Answer: C: 60 ft
Step-by-step explanation:
Her pencil is 12 inches and its shadow is 4 inches. Her pencil is 3 times longer than its shadow, so using that logic we can conclude that the tower is 3 times longer than its shadow as well.
[tex]20*3=60[/tex]
The tower is 60 feet tall.
Using the linear combination method, what is the solution to the system of linear equations 5 x + 3 y = negative 10 and Negative 20 x minus 7 y = 15? (–5, 1) (–1, 5) (1, –5) (5, –1)
Answer:
work is shown and pictured
Answer:
The answer is C
Step-by-step explanation:
I need help with this!
Part A
Answer: 33.2 degrees F
Explanation: Adding on a negative is the same as subtracting. So 72.3 + (-39.1) = 72.3 - 39.1 = 33.2
================================================
Part B
Answer: 70 + 2 + 0.3 + (-30) + (-9) + ( -0.1 )
Explanation:
Think of 72 as 70+2. Furthermore, think of 72.3 as 70+2+0.3; we just break the number up into its corresponding digits (adding zeros when needed). The 7 is in the tens place, the 2 is in the units or ones place, and the 3 is in the tenths place.
Similarly, we have 39.1 break down into 30+9+0.1, in which all three terms are made negative to represent -39.1
================================================
Part C
Answer: 70 + (-30) + 2 + (-9) + 0.3 + ( -0.1 )
Explanation: Arrange the tens place value items to be next to each other. Same goes for the units place value, and also the tenths place value.
================================================
Part D
Answer: [70 + (-30)] + [ 2 + (-9) ] + [ 0.3 + ( -0.1 ) ]
Explanation: Take the result of part C and surround each pair of terms in square brackets to show how the terms pair up.
A box of 15 cookies costs $ 9 What is the cost for 1 cookie?
Answer:
60 cents or $0.60
Step-by-step explanation:
9.00/15 = 0.6
Answer:
$.60
Step-by-step explanation:
This is just 9 divided by 15 which is $.60
The diagonals of a rhombus are 12cm and 16cm.Find the length of each side.
Answer:Let PQRS to be the rhombus where PQ=12cm and RS = 16cm
step 1:let,PQ and RS intersect each other at O.Now, diagonals of rhombus bisect each other at right angles.
STEP 2:Since POQ is a right angled triangle, by pythagoras theoram.
STEP 3:After applying formula , PQ =10cm .length of each side of rhombus is 10cm.
Step-by-step explanation:
Answer:
10cm
Step-by-step explanation:
As you can see in the first image is a rhombus with its diagonals 12cm and 16cm
You can see that the diagonals divide the rhombus into four right triangles and that the hypotenuse of each triangle is one side of the rhombus.
In the second image I picked out one triangle from the rhombus and slashed the length of the diagonals of the rhombus in half to get the sides of the triangle.
Now all you have to do is use the Pythagorean theorem to find the hypotenuse of the triangle which will give you the length of side of rhombus
6² + 8² = hypotenuse²
36 + 64 = h²
100 = h²
h = √100
h = 10
All the side of the rhombus are equal so all the sides of the rhombus are 10cm
Last week Lisa had a gross earning of $1441.30. Cathy receives a base salary of $375 and a commission on sales exceeding her quota of $5000. What is her rate of commission if her sales were $6560?
Answer:
4.25%
Step-by-step explanation:
Commision = 441.30 - 375 = 66.30
Commision is based on = 6560-5000 = 1560
Rate of Commision = (in decimal) 66.30/1560 = 0.0425
Rate of Commision = 0.0425 * 100 = 4.25 %
At the end of any year a car is worth 5%
less than what it was worth at the beginning
of the year. If a car was worth $9 500 in
December 2016, then its value in January
2016 was
Answer:
Step-by-step explanation:
Multiply $9500 by .05 (5%) to get 475. That is 5% of $9500. Now subtract 475 from 9500 to get 9025. That is your answer!
The value of car in month of January is, [tex]\$ 9975[/tex]
Percentage :It is given that, At the end of any year a car is worth 5% less than what it was worth at the beginning of the year.
Since, car was worth $9 500 in December 2016.
Then, the value of car in month of January is, 105 % of value of car in moth of December.
So that, value of car in month of January is,
[tex]=9500*\frac{105}{100}\\ \\=9500*1.05=9975[/tex]
The value of car in month of January is, [tex]\$ 9975[/tex]
Learn more about percentage here:
https://brainly.com/question/24304697
WILL MARK BRAINLIEST!!!!
Answer:
See below.
Step-by-step explanation:
SQUARE:
The area of the square is:
[tex]9x^2-12x+4[/tex]
Factor it:
[tex]=9x^2-6x-6x+4\\=3x(3x-2)-2(3x-2)\\=(3x-2)(3x-2)\\=(3x-2)^2[/tex]
Remember that all four sides of a square is equal. The area is simply the side squared. Therefore, all four sides of the square measure (3x-2).
RECTANGLE:
[tex]25x^2-16y^2\\[/tex]
Factor it. This resembles the difference of two squares, where:
[tex](x-a)(x+a)=x^2-a^2[/tex]
[tex]25x^2-16y^2\\=(5x)^2-(4y)^2\\=(5x-4y)(5x+4y)[/tex]
This cannot be simplified further. Note that the sides of rectangles doesn't necessarily have to be the same.
The dimensions of the rectangle is:
(5x-4y) by (5x+4y)
Answer:
Step-by-step explanation:
1. the area of square is 9x^2-12x+4 square units
shortcut: (a-b)^2= a^2-2ab+b^2
then simplify 9x^2-12x+4 to (3x-2)^2
area of square = s^2
then side equals sqrt((3x-2)^2)
s = (3x-2) units
2. the area of rectangle is (25x^2-16y^2) square units
shortcut: (a^2-b^2) = (a-b)(a+b)
then simplify (25x^2-16y^2) to (5x-4y)(5x+4y) square units
one side is: (5x-4y) units
one side is (5x+4y) units
Two cards are selected at random from a standard deck of cards. What is the probability that you select a king or a queen? (If your answer will reduce, you should reduce it.) Also show you're work
Answer:
2/13
Step-by-step explanation:
In a standard deck of cards, there are 52 cards total, 4 kings, and 4 queens.
Probability is calculated by (number of favorable outcomes)/(number of possible outcomes), so our probability would be 8/52, which can be simplified to 2/13.
Hope this helps!
Kaylee has $4,500 for a down payment and thinks she can afford monthly payments of $300. If he can finance a vehicle with a 7%, 4-year loan (assume a 0% tax rate), what is the maximum amount Kaylee can afford to spend on the car? [use the calculation in the text or the online calculators in the resource section]
Answer:
$17,028.06
Step-by-step explanation:
Given that :
Kaylee's down payment = $4500
monthly payment = $300
If he can finance a vehicle with a 7%, 4-year loan (assume a 0% tax rate).
the maximum amount Kaylee can afford to spend on the car is being calculated as the present value for all the payments.
= [tex]=\$4,500 +\dfrac{\$300}{(1+\frac{0.07}{12})} + \dfrac{\$300}{(1+\frac{0.07}{12})^2} +\dfrac{\$300}{(1+\frac{0.07}{12})^3} + ....+ \dfrac{\$300}{(1+\frac{0.07}{12})^{46}}+ \dfrac{\$300}{(1+\frac{0.07}{12})^{47}}+ \dfrac{\$300}{(1+\frac{0.07}{12})^{48}}[/tex]
Using the online desmos calculator to determine the maximum amount Kaylee can afford to spend on the car; we have:
= $17,028.06
Will mark BRAINIEST. Solve this.
Answer:
3x+7=10x+17
Step-by-step explanation:
1.9
10x
27x
Answers:
Equation is 3x+7 + 10x+17 = 180 (there are infinitely many other ways to write the equation)
x = 12
Angles are 43 and 137
==========================================================
Explanation:
The horizontal lines are parallel, so the same side interior angles marked are supplementary. The angles add to 180
(3x+7) + (10x+17) = 180 is the equation, or one variation of such
13x+24 = 180
13x = 180-24
13x = 156
x = 156/13
x = 12 is the value of x
Use this x value to find the measure of each angle
3x+7 = 3*12+7 = 43
10x+17 = 10*12+17 = 137
The two angles are 43 and 137 degrees
Note how 43 and 137 add to 180.
The price of sugar increased by 20%. What percent of sugar would the family have to stop using so that they pay the same amount of money each month?
Answer:
9.16
Step-by-step explanation:
We know that
Total expense = price of sugar * consumption
let price of sugar was 100
So total expense = 100*10=1000
But now new expense =1100 (I,e.10% more than 1000)
and new price =120(i,e. 20% more than 100)
So new consumption = new expense/ new price=
1100/120
=110/12
=9.16
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!
Answer:
16 2/3 % or approx. 16.67%
Step-by-step explanation:
Original price = 100%
New price = 100+20% = 120%
To reduce back to 100%
we need to reduce 20% from 120 % = 20/120 = 1/6 = 16 2/3 % = 16.7% approx.
To which set or sets below does the number -7/8 belongs to ?
Answer:
-7/8
Step-by-step explanation:
54x^3y+ 81x^4y^2 factorise
Answer:
I hope it helps you......
What is the coefficient of the second term in the expression 12x+xy-7y?
Answer:
1
Step-by-step explanation:
Statistics question; please help.
Scott has hired you to check his machine prior to starting an order. To check it, you set the machine to create 1.5 inch screws and manufacture a random sample of 200 screws. That sample of screws has an average length of 1.476 inches with a standard deviation of 0.203 inches.
Does this sample provide convincing evidence that the machine is working properly?
Thank you in advance!
Answer:
Does this sample provide convincing evidence that the machine is working properly?
Yes.
Step-by-step explanation:
Normal distribution test:
[tex]$z=\frac{x- \mu }{ \frac{\sigma}{\sqrt{n}} }=\frac{ (x-\mu)\sqrt{n}}{\sigma} $[/tex]
Where,
[tex]x: \text{ sample mean}[/tex]
[tex]\sigma: \text{ standard deviation}[/tex]
[tex]n: \text{ sample size determination}[/tex]
[tex]\mu: \text{ hypothesized size of the screw}[/tex]
[tex]$z=\frac{(1.476-1.5)\sqrt{200} }{0.203 } $[/tex]
[tex]$z=\frac{(-0.024)10\sqrt{2} }{0.203 } $[/tex]
[tex]z \approx -1.672[/tex]
Once the significance level was not given, It is usually taken an assumption of a 5% significance level.
Taking the significance level of 5%, which means a confidence level of 95%, we have a z-value of [tex]\pm 1.96[/tex]
Therefore, we fail to reject the null. It means that the hypothesis test is not statistically significant: the average length is not different from 1.5!
For which system of equations would you need to estimate the solution?
On a coordinate plane, 2 lines intersect at (3, 0).
On a coordinate plane, 2 lines intersect around (negative 2.1, negative 3.5).
On a coordinate plane, 2 lines intersect at (negative 2, 3).
On a coordinate plane, 2 lines intersect at (2, 2).
Answer: It is option 2 or B
Step-by-step explanation: Simple and easy, the test said it was right too.
Find the 12th term of the arithmetic sequence whose common difference is d=6 and whose first term is a, = 2.
Answer:
The 12th term is 68Step-by-step explanation:
Since the sequence is an arithmetic sequence
For an nth term in an arithmetic sequence
A(n) = a + ( n - 1)d
where a is the first term
n is the number of terms
d is the common difference
From the question
d = 6
a = 2
n = 12
So the 12th term of the sequence is
A(12) = 2 + (12-1)6
= 2 + 11(6)
= 2 + 66
A(12) = 68Hope this helps you
Simplify
[tex]\ \textless \ br /\ \textgreater \ \sqrt[4]{16a^- 12}\ \textless \ br /\ \textgreater \ [/tex]
Answer:
[tex]\huge\boxed{\sqrt[4]{16a^{-12}}=2a^{-3}=\dfrac{2}{a^3}}[/tex]
Step-by-step explanation:
[tex]16=2^4\\\\a^{-12}=a^{(-3)(4)}=\left(a^{-3}\right)^4\qquad\text{used}\ (a^n)^m=a^{nm}\\\\\sqrt[4]{16a^{-12}}=\bigg(16a^{-12}\bigg)^\frac{1}{4}\qquad\text{used}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\=\bigg(2^4(a^{-3})^4\bigg)^\frac{1}{4}\qquad\text{use}\ (ab)^n=a^nb^n\\\\=\bigg(2^4\bigg)^\frac{1}{4}\bigg[(a^{-3})^4\bigg]^\frac{1}{4}\qquad\text{use}\ (a^n)^m=a^{nm}\\\\=2^{(4)(\frac{1}{4})}(a^{-3})^{(4)(\frac{1}{4})}=2^1(a^{-3})^1=2a^{-3}\qquad\text{use}\ a^{-n}=\dfrac{1}{a^n}[/tex]
[tex]=2\left(\dfrac{1}{a^3}\right)=\dfrac{2}{a^3}[/tex]
What is the function rule for the line
A local high school has 1250 students in grades 9 through 12. Twenty-eight percent of the students in the school are in the ninth grade. One-half of the ninth-grade students ride the bus to school. How many ninth-grade students ride the bus?
Answer:175
Step-by-step explanation:
1. Turn 28% into a decima: 0.28
2. Multiply 1250 by 0.28 to get the amount of ninth grade students:350
3. Half the amount of ninth grade students:175
Answer:
The answer is 175
Step-by-step explanation:
Because I read the problem carefully and identified that the explanation is way too long so I am gonna make this short and easy for you. I am correct, just Trust me :)
This is the last one but how do you find y ? what do I subtract 5 from ?
Answer:
y = 250
Step 1:
To solve, we plug in 50x for y.
[tex]50x=200+10x[/tex]
Then, we subtract the 10x from the right side. Our goal is to get the x by itself first.
[tex]40x=200[/tex]
Then, we divide both sides by 40, since we have to get the x by itself.
[tex]\frac{40x}{40}=x\\\\\frac{200}{40} =5[/tex]
x = 5
Step 2:
Now that we found x, we plug in 5 to the original equation and solve from there.
[tex]y=200+10(5)\\y=200+50\\y=250[/tex]
y = 250
John is planning a party. There are 28 pieces of carrot cake and 7 pieces of marble cake. He wants to create plates with the same number of each type of cake. What is the greatest number of plates he can create?
Answer:
Hey there!
He can create 7 plates at most, with one carrot cake and one marble cake on each plate.
Hope this helps :)
4(2n + 3) =44 pls someone help me with this??
Answer:
n = 4
Step-by-step explanation:
4(2n + 3) = 44
Expand the brackets.
4(2n) + 4(3) = 44
8n + 12 = 44
Subtract 12 on both sides.
8n + 12 - 12 = 44 - 12
8n = 32
Divide both sides by 8.
(8n)/8 = 32/8
n = 4
A play school is designing two sand pits in ts play area . Each must have an area of 36 m2 . However , one of the sand pits must be rectangular , and the other must be square haped . What might be the dimensions of ach of the sand pits ?
Answer:
Dimensions of square shaped pit = 6m [tex]\times[/tex] 6m
Dimensions of rectangular pit = 1m [tex]\times[/tex] 36m or 2m [tex]\times[/tex] 18m or 3m [tex]\times[/tex] 12m or 4m [tex]\times[/tex] 9m
Step-by-step explanation:
Given:
Two pits in the school playground area (one square shaped and one rectangular shaped).
Each pit must have an area = 36 [tex]m^2[/tex]
To find:
Dimensions of each pit = ?
Solution:
First of all, let us have a look at the formula for area of a square and a rectangle:
[tex]Area_{square} = (Side)^2[/tex]
[tex]Area_{Rectangle} = Length\times Width[/tex]
Now, let us try to find out dimensions of square:
[tex]36 = Side^2\\\Rightarrow Side = 6\ m[/tex]
So, dimensions of Square will be 6m [tex]\times[/tex] 6m.
Now, let us try to find out dimensions of rectangle.
[tex]36 = Length\times Width[/tex]
We are not given any restrictions on the Length and Width of the rectangle.
So, let us explore all the possibilities by factorizing 36:
[tex]36 = 1 \times 36\\36 = 2 \times 18\\36 = 3 \times 12\\36 = 4 \times 9[/tex]
6 [tex]\times[/tex] 6 factors not considered because then it will become a square and which is not the required case.
Dimensions of rectangular pit = 1m [tex]\times[/tex] 36m or 2m [tex]\times[/tex] 18m or 3m [tex]\times[/tex] 12m or 4m [tex]\times[/tex] 9m
Find the surface area of the regular pyramid shown to the nearest whole number
Answer:
740 m^2
Step-by-step explanation:
!!!!!!WILL GIVE BRAINLEIST !!!!!!
Answer:
[tex]\boxed{Median = 152}[/tex]
Step-by-step explanation:
Observation = 568 , 254 , 152 , 101 , 100
In ascending order:
=> 100 , 101 , 152 , 254 , 568
Median is the middlemost no. So here:
Median = 152
Answer:
152
Step-by-step explanation:
If you set the data in an ascending order, you will find 152 to be the middle value, thus being the median
The Greenpoint factory produced two-fifths of the Consolidated Brick Company's bricks in 1991. If the Greenpoint factory produced 1,400 tons of bricks in 1991, what was the Consolidated Brick Company's total output that year, in tons?
Answer:
3,500 tons
Step-by-step explanation:
We know that 1,400 tons is 2/5 of the Consolidated Brick Company's output.
This means that 1/5 must be equal to 700 tons if 2/5 is 1,400.
So, we can find the total output by multiplying 700 by 5, since 700 is 1/5 of the total.
700(5) = 3,500 tons
What is the center of the circle with the equation (x-1)^2 + (y+3)^2= 9? a (1,3) b (-1,3) c (-1,-3) d (1,-3)
Answer:
The center is ( 1,-3) and the radius is 3
Step-by-step explanation:
The equation of a circle can be written in the form
( x-h)^2 + ( y-k) ^2 = r^2 where ( h,k) is the center and r is the radius
(x-1)^2 + (y+3)^2= 9
(x-1)^2 + (- -3)^2= 3^2
The center is ( 1,-3) and the radius is 3
Which values for h and k are used to write the function f of x = x squared + 12 x + 6 in vertex form?
h=6, k=36
h=−6, k=−36
h=6, k=30
h=−6, k=−30
Answer:
h=−6, k=−30
Step-by-step explanation:
did on edge
Considering the equation of the parabola, the coefficients of the vertex are:
h=−6, k=−30
What is the vertex of a quadratic equation?A quadratic equation is modeled by:
[tex]y = ax^2 + bx + c[/tex]
The vertex is given by:
[tex](h,k)[/tex]
In which:
[tex]h = -\frac{b}{2a}[/tex]
[tex]k = -\frac{b^2 - 4ac}{4a}[/tex]
In this problem, the equation is:
[tex]f(x) = x^2 + 12x + 6[/tex]
Hence the coefficients are a = 1, b = 12, c = 6, thus:
[tex]h = -\frac{12}{2} = -6[/tex]
[tex]k = -\frac{120}{4} = -30[/tex]
More can be learned about the equation of a parabola at https://brainly.com/question/24737967
What the correct answer fast
Answer:
[tex] s = 5.8 [/tex]
Step-by-step Explanation:
Given:
∆RST,
m < T = 17°
t = RS = 5
m < S = 20°
s = RT = ?
Apply the Law of Sines to find s
[tex] \frac{s}{sin(S)} = \frac{t}{sin(T)} [/tex]
[tex] \frac{s}{sin(20)} = \frac{5}{sin(17)} [/tex]
Multiply both sides by sin(20) to make s the subject of formula.
[tex] \frac{s}{sin(20)}*sin(20) = \frac{5}{sin(17)}*sin(20) [/tex]
[tex] s = \frac{5*sin(20)}{sin(17)} [/tex]
[tex] s = 5.8 [/tex] (to nearest tenth)