 m W
d)
850 km N, 850 km S
s = 850 km - 850 km
s = 0 km
Which of these should you always do at the end of a calculation
Answer:
Reverse check the answer
Explanation:
I believe it is very important that once someone is done with any calculation, the person ought to go over the calculations again. And even, recheck the answer in inverted form.
This is so because while doing the calculations, we can possibly make errors that we won't notice until after submission. Knowing 2 * 3 = 6, but writing 2 * 3 = 5 in the course of calculations can happen to anybody. So therefore, cross checking and reverse checking is needed