Answer:
First, you can graph the y-intercept. The y-intercept would be (0,3) or in your equation, the number 3. Next, you could create a table by substituting values for x such as 1, 2, 3, or 4. This will give you easy numbers to graph. Instead of creating a table, perhaps you want to graph this by plotting the slope. Since the slope is 3/2, is means that it is going up, because the number is positive. An easy way to start would be starting at your y-intercept, (0,3), you could go two to the right and three up. That is a point. Then you could go the way down; two to the left and three down. Finally, you can draw a line connecting the points together.
I hope this helped you! Have a great rest of your day!
Arrange the functions for which the result is a non-infinite value and the limit exists in ascending order of their limit values as x tends to infinity. Please see picture attached.
Answer:
see attached
Step-by-step explanation:
The limit as x gets large is the ratio of the highest-degree terms. In most cases, the limit can be found by evaluating that ratio. Where an absolute value is involved, the absolute value of the highest-degree term is used.
If the ratio gives x to a positive power, the limit does not exist. If the ratio gives x to a negative power, the limit is zero.
The arrangement of functions according to the given condition
[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]
[tex]h(x)=\frac{x^{3} -x^{2} +4}{1-3x^{2} }[/tex]
[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]
[tex]i(x)=\frac{x-1}{|1-4x| }[/tex]
[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]
[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]
[tex]f(x)=\frac{x^{2} -1000}{x-5}[/tex]
[tex]j(x)=\frac{x^{2}-1 }{|7x-1|}[/tex]
What is limit?A limit is the value that a function approaches as the input approaches some value.
According to the given question
[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]
⇒[tex]\lim_{nx\to \infty} \frac{5x^{2} -1}{x^{2} +1}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x^{2} }{x^{2} } \frac{5-\frac{1}{x^{2} } }{1+\frac{1}{x^{2} } }[/tex]
= 5 ([tex]\frac{1}{x^{2} } = 0[/tex] ,as x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0)
[tex]i(x)=\frac{x-1}{|1-4x|}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x-1}{|1-4x|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{1-\frac{1}{x} }{|\frac{-1}{4}+\frac{1}{x} | }[/tex] =[tex]\frac{1}{\frac{1}{4} }[/tex] =[tex]\frac{1}{4}[/tex]
As x tends to infinity 1/x tends to 0, and |[tex]\frac{-1}{4}[/tex]| gives 1/4
[tex]f(x)= \frac{x^{2} -1000}{x--5}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x^{2} -1000}{x-5}[/tex]= [tex]\lim_{x \to \infty} \frac{x^{2} }{x} \frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex]= [tex]\lim_{x \to \infty} x\frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex] ⇒ limit doesn't exist.
[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]
⇒[tex]\lim_{x\to \infty} \frac{4x^{2} -6}{1-4x^{2} }[/tex]=[tex]\lim_{x\to \infty} \frac{x^{2} }{x^{2} } \frac{4-\frac{6}{x^{2} } }{\frac{1}{x^{2} } -4}[/tex] [tex]= \lim_{n \to \infty} \frac{4}{-4}[/tex] = -1
As x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0.
[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]
⇒[tex]\lim_{x\to \infty} \frac{|4x-1|}{x-4}[/tex] = [tex]\lim_{x \to \infty} \frac{|x|}{x} \frac{4-\frac{1}{x} }{1 -\frac{4}{x} } }[/tex] = 4
as x tends to infinity 1/x tends to 0
and |x|=x ⇒[tex]\frac{|x|}{x}=1[/tex]
[tex]h(x)=\frac{x^{3}-x^{2} +4 }{1-3x^{3} }[/tex][tex]\lim_{x \to \infty} \frac{x^{3} -x^{2} +4}{1-3x^{3} }[/tex][tex]= \lim_{x \to \infty} \frac{x^{3} }{x^{3} } \frac{1-\frac{1}{x}+\frac{4}{x^{3} } }{\frac{1}{x^{3} -3} }[/tex] = [tex]\frac{1}{-3}[/tex] =[tex]-\frac{1}{3}[/tex]
[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]
[tex]\lim_{x \to \infty} \frac{5x+1000}{x^{2} }[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{5+\frac{1000}{x} }{x}[/tex] =0
As x tends to infinity 1/x tends to 0
[tex]j(x)= \frac{x^{2}-1 }{|7x-1|}[/tex]
[tex]\lim_{x \to \infty} \frac{x^{2}-1 }{|7x-1|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{|x|}\frac{x-\frac{1}{x} }{|7-\frac{1}{x}| }[/tex] = [tex]\lim_{x \to \infty} 7x[/tex] = limit doesn't exist.
Learn more about limit here:
https://brainly.in/question/5768142
#SPJ2
Find the directional derivative of at the point (1, 3) in the direction toward the point (3, 1). g
Complete Question:
Find the directional derivative of g(x,y) = [tex]x^2y^5[/tex]at the point (1, 3) in the direction toward the point (3, 1)
Answer:
Directional derivative at point (1,3), [tex]D_ug(1,3) = \frac{162}{\sqrt{8} }[/tex]
Step-by-step explanation:
Get [tex]g'_x[/tex] and [tex]g'_y[/tex] at the point (1, 3)
g(x,y) = [tex]x^2y^5[/tex]
[tex]g'_x = 2xy^5\\g'_x|(1,3)= 2*1*3^5\\g'_x|(1,3) = 486[/tex]
[tex]g'_y = 5x^2y^4\\g'_y|(1,3)= 5*1^2* 3^4\\g'_y|(1,3)= 405[/tex]
Let P = (1, 3) and Q = (3, 1)
Find the unit vector of PQ,
[tex]u = \frac{\bar{PQ}}{|\bar{PQ}|} \\\bar{PQ} = (3-1, 1-3) = (2, -2)\\{|\bar{PQ}| = \sqrt{2^2 + (-2)^2}\\[/tex]
[tex]|\bar{PQ}| = \sqrt{8}[/tex]
The unit vector is therefore:
[tex]u = \frac{(2, -2)}{\sqrt{8} } \\u_1 = \frac{2}{\sqrt{8} } \\u_2 = \frac{-2}{\sqrt{8} }[/tex]
The directional derivative of g is given by the equation:
[tex]D_ug(1,3) = g'_x(1,3)u_1 + g'_y(1,3)u_2\\D_ug(1,3) = (486*\frac{2}{\sqrt{8} } ) + (405*\frac{-2}{\sqrt{8} } )\\D_ug(1,3) = (\frac{972}{\sqrt{8} } ) + (\frac{-810}{\sqrt{8} } )\\D_ug(1,3) = \frac{162}{\sqrt{8} }[/tex]
Can somebody help me i have to drag the functions on top onto the bottom ones to match their inverse functions.
Answer:
1. x/5
2. cubed root of 2x
3.x-10
4.(2x/3)-17
Step-by-step explanation:
Answer:
Step-by-step explanation:
1. Lets find the inverse function for function f(x)=2*x/3-17
To do that first express x through f(x):
2*x/3= f(x)+17
2*x=(f(x)+17)*3
x=(f(x)+17)*3/2 done !!! (1)
Next : to get the inverse function from (1) substitute x by f'(x) and f(x) by x.
So the required function is f'(x)=(x+17)*3/2 or f'(x)=3*(x+17)/2
This is function is No4 in our list. So f(x)=2*x/3-17 should be moved to the box No4 ( on the bottom) of the list.
2. Lets find the inverse function for function f(x)=x-10
To do that first express x through f(x):
x= f(x)+10
x=f(x)+10 done !!! (2)
Next : to get the inverse function from (2) substitute x by f'(x) and f(x) by x.
So the required function is f'(x)=x+10
This is function is No3 in our list. So f(x)=x-10 should be moved to the box No3 ( from the top) of the list.
3.Lets find the inverse function for function f(x)=sqrt 3 (2x)
To do that first express x through f(x):
2*x= f(x)^3
x=f(x)^3/2 done !!! (3)
Next : to get the inverse function from (3) substitute x by f'(x) and f(x) by x.
So the required function is f'(x)=x^3/2
This is function No2 in our list. So f(x)=sqrt 3 (2x) should be moved to the box No2 ( from the top) of the list.
4.Lets find the inverse function for function f(x)=x/5
To do that first express x through f(x):
x=f(x)*5 done !!! (4)
Next : to get the inverse function from (4) substitute x by f'(x) and f(x) by x.
So the required function is f'(x)=x*5 or f'(x)=5*x
This is function No1 in our list. So f(x)=x/5 should be moved to the box No1 ( on the top) of the list.
Simplify the algebraic expression: 7x2 + 6x – 9x – 6x2 + 15. A) x2 + 15x + 15 B) x2 – 3x + 15 C) 13x2 + 3x + 15 D) x4 – 3x + 15
Answer:
B) [tex]x^2-3x+15[/tex]
Step-by-step explanation:
[tex]7x^2+6x-9x-6x^2+15=\\7x^2-6x^2+6x-9x+15=\\x^2+6x-9x+15=\\x^2-3x+15[/tex]
A) [tex]x^2+15x+15[/tex]
B) [tex]x^2-3x+15[/tex]
C) [tex]13x^2 + 3x + 15[/tex]
D) [tex]x^4-3x + 15[/tex]
━━━━━━━☆☆━━━━━━━
▹ Answer
B. x² - 3x + 15
▹ Step-by-Step Explanation
7x² + 6x - 9x - 6x² + 15
Collect like terms
x² + 6x - 9x + 15
Subtract
x² - 3x + 15
Final Answer
x² - 3x + 15
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
For the binomial distribution with the given values for n and p, state whether or not it is suitable to use the normal distribution as an approximation. n = 24 and p = 0.6.
Answer:
Since both np > 5 and np(1-p)>5, it is suitable to use the normal distribution as an approximation.
Step-by-step explanation:
When the normal approximation is suitable?
If np > 5 and np(1-p)>5
In this question:
[tex]n = 24, p = 0.6[/tex]
So
[tex]np = 24*0.6 = 14.4[/tex]
And
[tex]np(1-p) = 24*0.6*0.4 = 5.76[/tex]
Since both np > 5 and np(1-p)>5, it is suitable to use the normal distribution as an approximation.
Find the value of c such that the three points (5,5), (-3,1), and (6,c) lie on the same line. Note: Three points are on the same line if the slope of the line through any two points is always the same.
Answer:
c = 5.5
Step-by-step explanation:
We can find the slope of the line using the given points (5,5) and (-3,1) using rise over run:
-4/-8 = 1/2
Now, we can plug in the slope and a point into the equation y = mx + b to find b:
5 = 1/2(5) + b
5 = 2.5 + b
2.5 = b
Then, we can plug in 6 in the point (6,c) to find c:
y = (1/2)(6) + 2.5
y = 3 + 2.5
y = 5.5
c = 5.5
Answer:
c = 5.5
Step-by-step explanation:
Find the slope with two points
m = (y2-y1)/(x2-x1)
m = (1-5)/(-3-5)
= -4/-8
= 1/2
If all the points are on the same line, then they have the same slope
m = (y2-y1)/(x2-x1)
Using the first and third points
1/2 = (c-5)/(6-5)
1/2 = (c-5)/1
1/2 = c-5
Add 5 to each side
5+1/2 = c
5.5 =c
Ann's $6,900 savings is in two accounts. One account earns 3% annual interest and the other earns 8%. Her total interest for the year is $342. How much does she have in each account?
Answer:
x=4200, y=2700
Step-by-step explanation:
let x be first account
y the second
x+y=6900
0.03x+0.08y=342
solve by addition/elimination)
multiply first equation by 0.03
0.03x+0.03y=207 subtract from second
0.03x+0.03y-0.03x-0.08y=207-342
0.05y=135
y=2700, x=4200
Please answer this correctly
Answer:
The second question
Step-by-step explanation:
The orca starts at -25 meters. She goes up 25 meters.
up 25 = +25
-25+25=0
Answer:
Option 2
Step-by-step explanation:
The orca swims at the elevation of -25 meters. The orca swims up 25 meters higher than before.
-25 + 25 = 0
Convert.
5 days =
lao
hours
Answer:
120 Hours
Step-by-step explanation:
24 hours in a day
5 days
24 x 5 = 120
A group of 20 people were asked to remember as many items as possible from a list before and after being taught a memory device. Researchers want to see if there is a significant difference in the amount of items that people are able to remember before and after being taught the memory device. They also want to determine whether or not men and women perform differently on the memory test. They choose α = 0.05 level to test their results. Use the provided data to run a Two-way ANOVA with replication.
A B C
Before After
Male 5 7
4 5
7 8
7 8
7 8
7 8
5 6
7 7
6 7
Female 5 8
5 6
8 8
7 7
6 6
8 9
8 8
6 6
7 6
8 8
Answer:
1. There is no difference in amount of items that people are able to remember before and after being taught the memory device.
2. There is no difference between performance of men and women on memory test.
Step-by-step explanation:
Test 1:
The hypothesis for the two-way ANOVA test can be defined as follows:
H₀: There is no difference in amount of items that people are able to remember before and after being taught the memory device.
Hₐ: There is difference in amount of items that people are able to remember before and after being taught the memory device.
Use MS-Excel to perform the two-way ANOVA text.
Go to > Data > Data Analysis > Anova: Two-way with replication
A dialog box will open.
Input Range: select all data
Rows per sample= 10
Alpha =0.05
Click OK
The ANOVA output is attaches below.
Consider the Columns data:
The p-value is 0.199.
p-value > 0.05
The null hypothesis will not be rejected.
Conclusion:
There is no difference in amount of items that people are able to remember before and after being taught the memory device.
Test 2:
The hypothesis to determine whether or not men and women perform differently on the memory test is as follows:
H₀: There is no difference between performance of men and women on memory test.
Hₐ: There is a difference between performance of men and women on memory test.
Consider the Sample data:
The p-value is 0.075.
p-value > 0.05
The null hypothesis will not be rejected.
Conclusion:
There is no difference between performance of men and women on memory test.
Hi, can someone help me on this. I'm stuck --
Answer:
a) Fx=-5N Fy=-5*sqrt(3) N b) Fx= 5*sqrt(3) N Fy=-5N
c) Fx=-5*sqrt(2) N Fy=-5*sqrt(2) N
Step-by-step explanation:
The arrow's F ( weight) component on axle x is Fx= F*sinA and on axle y is
Fy=F*cosA
a) The x component and y component both are opposite directed to axle x and axle y accordingly. So both components are negative.
So Fx = - 10*sin(30)= -5 N Fy= -10*cos(30)= -10*sqrt(3)/2= -5*sqrt (3) N
b) Now the x component is co directed to axle x , and y component is opposite directed to axle y.
So x component is positive and y components is negative
So Fx = 10*sin(60)= 5*sqrt(3) N Fy= -10*cos(60)= -10*1/2= -5 N
c)The x component and y component both are opposite directed to axle x and axle y accordingly. So both components are negative.
So Fx = - 10*sin(45)= -5*sqrt(2) N
Fy= -10*cos(45)= -10*sqrt(2)/2= -5*sqrt (2) N
Researchers wanted to know whether it is better to give the diphtheria, tetanus and pertussis (DTaP) vaccine in the thigh or the arm. They collect data on severe reactions to this vaccine in children aged 3 to 6 years old. What would be the best statistical test for them to utilize?
A. One-sample chi-square
B. Linear regression
C. T-test
D. Two-sample chi-square
Answer:
D. Two-sample chi-square
Step-by-step explanation:
A chi-square test is a test used to compare the data that is observed, from the data that is expected.
In a two-sample chi-square test the observed data should be similar to the expected data if the two data samples are from the same distribution.
The hypotheses of the two-sample chi-square test is given as:
H0: The two samples come from a common distribution.
Ha: The two samples do not come from a common distribution
Therefore, in this case, the best statistical test to utilize is the two-sample chi-square test.
plz give me correct answers
Answer:
Step-by-step explanation:
greatest number=8643
smallest number=3468
difference=8643-3468=5175
6.1. DCCLVI
CDXCIV
(II) 74,746
Phil Nelson deposited $35,000 at Wachovia Bank at 3.5% interest
compounded quarterly. How much money will be in this account at
the end of the year?
Answer:
$36,241.20
Step-by-step explanation:
Compounded Interest Rate Formula: A = P(1 + r/n)^nt
Since we are given P, r, n, and t, simply plug it into the formula:
A = 35000(1 + 0.035/4)⁴⁽¹⁾
A = 35000(1 + 0.00875)⁴
A = 35000(1.00875)⁴
A = 35000(1.03546)
A = 36241.2
If the 2412 leaves are not a random sample, but the researchers treated the 2412 leaves as a random sample, this most likely made the data more:_____________.1. accurate, but not precise2. precise, but not accurate3. neither4. both accurate and precise
Answer:
2. Precise but not accurate
Step-by-step explanation:
In a high precision, low accuracy case study, the measurements are all close to each other (high agreement between the measurements) but not near/or close to the center of the distribution (how close a measurement is to the correct value for that measurement)
In the DBE 122 class, there are 350 possible points. These points come from 5 homework sets that are worth 10 points each and 3 exams that are worth 100 points each. A student has received homework scores of 7, 8, 7, 5, and 8 and the first two exam scores are 81 and 80. Assuming that grades are assigned according to the standard scale, where if the grade percentage is 0.9 or higher the student will get an A, and if the grade percentage is between 0.8 and 0.9 the student will get a B, and there are no weights assigned to any of the grades, is it possible for the student to receive an A in the class? What is the minimum score on the third exam that will give an A? What about a B?
Answer:
a) The student cannot receive an A in the class.
b) The student must score 119 in the third exams to make an A. This is clearly not possible, since he cannot make 119 in a 100-points exam.
c) The student can make a B but he must score at least 84 in the third exam.
Step-by-step explanation:
To make an A, the student must score 315 (350 x 90%) in both home and the three exams.
The student who scored 35 (7 + 8 + 7 + 5 + 8) in the homework and 161 (81 + 80), getting a total of 196, is short by 119 (315 - 196) scores in making an A.
To make a B, the student must score 280 (350 x 80%) or higher but not reaching 315.
B ≥ 280 and < 315.
Since, the student had scored 196, he needs to score 84 and above to make a B in the last exam.
Find the sample size needed to estimate the percentage of Democrats among registered voters in Texas. Use a 0.01 margin of error, and use a confidence level of 96% and assume LaTeX: \hat{p}
p
^
=0.28.
Answer:
Step-by-step explanation:
Hello!
You have to determine the sample size to take to estimate the population proportion of Democrats among registered voters in Texas for a 96% interval with a margin of error of 0.01 and sample proportion p'= 0.28
The interval for the population proportion is
p' ± [tex]Z_{1-\alpha /2}[/tex]*[tex]\sqrt{\frac{p'(1-p')}{n} }[/tex]
The margin of error of the interval is:
d= [tex]Z_{1-\alpha /2}[/tex]*[tex]\sqrt{\frac{p'(1-p')}{n} }[/tex]
[tex]\frac{d}{Z_{1-\alpha /2}}= \sqrt{\frac{p'(1-p')}{n} }\\(\frac{d}{Z_{1-\alpha /2}} )^2= \frac{p'(1-p)}{n} \\n*(\frac{d}{Z_{1-\alpha /2}} )^2= p'(1-p)\\n= p'(1-p)*(\frac{Z_{1-\alpha /2}}{d} )^2\\[/tex]
[tex]Z_{1-\alpha /2}= Z_{0.98}= 2.054[/tex]
[tex]n= 0.28*(1-0.28)*(\frac{2.054}{0.01} )^2= 8505.33[/tex]
n= 8506 voters
I hope this helps!
A biologist samples and measures the length of the fish in a lake. What is the level of measurement of the data?
Answer:Ratio
Step-by-step explanation:
The ratio data because length has a true zero, and ratios of lengths are meaningful.
Suppose we write down the smallest positive 2-digit, 3-digit, and 4-digit multiples of 9,8 and 7(separate number sum for each multiple). What is the sum of these three numbers?
Answer:
Sum of 2 digit = 48
Sum of 3 digit = 317
Sum of 4 digit = 3009
Total = 3374
Step-by-step explanation:
Given:
9, 8 and 7
Required
Sum of Multiples
The first step is to list out the multiples of each number
9:- 9,18,....,99,108,117,................,999
,1008
,1017....
8:- 8,16........,96,104,...............,992,1000,1008....
7:- 7,14,........,98,105,.............,994,1001,1008.....
Calculating the sum of smallest 2 digit multiple of 9, 8 and 7
The smallest positive 2 digit multiple of:
- 9 is 18
- 8 is 16
- 7 is 14
Sum = 18 + 16 + 14
Sum = 48
Calculating the sum of smallest 3 digit multiple of 9, 8 and 7
The smallest positive 3 digit multiple of:
- 9 is 108
- 8 is 104
- 7 is 105
Sum = 108 + 104 + 105
Sum = 317
Calculating the sum of smallest 4 digit multiple of 9, 8 and 7
The smallest positive 4 digit multiple of:
- 9 is 1008
- 8 is 1000
- 7 is 1001
Sum = 1008 + 1000 + 1001
Sum = 3009
Sum of All = Sum of 2 digit + Sum of 3 digit + Sum of 4 digit
Sum of All = 48 + 317 + 3009
Sum of All = 3374
Find AC. (Khan Academy-Math)
Answer:
[tex]\boxed{11.78}[/tex]
Step-by-step explanation:
From observations, we can note that BC is the hypotenuse.
As the length of hypotenuse is not given, we can only use tangent as our trig function.
tan(θ) = opposite/adjacent
tan(67) = x/5
5 tan(67) = x
11.77926182 = x
x ≈ 11.78
a bank teller has 340 one hundred dollar bills. how much money does the bank teller have?
Answer:
$34,000
Step-by-step explanation:
Since a one hundred dollar bill is equal to 100, we simply multiply 340 and 100 together:
340(100) = 34000
What is the sum of the measures of the interior angles of the stop sign?
Answer:
Sum of Interior Angles = (Number of Sides -2) • 180 degrees
Sum of Interior Angles = (8 -2) * 180 = 1,080
25% of a class do not play basketball.
27 children do play. How many
children are in the class?
Answer: 36 children
Step-by-step explanation:
3/4 of the class plays basketball. Thus 3/4x=27. Multiply each side by 4/3 to get x = 36
To get from North to East, you walk 12 meters south and 16 meters east, as shown
in the diagram below. If you wanted to walk straight from North to East, what would
the distance be? Solve for x
Answer:
ur pito is to small
Step-by-step explanation:
it to little
Find the lateral area of a regular square pyramid if the base edges are of length 12 and the perpendicular height is 8.
Answer:
Lateral area of the pyramid = 120 square units
Step-by-step explanation:
In the figure attached,
A pyramid has been given with square base with edges of 12 units and perpendicular height as 8 units.
Lateral area of a pyramid = Area of the lateral sides
Area of one lateral side = [tex]\frac{1}{2}(\text{Base})(\text{Lateral height})[/tex]
= [tex]\frac{1}{2}(\frac{b}{2})(\sqrt{(\frac{b}{2})^2+h^2})[/tex] [Since l = [tex]\sqrt{r^{2}+h^{2}}[/tex]]
= [tex]\frac{1}{2}(6)(\sqrt{6^2+8^2})[/tex]
= [tex]3\sqrt{100}[/tex]
= 30 units²
Now lateral area of the pyramid = 4 × 30 = 120 square units
Answer: 240 units^2
Step-by-step explanation:
LA= 1/2 Pl
P= perimeter of base
l= lateral height
l= 8^2 + (12/2)^2 = 10^2
P= 12 x 4 = 48
48 x 10 = 480
480/2 = 240
240 units^2
If the area of a circular cookie is 28.26 square inches, what is the APPROXIMATE circumference of the cookie? Use 3.14 for π.
75.2 in.
56.4 in.
37.6 in.
18.8 in.
Answer:
Step-by-step explanation:
c= 2(pi)r
Area = (pi)r^2
28.26 = (pi) r^2
r =[tex]\sqrt{9}[/tex] = 3
circumference = 2 (3.14) (3)
= 18.8 in
Answer: approx 18.8 in
Step-by-step explanation:
The area of the circle is
S=π*R² (1) and the circumference of the circle is C= 2*π*R (2)
So using (1) R²=S/π=28.26/3.14=9
=> R= sqrt(9)
R=3 in
So using (2) calculate C=2*3.14*3=18.84 in or approx 18.8 in
On a piece of paper, graph y + 2 ≤ -2/3x +4. Then determine which answer choice matches the graph you drew.
Answer:
B
Step-by-step explanation:
You only need to look at the comparison symbol (≤) to determine the correct graph. It tells you the shading is below the boundary line, and the boundary line is included in the solution region (a solid line).
The shading is below the line because y-values are less than (or equal to) values on the line.
Choice B matches the attached graph.
Answer:
it is graph b
Step-by-step explanation:
PLS HELP ASAP!!!!........
Answer:
aaaaha pues
Step-by-step explanation:
Answer:
what happened
Step-by-step explanation:
(0, 3) and (-2, -1)
Write an equation in slope intercept from of the line that passes through the given points.
Answer:
y = 2x + 3
Step-by-step explanation:
Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Slope-Intercept Form: y = mx + b
Step 1: Find slope m
m = (-1 - 3)/(-2 - 0)
m = -4/-2
m = 2
y = 2x + b
Step 2: Rewrite equation
y = 2x + 3
*You are given y-intercept (0, 3), so simply add it to your equation.
What is y - 8 = 4(x - 4) in slope intercept form?
Answer:
y=4x-8
Step-by-step explanation:
First you must use the distributive property and get y-8=4x-16.
Then you have to add 8 on both sides so just y is left on the left side.
This will get you y=4x-8 in slope-intercept form.