Methane gas is 304 C with 4.5 tons of mass flow per hour to an uninsulated horizontal pipe with a diameter of 25 cm. It enters at a temperature and exits at 284 C. The pipe is smooth and its length is 10 m. temperature is 25 ° C. Since the smear coefficient of the pipe surface is given as 0.8; a-) Indoor and outdoor convection coefficients (W / m2K), b-) Heat loss from the pipe to the environment (W), c-) The surface temperature of the pipe (C), d-) Calculate the required fan control (W) and interpret the results.

Answers

Answer 1

Answer:

a) [tex]h_c = 0.1599 W/m^2-K[/tex]

b) [tex]H_{loss} = 5.02 W[/tex]

c) [tex]T_s = 302 K[/tex]

d) [tex]\dot{Q} = 25.125 W[/tex]

Explanation:

Non horizontal pipe diameter, d = 25 cm = 0.25 m

Radius, r = 0.25/2 = 0.125 m

Entry temperature, T₁ = 304 + 273 = 577 K

Exit temperature, T₂ = 284 + 273 = 557 K

Ambient temperature, [tex]T_a = 25^0 C = 298 K[/tex]

Pipe length, L = 10 m

Area, A = 2πrL

A = 2π * 0.125 * 10

A = 7.855 m²

Mass flow rate,

[tex]\dot{ m} = 4.5 tons/hr\\\dot{m} = \frac{4.5*1000}{3600} = 1.25 kg/sec[/tex]

Rate of heat transfer,

[tex]\dot{Q} = \dot{m} c_p ( T_1 - T_2)\\\dot{Q} = 1.25 * 1.005 * (577 - 557)\\\dot{Q} = 25.125 W[/tex]

a) To calculate the convection coefficient relationship for heat transfer by convection:

[tex]\dot{Q} = h_c A (T_1 - T_2)\\25.125 = h_c * 7.855 * (577 - 557)\\h_c = 0.1599 W/m^2 - K[/tex]

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.

c) The surface temperature of the pipe:

Smear coefficient of the pipe, [tex]k_c = 0.8[/tex]

[tex]\dot{Q} = k_c A (T_s - T_a)\\25.125 = 0.8 * 7.855 * (T_s - 298)\\T_s = 302 K[/tex]

b) Heat loss from the pipe to the environment:

[tex]H_{loss} = h_c A(T_s - T_a)\\H_{loss} = 0.1599 * 7.855( 302 - 298)\\H_{loss} = 5.02 W[/tex]

d) The required fan control power is 25.125 W as calculated earlier above


Related Questions

Anytime scaffolds are assembled or __________, a competent person must oversee the operation.

a. Drawn
b. Disassembled
c. Thought
d. Made

Answers

B because of health and safety regulations

When scaffolds are now being construct or deconstruct, a competent person must supervise the work and train everybody who'll be assisting, and the further discussion can be defined as follows:

The competent person is also responsible for proposing whether fall protection is required for each scaffold erected. In constructing a scaffold, there are specific criteria for the ground the scaffold is constructed. On the products and components used to build the scaffold, its height in relation to the foundation. It's platform's design, and whether or not high efficiency is needed to supervise the installation.

Therefore, the final answer is "Option B".

Learn more:

brainly.com/question/16049673

For a fluid flowing through a pipe assuming that pressure drop per unit length of pipe (P/L) depends on the diameter of the pipe , the velocity of fluid, the density of fluid and the viscosity of the fluid. Show that = ∅ ൬ ൰

Answers

Answer:

Explanation:

La vaca

El pato

A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16% of the cylinder volume at bottom dead center and the crankshaft rotates at 2400 RPM. The processes within each cylinder are modeled as an air-standard Otto cycle with a pressure of 14.5 lbf/in. 2 and a temperature of 60 8 F at the beginning of compression. The maximum temperature in the cycle is 5200 8 R.
Based on this model,
1- Write possible Assumptions no less than three assumptions
2- Draw clear schematic for this problem
3- Determine possible Assumptions no less than three assumptions
4- Draw clear schematic for this problem.
5- calculate the net work per cycle, in Btu, and the power developed by the engine, in horsepower.

Answers

Answer:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The net work per cycle is 845.88 kJ/kg

The power developed in horsepower ≈ 45374 hP

Explanation:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The dimension of the cylinder bore diameter = 3.7 in. = 0.09398 m

Stroke length = 3.4 in. = 0.08636 m.

The volume of the cylinder v₁= 0.08636 ×(0.09398²)/4 = 5.99×10⁻⁴ m³

The clearance volume = 16% of cylinder volume = 0.16×5.99×10⁻⁴ m³

The clearance volume, v₂  = 9.59 × 10⁻⁵ m³

p₁ = 14.5 lbf/in.² = 99973.981 Pa

T₁ = 60 F = 288.706 K

[tex]\dfrac{T_{2}}{T_{1}} = \left (\dfrac{v_{1}}{v_{2}} \right )^{K-1}[/tex]

Otto cycle T-S diagram

T₂ = 288.706*[tex]6.25^{0.393}[/tex] = 592.984 K

The maximum temperature = T₃ = 5200 R = 2888.89 K

[tex]\dfrac{T_{3}}{T_{4}} = \left (\dfrac{v_{4}}{v_{3}} \right )^{K-1}[/tex]

T₄ = 2888.89 / [tex]6.25^{0.393}[/tex] = 1406.5 K

Work done, W = [tex]c_v[/tex]×(T₃ - T₂) - [tex]c_v[/tex]×(T₄ - T₁)

0.718×(2888.89  - 592.984) - 0.718×(1406.5 - 288.706) = 845.88 kJ/kg

The power developed in an Otto cycle = W×Cycle per second

= 845.88 × 2400 / 60  = 33,835.377 kW = 45373.99 ≈ 45374 hP.

Air enters the first compressor stage of a cold-air standard Brayton cycle with regeneration and intercooling at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The overall compressor pressure ratio is 10, and the pressure ratios are the same across each compressor stage. The temperature at the inlet to the second compressor stage is 300 K. The turbine inlet temperature is 1400 K. The compressor stages and turbine each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k = 1.4, calculate:
a. the thermal efficiency of the cycle
b. the back work ratio
c. the net power developed, in kW
d. the rates of exergy destruction in each compressor stage and the turbine stage as well as the regenerator, in kW, for T 0 = 300 K.

Answers

Answer:

a. [tex]\eta _{th}[/tex] = 77.65%

b. bwr = 6.5%

c. 3538.986 kW

d. -163.169 kJ

Explanation:

a. The given property  are;

P₂/P₁ = 10, P₂ = 10 * 100 kPa = 1000 kPa

p₄/p₁ = 10

P₂/P₁ = p₄/p₃ = √10

p₂ = 100·√10

[tex]T_{2s}[/tex] = T₁×(√10)^(0.4/1.4) = 300 × (√10)^(0.4/1.4) = 416.85 K

T₂ = T₁ + ([tex]T_{2s}[/tex] - T₁)/[tex]\eta _c[/tex] = 300 + (416.85 - 300)/0.8 = 446.0625 K

p₄ = 10×p₁ = 10×100 = 1000 kPa

p₄/p₃ = √10 =

p₃ = 100·√10

T₃ = 300 K

T₃/[tex]T_{4s}[/tex] = (P₂/P₁)^((k - 1)/k) = (√10)^(0.4/1.4)

[tex]T_{4s}[/tex] = T₃/((√10)^(0.4/1.4) ) = 300/((√10)^(0.4/1.4)) = 215.905 K

T₄ = T₃ + ([tex]T_{4s}[/tex] - T₃)/[tex]\eta _c[/tex] = 300 + (215.905- 300)/0.8 = 194.881 K

The efficiency = 1 - (T₄ - T₁)/(T₃ - T₂) = 1 - (194.881 -300)/(300 -446.0625 ) = 0.28

T₄ = 446.0625 K

T₆ = 1400 K

[tex]T_{7s}[/tex]/T₆ = (1/√10)^(0.4/1.4)

[tex]T_{7s}[/tex] = 1400×(1/√10)^(0.4/1.4)  = 1007.6 K

T₇ = T₆ - [tex]\eta _t[/tex](T₆ - [tex]T_{7s}[/tex]) = 1400 - 0.8*(1400 - 1007.6) = 1086.08 K

T₈ = 1400 K

T₉ = 1086.08 K

T₅ = T₄ + [tex]\epsilon _{regen}[/tex](T₉ - T₄) = 446.0625 +0.8*(1086.08 - 446.0625) = 958.0765 K

[tex]\eta _{th}[/tex] =(((T₆ - T₇) + (T₈ - T₉)) -((T₂ - T₁) + (T₄ - T₃)))/((T₆ - T₅) + (T₈ - T₇))

(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300)))/((1400 -958.0765 ) + (1400 -1086.08 )) = 0.7765

[tex]\eta _{th}[/tex] = 77.65%

b. Back work ratio, bwr = [tex]bwr = \dfrac{w_{c,in}}{w_{t,out}}[/tex]

((446.0625 - 300)+(194.881 - 300))/((1400 - 1086.08) + (1400 -1086.08 ))

40.9435/627.84 = 6.5%

c. [tex]w_{net, out} = c_p[(T_6 -T_7) + (T_8 - T_9)] - [(T_2 - T_1) + (T_4 -T_3)][/tex]

Power developed is given by the relation;

[tex]\dot m \cdot w_{net, out}[/tex]

[tex]\dot m \cdot w_{net, out}[/tex]= 6*1.005*(((1400 - 1086.08) + (1400 -1086.08 ))-((446.0625 - 300)+(194.881 - 300))) = 3538.986 kW

d. Exergy destruction = 6*(1.005*(300-446.0625 ) - 300*1.005*(-0.3966766)

-163.169 kJ

Which of the following are the main psychological domains?

Answers

Answer:

Domain 1: Biological (includes neuroscience, consciousness, and sensation) Domain 2: Cognitive (includes the study of perception, cognition, memory, and intelligence) Domain 3: Development (includes learning and conditioning, lifespan development, and language) i hope this helps you.

An AX ceramic compound has the rock salt crystal structure. If the radii of the A and X ions are 0.137 and 0.241 nm, respectively, and the respective atomic weights are 22.7 and 91.4 g/mol, what is the density (in g/cm3) of this material?
A. 0.438g/cm3
B. 0. 571g/cm3
C. 1.75g/cm3
D. 3.50g/cm3

Answers

Answer:

c) 1.75 g/cm³

Explanation:

Given that

Radii of the A ion, r(c) = 0.137 nm

Radii of the X ion, r(a) = 0.241 nm

Atomic weight of the A ion, A(c) = 22.7 g/mol

Atomic weight of the X ion, A(a) = 91.4 g/mol

Avogadro's number, N = 6.02*10^23 per mol

Solution is attached below

The first choice for how to reduce or eliminate a hazard is: a) Engineering controls b) Workplace controls c) Personal protective equipment d) Administrative controls

Answers

Answer:

The correct answer would be a) Engineering Controls.

Explanation:

If the controls are handled correctly, you can reduce and eliminate hazards so no one gets hurt. Engineering controls are absolutely necessary to prevent hazards.

Hope this helped! :)

Personal  protective equipment (PPE) is appropriate for controlling hazards

PPE are used for exposure to hazards when safe work practices and other forms of administrative controls cannot provide sufficient additional protection, a supplementary method of control is the use of protective clothing or equipment. PPE may also be appropriate for controlling hazards  while engineering and work practice controls are being installed.

Find out more on Personal  protective equipment at: https://brainly.com/question/13720623

The closed feedwater heater of a regenerative Rankine cycle is to heat 7000 kPa feedwater from 2608C to a saturated liquid. The turbine supplies bleed steam at 6000 kPa and 3258C to this unit. This steam is condensed to a saturated liquid before entering the pump. Calculate the amount of bleed steam required to heat 1 kg of feedwater in this unit.

Answers

Answer:

the amount of bleed steam required to heat 1 kg of feedwater in this unit is 0.078 kg/s

Explanation:

Given that:

Pressure of the feed water = 7000 kPa

Temperature of the closed feedwater heater = 260 ° C

Pressure of of the turbine = 6000 kPa

Temperature of the turbine = 325 ° C

The  objective is to calculate the amount of bleed steam required to heat 1 kg of feedwater in this unit.

From the table A-4 of saturated water temperature table at temperature  260° C at state 1 ;

Enthalpies:

[tex]h_1 = h_f = 1134.8 \ kJ/kg[/tex]

From table A-6 superheated water at state 3 ; the value of the enthalpy relating to the pressure of the turbine at 6000 kPa and temperature of 325° C  is obtained by the interpolating the temperature between 300 ° C and 350 ° C

At 300° C; enthalpy = 2885.6 kJ/kg

At 325° C. enthalpy = 3043.9 kJ/kg

Thus;

[tex]\dfrac{325-300}{350-300}=\dfrac{h_{325^0}-{h_{300^0}}}{{h_{350^0}}- {h_{300^0}}}[/tex]

[tex]\dfrac{325-300}{350-300}=\dfrac{h_{325^0}-2885.6}{3043.9-2885.6 }}[/tex]

[tex]\dfrac{25}{50}=\dfrac{h_{325^0}-2885.6}{3043.9-2885.6 }}[/tex]

[tex]h_{325^0} = 2885.6 + \dfrac{25}{50}({3043.9-2885.6 )[/tex]

[tex]h_{325^0} = 2885.6 + 0.5({3043.9-2885.6 )[/tex]

[tex]h_{325^0} =2964.75 \ kJ/kg[/tex]

At pressure  of 7000 kPa at state 6; we obtain the enthalpies corresponding to the pressure at table A-5 of the saturated water pressure tables.

[tex]h_6 = h_f = 1267.5 \ kJ/kg[/tex]

From state 4 ;we obtain the specific volume corresponding to the pressure of 6000 kPa at table A-5 of the saturated water pressure tables.

[tex]v_4 = v_f = 0.001319\ m^3 /kg[/tex]

However; the specific work pump can be determined by using the formula;

[tex]W_p = v_4 (P_5-P_4)[/tex]

where;

[tex]P_4[/tex] = pressure at state 4

[tex]P_5[/tex] = pressure at state 5

[tex]W_p = 0.001319 (7000-6000)[/tex]

[tex]W_p = 0.001319 (1000)[/tex]

[tex]W_p =1.319 \ kJ/kg[/tex]

Using the energy balance equation of the closed feedwater heater to calculate the amount of bleed steam required to heat 1 kg of feed water ; we have:

[tex]E_{in} = E_{out} \\ \\ m_1h_1 +m_3h_3 + m_3W_p = (m_1+m_3)h_6[/tex]

where;

[tex]m_1 = 1 \ kg[/tex]

Replacing our other value as derived above into the energy balance equation ; we have:

[tex]1 \times 1134.8 +m_3 \times 2964.75 + m_3 \times 1.319 = (1+m_3)\times 1267.5[/tex]

[tex]1134.8 + 2966.069 \ m_3 = 1267.5 + 1267.5m_3[/tex]

Collect like terms

[tex]2966.069 \ m_3- 1267.5m_3 = 1267.5-1134.8[/tex]

[tex]1698.569 \ m_3 =132.7[/tex]

[tex]\ m_3 = \dfrac{132.7}{1698.569}[/tex]

[tex]\mathbf{ m_3 = 0.078 \ kg/s}[/tex]

Hence; the amount of bleed steam required to heat 1 kg of feedwater in this unit is 0.078 kg/s

An example of a transient analysis involving the 1st law of thermodynamics and conservation of mass is the filling of a compressed air tank. Assume that an air tank is being filled using a compressor to a pressure of 5 atm, and that it is being fed with air at a temperature of 25°C and 1 atm pressure. The compression process is adiabatic. Will the temperature of the air in the tank when it is done being filled i.e. once the pressure in the tank reaches 5 atm), be greater than, equal to, or less that the temperature of the 25°C air feeding the compressor?
A. Greater than 25°C
B. Unable to determine
C. Same as 25°C
D. Less than 25°C

Answers

Answer:

The temperature will be greater than 25°C

Explanation:

In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.

mathematically

Change in the internal energy of a system ΔU = ΔQ + ΔW

in an adiabatic process, ΔQ = 0

therefore

ΔU = ΔW

where ΔQ is the change in heat into the system

ΔW is the work done by or done on the system

when work is done on the system, it is conventionally negative, and vice versa.

also W = pΔv

where p is the pressure, and

Δv = change in volume of the system.

In this case, work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C

why is the peak value of the rectified output less than the peak value of the ac input and by how much g

Answers

Answer:

The Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Explanation:

This is what we called HALF WAVE RECTIFIER in which the Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Therefore this is the formula for Half wave rectifier

Vrms = Vm/2 and Vdc

= Vm/π:

Where,

Vrms = rms value of input

Vdc = Average value of input

Vm = peak value of output

Hence, half wave rectifier is a rectifier which allows one half-cycle of an AC voltage waveform to pass which inturn block the other half-cycle which is why this type of rectifiers are often been used to help convert AC voltage to a DC voltage, because they only require a single diode to inorder to construct.

The effectiveness of a heat exchanger is defined as the ratio of the maximum possible heat transfer rate to the actual heat transfer rate.

a. True
b. False

Answers

Answer:

False

Explanation:

Because

The effectiveness (ϵ) of a heat exchanger is defined as the ratio of the actual heat transfer to the maximum possible heat transfer.

Commutation is the process of converting the ac voltages and currents in the rotor of a dc machine to dc voltages and currents at its terminals. True False

Answers

Answer:

false

Explanation:

the changing of a prisoner sentence or another penalty to another less severe

A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 mL of the base. Assuming complete neutralization of the acid,
1) What was the normality of the acid solution?
2) What was the molarity of the acid solution?

Answers

Answer:

a. 0.4544 N

b. [tex]5.112 \times 10^{-5 M}[/tex]

Explanation:

For computing the normality and molarity of the acid solution first we need to do the following calculations

The balanced reaction

[tex]H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O[/tex]

[tex]NaOH\ Mass = Normality \times equivalent\ weight \times\ volume[/tex]

[tex]= 0.3200 \times 40 g \times 21.30 mL \times 1L/1000mL[/tex]

= 0.27264 g

[tex]NaOH\ mass = \frac{mass}{molecular\ weight}[/tex]

[tex]= \frac{0.27264\ g}{40g/mol}[/tex]

= 0.006816 mol

Now

Moles of [tex]H_2SO_4[/tex] needed  is

[tex]= \frac{0.006816}{2}[/tex]

= 0.003408 mol

[tex]Mass\ of\ H_2SO_4 = moles \times molecular\ weight[/tex]

[tex]= 0.003408\ mol \times 98g/mol[/tex]

= 0.333984 g

Now based on the above calculation

a. Normality of acid is

[tex]= \frac{acid\ mass}{equivalent\ weight \times volume}[/tex]

[tex]= \frac{0.333984 g}{49 \times 0.015}[/tex]

= 0.4544 N

b. And, the acid solution molarity is

[tex]= \frac{moles}{Volume}[/tex]

[tex]= \frac{0.003408 mol}{15\ mL \times 1L/1000\ mL}[/tex]

= 0.00005112

=[tex]5.112 \times 10^{-5 M}[/tex]

We simply applied the above formulas

The volume of the 0.3200 M, NaOH required to neutralize the H₂SO₄, is

21.30 mL, which gives the following acid solution approximate values;

1) Normality of the acid solution is 0.4544 N

2) The molarity of the acid is 0.2272

How can the normality, molarity of the solution be found?

Molarity of the NaOH = 0.3200 M

Volume of NaOH required = 21.30 mL

1) The normality of the acid solution is found as follows;

The chemical reaction is presented as follows;

H₂SO₄(aq) + 2NaOH (aq) → Na₂SO₄ (aq) + H₂O

Number of moles of NaOH in the reaction is found as follows;

[tex]n = \dfrac{21.30}{1,000} \times 0.3200 \, M = \mathbf{0.006816 \, M}[/tex]

Therefore;

The number of moles of H₂SO₄ = 0.006816 M ÷ 2 = 0.003408 M

[tex]Normality = \mathbf{ \dfrac{Mass \ of \, Acid \ in \ reaction}{Equivalent \ mass \times Volume \ of \ soltute}}[/tex]

Which gives;

[tex]Normality = \dfrac{ 98 \times 0.003408 }{49 \times 0.015} = \mathbf{0.4544}[/tex]

The normality of the acid solution, H₂SO₄(aq), N ≈ 0.4544

2) The molarity is found as follows;

[tex]Molarity = \dfrac{0.003408 \, moles}{0.015 \, L} = \mathbf{0.2272 \, M}[/tex]

The molarity of the acid solution is 0.2272 M

Learn more about the normality and the molarity of a solution here:

https://brainly.com/question/6532653

https://brainly.com/question/14112872

When the value of the output cannot be determined even if the value of the controllable input is known, the model is:_________

a. analog.
b. digital.
c. stochastic.
d. deterministic.

Answers

Answer:

c. stochastic.

Explanation:

A stochastic model is a tool in statistics, used to estimate the probability distributions of intended outcomes by the allowance of random variation in any number of the inputs over time. For a stochastic model, Inputs to a quantitative model are uncertain, and the value of the output from a stochastic model cannot be easily determined, even if the value of the input that can be determined is known. The distributions of the resulting outcomes of a stochastic model is usually due to the large number of simulations involved, and it is widely used as a statistical tool in the life sciences.

Consider a double-pipe counter-flow heat exchanger. In order to enhance its heat transfer, the length of the heat exchanger is doubled. Will the effectiveness of the exchanger double?

Answers

Answer:

effectiveness of the heat exchanger will not be double when the length of the heat exchanger is doubled.

Because effectiveness depends on NTU and not necessarily the length of the heat exchanger

If the contact surface between the 20-kg block and the ground is smooth, determine the power of force F when t = 4 s. Initially, the block is at rest

Answers

Answer:

The power of force F is 115.2 W

Explanation:

Use following formula

Power  = F x V

[tex]F_{H}[/tex] = F cos0

[tex]F_{H}[/tex] = (30) x 4/5

[tex]F_{H}[/tex] = 24N

Now Calculate V using following formula

V = [tex]V_{0}[/tex] + at

[tex]V_{0}[/tex] = 0

a = [tex]F_{H}[/tex] / m

a = 24N / 20 kg

a = 1.2m / [tex]S^{2}[/tex]

no place value in the formula of V

V = 0 + (1.2)(4)

V = 4.8 m/s

So,

Power = [tex]F_{H}[/tex] x V

Power = 24 x 4.8

Power = 115.2 W

A 10-ft-long simply supported laminated wood beam consists of eight 1.5-in. by 6-in. planks glued together to form a section 6 in. wide by 12 in. deep. The beam carries a 9-kip concentrated load at midspan. Which point has the largest Q value at section a–a?

Answers

Answer:

point B where [tex]Q_B = 101.25 \ in^3[/tex]  has the largest Q value at section a–a

Explanation:

The missing diagram that is suppose to be attached to this question can be found in the attached file below.

So from the given information ;we are to determine the  point that  has the largest Q value at section a–a

In order to do that; we will work hand in hand with the image attached below.

From the image attached ; we will realize that there are 8 blocks aligned on top on another in the R.H.S of the image with the total of 12 in; meaning that each block contains 1.5 in each.

We also have block partitioned into different point segments . i,e A,B,C, D

For point A ;

Let Q be the moment of the Area A;

SO ; [tex]Q_A = Area \times y_1[/tex]

where ;

[tex]y_1 = (6 - \dfrac{1.5}{2})[/tex]

[tex]y_1 = (6- 0.75)[/tex]

[tex]y_1 = 5.25 \ in[/tex]

[tex]Q_A =(L \times B) \times y_1[/tex]

[tex]Q_A =(6 \times 1.5) \times 5.25[/tex]

[tex]Q_A =47.25 \ in^3[/tex]

For point B ;

Let Q be the moment of the Area B;

SO ; [tex]Q_B = Area \times y_2[/tex]

where ;

[tex]y_2 = (6 - \dfrac{1.5 \times 3}{2})[/tex]

[tex]y_2= (6 - \dfrac{4.5}{2}})[/tex]

[tex]y_2 = (6 -2.25})[/tex]

[tex]y_2 = 3.75 \ in[/tex]

[tex]Q_B =(L \times B) \times y_1[/tex]

[tex]Q_B=(6 \times 4.5) \times 3.75[/tex]

[tex]Q_B = 101.25 \ in^3[/tex]

For point C ;

Let Q be the moment of the Area C;

SO ; [tex]Q_C = Area \times y_3[/tex]

where ;

[tex]y_3 = (6 - \dfrac{1.5 \times 2}{2})[/tex]

[tex]y_3 = (6 - 1.5})[/tex]

[tex]y_3= 4.5 \ in[/tex]

[tex]Q_C =(L \times B) \times y_1[/tex]

[tex]Q_C =(6 \times 3) \times 4.5[/tex]

[tex]Q_C=81 \ in^3[/tex]

For point D ;

Let Q be the moment of the Area D;

SO ; [tex]Q_D = Area \times y_4[/tex]

since there is no area about point D

Area = 0

[tex]Q_D =0 \times y_4[/tex]

[tex]Q_D = 0[/tex]

Thus; from the foregoing ; point B where [tex]Q_B = 101.25 \ in^3[/tex]  has the largest Q value at section a–a

. The job of applications engineer for which Maria was applying requires (a) excellent technical skills with respect to mechanical engineering, (b) a commitment to working in the area of pollution control, (c) the ability to deal well and confidently with customers who have engineering problems, (d) a willingness to travel worldwide, and (e) a very intelligent and well-balanced personality. List 10 questions you would ask when interviewing applicants for the job.

Answers

Answer:

Tell us about your self Are your confident that you are the right candidate for this positionwhy should i hire youDo you like working under supervisionHow do you like to work ( in a group or individually )What is your ultimate workplace goalwhat are your future plansWhat do you expect from the Organization when given the jobDo you like taking on critical problemsHow long can you work in this position

Explanation:

For a job of applications engineer which require excellent technical skills, commitment  to working , ability to deal well and confidently with customers a willingness to travel and very intelligent and well-balanced personality.

The ten questions you should ask Maria to determine if she is qualified for the job are :

Tell us about your self ( functions you have )Are your confident that you are the right candidate for this positionwhy should i hire youDo you like working under supervisionHow do you like to work ( in a group or individually )What is your ultimate workplace goalwhat are your future plansWhat do you expect from the Organization when given the jobDo you like taking on critical problemsHow long can you work in this position

Identify the advantages of using 6 tube passes instead of just 2 of the same diameter in shell-and-tube heat exchanger.What are the advantages and disadvantages of using 6 tube passes instead of just 2 of the same diameter?

Answers

Answer:

Please check explanation for answer

Explanation:

Here, we are concerned with stating the advantages and disadvantages  of using a 6 tube passes instead of a 2 tube passes of the same diameter:

Advantages

* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface

* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too

            Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.

Disadvantages

* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.

* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of  manufacturing costs

Calculate the camacitance-to-neutral in F/m and the admittance-to-neutral in S/km for the three-phase line in problem Neglect the effect of the earth plane.

Answers

Answer:

The answer is given below

Explanation:

A 60 Hz three-phase, three-wire overhead line has solid cylindrical conductors  arranged in the form of an equilateral triangle with 4 ft conductor spacing. Conductor  diameter is 0.5 in.

Given that:

The spacing between the conductors (D) = 4 ft

1 ft = 0.3048 m

D = 4 ft = 4 × 0.3048 m = 1.2192 m

The conductor diameter = 0.5 in

Radius of conductor (r) = 0.5/2 = 0.25 in = 0.00635 m

Frequency (f) = 60 Hz

The capacitance-to-neutral is given by:

[tex]C_n=\frac{2\pi \epsilon_0}{ln(\frac{D}{r} )} =\frac{2\pi *8.854*10^{-12}}{ln(1.2192/0.00635)}=1.058*10^{-11}\ F/m[/tex]

The admittance-to-neutral is given by:

[tex]Y_n=j2\pi fC_n=j*2\pi *60*1.058*10^{-11}*\frac{1000\ m}{1\ km}=j3.989*10^{-6}\ S/km[/tex]

help mhee why are you u an enigner

Answers

Answer:

help me why are you an enginer

Explanation:

because lives

which solution causes cells to shrink

Answers

Answer: Hypertonic

Explain: a hypertonic solution has increased solute and a net movement of water outside causing the cell to shrink. A hypotonic has decreased solute concentration, and a net movement of water inside the cell, causing swelling or breakage.

It is to be noted that a hypertonic solution have the capacity to make cells to shrink.

What happens in a hypertonic solution?

In a hypertonic solution, the concentration of solutes (e.g., salts, sugars) outside the cell is higher than inside the cell.

As a result, water moves out of the cell through osmosis, trying to equalize the concentration, causing the cell to lose water and shrink.

This process is commonly observed in biology when examining the effect of different solutions on cells, such as in red blood cells or plant cells.

Learn more about hypertonic solution at:

https://brainly.com/question/4237735

#SPJ6

Solid solution strengthening is achieved byGroup of answer choicesstrain hardening restricting the dislocation motion increasing the dislocation motion increasing the grain boundary g

Answers

Answer:

B. restricting the dislocation motion

Explanation:

Solid solution strengthening is a type of alloying that is carried out by the addition of the atoms of the element used for the alloying to the crystallized lattice structure of the base metal, which the metal that would be strengthened. The purpose of this act is to increase the strength of metals. It actually works by impeding or restricting the motion in the crystal lattice structure of metals thus making them more difficult to deform.

The solute atoms used for strengthening could be interstitial or substitutional. The interstitial solute atoms work by moving in between the space in the atoms of the base metal while the substitutional solute atoms make a replacement with the solvent atoms in the base metal.

The temperature of water is 45 what does the measurement represent

Answers

Answer:

degree of hotness of coldness of a substance

For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _______ and using the Maximum Shear Stress Theory the material will __________
a. fail / not fail
b. fail /fail
c. not fail/fail
d. not fail/not fail

Answers

Answer:

Option A - fail/ not fail

Explanation:

For this given problem, if the yield strength is now 45 ksi, using Distortion Energy Theory the material will _fail______ and using the Maximum Shear Stress Theory the material will ___not fail_______

Find the heat flow from the composite wall as shown in figure. Assume one dimensional flow KA=150 W/m°C , KB=25 W/m°C, KC=60 W/m°C , KD=60 W/m°C

Answers

Answer:

The heat flow from the composite wall is 1283.263 watts.

Explanation:

The conductive heat flow through a material, measured in watts, is represented by the following expression:

[tex]\dot Q = \frac{\Delta T}{R_{T}}[/tex]

Where:

[tex]R_{T}[/tex] - Equivalent thermal resistance, measured in Celsius degrees per watt.

[tex]\Delta T[/tex] - Temperature gradient, measured in Celsius degress.

First, the equivalent thermal resistance needs to be determined after considering the characteristics described below:

1) B and C are configurated in parallel and in series with A and D. (Section II)

2) A and D are configurated in series. (Sections I and III)

Section II

[tex]\frac{1}{R_{II}} = \frac{1}{R_{B}} + \frac{1}{R_{C}}[/tex]

[tex]\frac{1}{R_{II}} = \frac{R_{B}+R_{C}}{R_{B}\cdot R_{C}}[/tex]

[tex]R_{II} = \frac{R_{B}\cdot R_{C}}{R_{B}+R_{C}}[/tex]

Section I

[tex]R_{I} = R_{A}[/tex]

Section III

[tex]R_{III} = R_{D}[/tex]

The equivalent thermal resistance is:

[tex]R_{T} = R_{I} + R_{II}+R_{III}[/tex]

The thermal of each component is modelled by this:

[tex]R = \frac{L}{k\cdot A}[/tex]

Where:

[tex]L[/tex] - Thickness of the brick, measured in meters.

[tex]A[/tex] - Cross-section area, measured in square meters.

[tex]k[/tex] - Thermal conductivity, measured in watts per meter-Celsius degree.

If [tex]L_{A} = 0.03\,m[/tex], [tex]L_{B} = 0.08\,m[/tex], [tex]L_{C} = 0.08\,m[/tex], [tex]L_{D} = 0.05\,m[/tex], [tex]A_{A} = 0.01\,m^{2}[/tex], [tex]A_{B} = 3\times 10^{-3}\,m^{2}[/tex], [tex]A_{C} = 7\times 10^{-3}\,m^{2}[/tex], [tex]A_{D} = 0.01\,m^{2}[/tex], [tex]k_{A} = 150\,\frac{W}{m\cdot ^{\circ}C}[/tex], [tex]k_{B} = 25\,\frac{W}{m\cdot ^{\circ}C}[/tex], [tex]k_{C} = 60\,\frac{W}{m\cdot ^{\circ}C}[/tex] and [tex]k_{D} = 60\,\frac{W}{m\cdot ^{\circ}C}[/tex], then:

[tex]R_{A} = \frac{0.03\,m}{\left(150\,\frac{W}{m\cdot ^{\circ}C} \right)\cdot (0.01\,m^{2})}[/tex]

[tex]R_{A} = \frac{1}{50}\,\frac{^{\circ}C}{W}[/tex]

[tex]R_{B} = \frac{0.08\,m}{\left(25\,\frac{W}{m\cdot ^{\circ}C} \right)\cdot (3\times 10^{-3}\,m^{2})}[/tex]

[tex]R_{B} = \frac{16}{15}\,\frac{^{\circ}C}{W}[/tex]

[tex]R_{C} = \frac{0.08\,m}{\left(60\,\frac{W}{m\cdot ^{\circ}C} \right)\cdot (7\times 10^{-3}\,m^{2})}[/tex]

[tex]R_{C} = \frac{4}{21}\,\frac{^{\circ}C}{W}[/tex]

[tex]R_{D} = \frac{0.05\,m}{\left(60\,\frac{W}{m\cdot ^{\circ}C} \right)\cdot (0.01\,m^{2})}[/tex]

[tex]R_{D} = \frac{1}{12}\,\frac{^{\circ}C}{W}[/tex]

[tex]R_{I} = \frac{1}{50} \,\frac{^{\circ}C}{W}[/tex]

[tex]R_{III} = \frac{1}{12}\,\frac{^{\circ}C}{W}[/tex]

[tex]R_{II} = \frac{\left(\frac{16}{15}\,\frac{^{\circ}C}{W} \right)\cdot \left(\frac{4}{21}\,\frac{^{\circ}C}{W}\right)}{\frac{16}{15}\,\frac{^{\circ}C}{W} + \frac{4}{21}\,\frac{^{\circ}C}{W}}[/tex]

[tex]R_{II} = \frac{16}{99}\,\frac{^{\circ}C}{W}[/tex]

[tex]R_{T} = \frac{1}{50}\,\frac{^{\circ}C}{W} + \frac{16}{99}\,\frac{^{\circ}C}{W} + \frac{1}{12}\,\frac{^{\circ}C}{W}[/tex]

[tex]R_{T} = \frac{2623}{9900}\,\frac{^{\circ}C}{W}[/tex]

Now, if [tex]\Delta T = 400\,^{\circ}C - 60\,^{\circ}C = 340\,^{\circ}C[/tex] and [tex]R_{T} = \frac{2623}{9900}\,\frac{^{\circ}C}{W}[/tex], the heat flow is:

[tex]\dot Q = \frac{340\,^{\circ}C}{\frac{2623}{9900}\,\frac{^{\circ}C}{W} }[/tex]

[tex]\dot Q = 1283.263\,W[/tex]

The heat flow from the composite wall is 1283.263 watts.

 

Aggregate blend composed of 65% coarse aggregate (SG 2.701), 35% fine aggregate (SG 2.625)
Compacted specimen weight in air = 1257.9 g, submerged weight = 740.0 g, SSD weight = 1258.7 g
Compacted specimen contains 5.0% asphalt by total weight of the mix with Gb = 1.030
Theoretical maximum specific gravity = 2.511
Bulk specific gravity of the aggregate __________
Bulk specific gravity of the compacted specimen__________
Percent stone __________
Effective specific gravity of the stone__________
Percent voids in total mix__________
Percent voids in mineral aggregate__________
Percent voids filled with asphalt__________

Answers

Answer:

2.6742.42891.695%2.5923.305%11.786%78.1%

Explanation:

coarse aggregate (ca) = 65%,   SG = 2.701

Fine aggregate = 35%,    SG = 2.625

A) Bulk specific gravity of aggregate

   = [tex]\frac{65*2.701 + 35*2.625}{100} = 2.674[/tex]

B) Wm = 1257.9 g { weight in air }

    Ww = 740 g { submerged weight }

   therefore Bulk specific gravity of compacted specimen

   = [tex]\frac{Wm}{Wm-Ww}[/tex]  =  [tex]\frac{1257.9}{1257.9 - 740 }[/tex]  =  2.428

   Theoretical specific gravity = 2.511

Percent stone

= 100 - asphalt content - Vv

= 100 - 5 - 3.305 = 91.695%

c) percent of void

= [tex]\frac{9.511-2.428}{2.511} * 100[/tex]    Vv = 3.305%

d) let effective specific gravity in stone

     = [tex]\frac{91.695*unstone+ 5 *1.030 }{96.695} = 2.511[/tex]

    = Instone = 2.592 effective specific gravity of stone

e) Vv = 3.305%

f ) volume filled with asphalt (Vb) = [tex]\frac{\frac{Wb}{lnb} }{\frac{Wm}{Inm} } * 100[/tex]

           Vb = [tex]\frac{5 * 2.428}{1.030 * 100} * 100[/tex]

          Vb = 11.786 %

Volume of mineral aggregate = Vb + Vv

              VMA = 11.786 + 3.305 = 15.091

g) percent void filled with alphalt

     = Vb / VMA * 100

    VMA = 11.786 + 3.305 = 15.091

   percent void filled with alphalt

     = Vb / VMA * 100 = (11.786 / 15.091) * 100 = 78.1%

 

If there are 16 signal combinations (states) and a baud rate (number of signals/second) of 8000/second, how many bps could I send

Answers

Answer:

32000 bits/seconds

Explanation:

Given that :

there are 16  signal combinations (states) = 2⁴

bits  n = 4

and a baud rate (number of signals/second) = 8000/second

Therefore; the number of bits per seconds can be calculated as follows:

Number of bits per seconds = bits  n × number of signal per seconds

Number of bits per seconds =  4 × 8000/second

Number of bits per seconds = 32000 bits/seconds

If the contact surface between the 20-kg block and the ground is smooth, determine the power of force F when t = 4 s. Initially, the block is at rest

Answers

Answer:

115.2 W

Explanation:

The computation is shown below:

As we know that

Power = F . v

[tex]F_H = F cos \theta[/tex]

[tex]F_H = 30 \frac{4}{5}[/tex]

[tex]F_H = 24N[/tex]

Now we solve for V

[tex]V = V_0 + at[/tex]            a = 24N ÷ 20Kg

But V_0 = 0          a = 1.2 m/s^2

F_H = ma             V = 0 + (1.2) (4)

a = F_H ÷ m        V = 4.8 m/s

Therefore

Power = F_Hv

= (24) (4.8)

= 115.2 W

By applying the above formuals we can get the power

Compute the volume percent of graphite, VGr, in a 3.2 wt% C cast iron, assuming that all the carbon exists as the graphite phase. Assume densities of 7.9 and 2.3 g/cm3 for ferrite and graphite, respectively.

Answers

Answer:

The volume percentage of graphite is 10.197 per cent.

Explanation:

The volume percent of graphite is the ratio of the volume occupied by the graphite phase to the volume occupied by the graphite and ferrite phases. The weight percent in the cast iron is 3.2 wt% (graphite) and 96.8 wt% (ferrite). The volume percentage of graphite is:

[tex]\%V_{gr} = \frac{V_{gr}}{V_{gr}+V_{fe}} \times 100\,\%[/tex]

Where:

[tex]V_{gr}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

[tex]V_{fe}[/tex] - Volume occupied by the graphite phase, measured in cubic centimeters.

The expression is expanded by using the definition of density and subsequently simplified:

[tex]\%V_{gr} = \frac{\frac{m_{gr}}{\rho_{gr}} }{\frac{m_{gr}}{\rho_{gr}}+\frac{m_{fe}}{\rho_{fe}}}\times 100\,\%[/tex]

Where:

[tex]m_{fe}[/tex], [tex]m_{gr}[/tex] - Masses of the ferrite and graphite phases, measured in grams.

[tex]\rho_{fe}, \rho_{gr}[/tex] - Densities of the ferrite and graphite phases, measured in grams per cubic centimeter.

[tex]\%V_{gr} = \frac{1}{1+\frac{\frac{m_{fe}}{\rho_{fe}} }{\frac{m_{gr}}{\rho_{gr}} } }\times 100\,\%[/tex]

[tex]\%V_{gr} = \frac{1}{1 + \left(\frac{\rho_{gr}}{\rho_{fe}} \right)\cdot\left(\frac{m_{fe}}{m_{gr}} \right)} \times 100\,\%[/tex]

If [tex]\rho_{gr} = 2.3\,\frac{g}{cm^{3}}[/tex], [tex]\rho_{fe} = 7.9\,\frac{g}{cm^{3}}[/tex], [tex]m_{gr} = 3.2\,g[/tex] and [tex]m_{fe} = 96.8\,g[/tex], the volume percentage of graphite is:

[tex]\%V_{gr} = \frac{1}{1+\left(\frac{2.3\,\frac{g}{cm^{3}} }{7.9\,\frac{g}{cm^{3}} } \right)\cdot \left(\frac{96.8\,g}{3.2\,g} \right)} \times 100\,\%[/tex]

[tex]\%V_{gr} = 10.197\,\%V[/tex]

The volume percentage of graphite is 10.197 per cent.

Following are the solution to the given points:

[tex]\to C_{Gr} = 100\\\\ \to C_{\alpha}= 0[/tex]From [tex]Fe-F_{\frac{e}{3}} c[/tex] diagram.  

[tex]\to W_{\alpha} =\frac{C_{Gr}-C_{o}}{C_{Gr}-C_{\alpha}}[/tex]

           [tex]= \frac{100-3.6}{100-0} \\\\= \frac{100-3.6}{100} \\\\= \frac{96.4}{100} \\\\=0.964[/tex]

Calculating the weight fraction of graphite:  

[tex]\to W_{Gr}=\frac{C_0 - c_d}{C_{Gr} -c_d}[/tex]

            [tex]= \frac{3.6-0}{100-0} \\\\ = \frac{3.6}{100} \\\\= 0.036[/tex]

Calculating the volume percent of graphite:

[tex]\to V_{Gr}=\frac{\frac{W_{Gr}}{P_{Gr}}}{\frac{w_{\alpha}}{P_{\alpha}}+ \frac{W_{Gr}}{P_{Gr}}}[/tex]

           [tex]=\frac{\frac{0.036}{2.3}}{\frac{0.964}{7.9}+\frac{0.036}{2.3}}\\\\=0.11368 \times 100\%\\\\=11.368\%[/tex]

Therefore, the final answer is "0.964, 0.036, and 11.368%"

Learn more Graphite:

brainly.com/question/4770832

Other Questions
Use page numbers and quotations to write a three- to five-sentence paragraph about the resolution from your novel or short story. Remember to include the title and author or the novel or short story. my book is the open boat WILL GIVE BRAINLIEST 32 percent of the customers of a fast food chain order the Whopper, French fries and a drink. A random sample of 10 cash register receipts is selected. What is the probability that eight receipts will show that the above three food items were ordered? A circle has a radius of 6 in. The inscribed equilateral triangle will have an area of: Sarah is taking a Dynamic Study Module. She works best when she has a clear idea of what she has done and how much she has left. Whats the best thing Sarah can do? whats the answer ?? ill mark brainliest Solve for x.X-6___ =5 3 50PTS!!!! Read then give me 5 good questions, and you will get brainliest#first come first serve. here....Discussions with other students provide a forum in which you can practice your oral communication skills. These skills will play an important part in your future career, especially if you want to hold a leadership role. Further, high-school English classes are designed to train you to use language in a variety of modes, including orally. These discussions are not the same as social conversations. Rather, they offer a way for people who might not know each other and who have varied interests and personalities to exchange ideas about a topic. Discussions foster your ability to participate in a democratic society, encouraging you to overcome habits of passivity or of dominating conversations. Purpose of Discussions Discussions can serve many ends. Generally, they work under the principle that many people pooling ideas will generate fresh and innovative thoughts. Discussions can help you with the following tasks: summarizing a film analyzing a text generating ideas for an upcoming project or assignment reviewing for a test solving problems reviewing your writing Participation in Groups Sharing Roles Sharing roles is not a question of merely dividing up the research work among the individuals in the group. Roles are about sharing responsibility for how a specific aspect of the discussion progresses. You will assign and maintain those roles for a group discussion session or a segment of it and swap them periodically. These roles will vary with the size and nature of your group (which depends on the availability of your peers), but here are a few typical roles: Presenter: introduces information for the group to discuss Facilitator: keeps the group on task, tracks the time, helps resolve conflicts, and makes sure all group members have a chance to participate Recorder: takes notes on the main points of discussion Interaction Strategies a. Ask others to clarify if you dont understand what they have said. b. Think before you speak or react to what others have said. Initially someone's comments might be difficult to understand, but if you try to see what their perspective is, you might gain a whole new insight into a topic. find 5 good questions plz! :) please help me with this, will mark brainliest!! Please explain how you would prove that all circles are similar? Kari and Misha, who have known each other since first grade are both yearbook editors and photographers. Where should a comma be placed in this sentence? after editors after both after grade after other Here is the histogram of the data distribution all websites are One what is the median of this distribution? 7, 9, 5, 4 Studying overseas can be a life-altering event. Not only do you get to live in another country and learn a new language (if indeed the country does not speak the same language of your native tongue), but also you learn about a new culture. You get to experience firsthand what most tourists never catcha thorough immersion in a different way of life. While tourists only graze the surface and generally see the touristy-type areas, once you live in a location for a few months or more, you become accustomed to the ways of the town. You get to hang out at local hot-spots and become friendly with locals. You make lifelong friends and have an appreciation for others who live differently than you. Which is the main idea of this paragraph? A. Studying overseas can be a life-altering event. B. You get to learn a new language and learn about a new culture when overseas. C. You get to visit all the local hot-spots and make new friends when overseas. D. You develop an appreciation for other peoples way of life when overseas. Reset Next which graph represents a reflection of f(x)=1/10(10)x accross the y axis How might an interactive leader like Mary Barra communicate a policy change that impacts all GM employees from executive-level managers to assembly line workers Robyn is using lookup functions in her Excel 2016 worksheet. Which formula uses the correct syntax? =VLOOKUP(lookup_value, table_array, col_index_num, range_lookup) =VLOOKUP(table_array, lookup_value, col_index_num, range_lookup) =VLOOKUP(lookup_value, table_array, col_index_num, value) =VLOOKUP(table_array, lookup_value, col_index_num, value) The numbers 1 through 10 are written on a board. You can erase any two numbers and replace them with their difference. Is it possible to repeat this process until the only number on the board is 0? How did the change of stress (adding or removing reactants or products) cause a shift in the equilibrium system of your solutions? Use data to support your answer. Make sure you discuss all four stress changes: Adding a reactant Adding a product Removing a reactant Removing a product In a plane, line e is perpendicular to line f, line f is perpendicular to line g, and line h is parallel to line f. which of the following must be true? many cars are fitted with airbags which inflate in an accident. Airbags contain solid sodium azide, NaN, which decomposes rapidly to form sodium and nitrogen. The nitrogen formed fills the air bags. Can someone please solve part b and c. I'll mark brainliest to whoever gets it right! What is the solution to this sysiem of inear equacions?3x-2= 145x+y=32 (3,5) (6,2) (8,-1) (14,-18)