Answer:
H3C—CH3
Explanation:
The strength of a bond is indicated by the value of its bond dissociation energy. Simply put, the bond dissociation energy is the energy required to break the bond.
Carbon forms single, double and triple bonds with itself. As a matter of fact, carbon atoms can link to each other indefinitely. This is known as catenation and has been attributed to the low bond energy of the carbon-carbon single bond.
The bond energy of the carbon-carbon single bond is about 90KJmol-1 while that of carbon-carbon double bond is about 174KJmok-1. The carbon-carbon triple bond has the highest bond dissociation energy of about 230KJmol-1.
Hence, it is easier to break carbon-carbon single bonds than double and triple bonds respectively, hence the answer.
According to the forces of attraction, the molecule which can be easily broken is CH₃-CH₃ as it has a single bond with low dissociation energy as compared to double or triple bonds.
Forces of attraction is a force by which atoms in a molecule combine. it is basically an attractive force in nature. It can act between an ion and an atom as well.It varies for different states of matter that is solids, liquids and gases.
The forces of attraction are maximum in solids as the molecules present in solid are tightly held while it is minimum in gases as the molecules are far apart . The forces of attraction in liquids is intermediate of solids and gases.
The physical properties such as melting point, boiling point, density are all dependent on forces of attraction which exists in the substances.Single bonds have least dissociation energy while triple bonds have the maximum dissociation energy.
Thus,the molecule which can be easily broken is CH₃-CH₃.
Learn more about forces of attraction,here:
https://brainly.com/question/32820512
#SPJ6
A vehicle travels 2345 meter in 35 second toward the evening sun in the West. What is its speed? A. 47 m/s West
Explanation:
Speed = 2345 ÷ 35 = 67m/s
A sample of an unknown gas effuses in 11.1 min. An equal volume of H2 in the same apparatus at the same temperature and pressure effuses in 2.42 min. What is the molar mass of the unknown gas
Answer:
Molar mass of the gas is 0.0961 g/mol
Explanation:
The effusion rate of an unknown gas = 11.1 min
rate of [tex]H_{2}[/tex] effusion = 2.42 min
molar mass of hydrogen = 1 x 2 = 2 g/m
molar mas of unknown gas = ?
From Graham's law of diffusion and effusion, the rate of effusion and diffusion is inversely proportional to the square root of its molar mass.
from
[tex]\frac{R_{g} }{R_{h} }[/tex] = [tex]\sqrt{\frac{M_{h} }{M_{g} } }[/tex]
where
[tex]R_{h}[/tex] = rate of effusion of hydrogen gas
[tex]R_{g}[/tex] = rate of effusion of unknown gas
[tex]M_{h}[/tex] = molar mass of H2 gas
[tex]M_{g}[/tex] = molar mass of unknown gas
substituting values, we have
[tex]\frac{11.1 }{2.42 }[/tex] = [tex]\sqrt{\frac{2 }{M_{g} } }[/tex]
4.587 = [tex]\sqrt{\frac{2 }{M_{g} } }[/tex]
[tex]\sqrt{M_{g} }[/tex] = [tex]\sqrt{2}[/tex]/4.587
[tex]\sqrt{M_{g} }[/tex] = 0.31
[tex]M_{g}[/tex] = [tex]0.31^{2}[/tex] = 0.0961 g/mol
The molar mass of the unknown gas will be "0.0961 g/mol".
Given:
Effusion rate of unknown gas,
[tex]R_g = 11.1 \ min[/tex]Effusion rate of [tex]H_2[/tex],
[tex]R_h = 2.42 \ min[/tex]Molar mass of hydrogen,
[tex]M_h = 1\times 2[/tex][tex]= 2 \ g/m[/tex]
According to the Graham's law, we get
→ [tex]\frac{R_g}{R_h} = \sqrt{\frac{M_h}{M_g} }[/tex]
By substituting the values, we get
→ [tex]\frac{11.1}{2.42} = \sqrt{\frac{2}{M_g} }[/tex]
→ [tex]4.587=\sqrt{\frac{2}{M_g} }[/tex]
→ [tex]\sqrt{M_g} = \sqrt{\frac{2}{4.587} }[/tex]
[tex]\sqrt{M_g} = 0.31[/tex]
[tex]M_g = 0.0961 \ g/mol[/tex]
Thus the above solution is right.
Learn more:
https://brainly.com/question/6019799
The decomposition of H2O2 is first order in H2O2 and the rate constant for this reaction is 1.63 x 10-4 s-1. How long will it take for [H2O2] to fall from 0.95 M to 0.33 M?
Answer:
It will take 6486.92 minutes for [H2O2] to fall from 0.95 M to 0.33 M
Explanation:
The order of reaction is defined as the sum of the powers of the concentration terms in the equation. Order of a reaction is given by the number of atoms or molecule whose concentration change during the reaction and determine the rate of reaction.
In first order reaction;
[tex]In \dfrac{a}{a_o-x}= k_1 t[/tex]
where;
a = concentration at time t
[tex]a_o[/tex] = initial concentration
and k = constant.
[tex]In (\dfrac{0.33}{0.95})= -1.63 \times 10^{-4} \times t[/tex]
[tex]-1.05736933 = -1.63 \times 10^{-4} \times t[/tex]
[tex]t = \dfrac{-1.05736933}{ -1.63 \times 10^{-4} }[/tex]
t = 6486.92 minutes
Which sample is most likely to experience the smallest temperature change upon observing 55KJ of heat? 
Answer:
100 g of water: specific heat of water 4.18 J/g°C
Explanation:
To know the correct answer to the question, we shall determine the temperature change in each case.
For 100 g of water:
Mass (M) = 100 g
Specific heat capacity (C) = 4.18 J/g°C
Heat absorbed (Q) = 55 KJ = 55000 J
Change in temperature (ΔT) =..?
Q = MCΔT
55000 = 100 x 4.18 x ΔT
Divide both side by 100 x 4.18
ΔT = 55000/ (100 x 4.18)
ΔT = 131.6 °C
Therefore the temperature change is 131.6 °C
For 50 g of water:
Mass (M) = 50 g
Specific heat capacity (C) = 4.18 J/g°C
Heat absorbed (Q) = 55 KJ = 55000 J
Change in temperature (ΔT) =..?
Q = MCΔT
55000 = 50 x 4.18 x ΔT
Divide both side by 50 x 4.18
ΔT = 55000/ (50 x 4.18)
ΔT = 263.2 °C
Therefore the temperature change is 263.2 °C
For 50 g of lead:
Mass (M) = 50 g
Specific heat capacity (C) = 0.128 J/g°C
Heat absorbed (Q) = 55 KJ = 55000 J
Change in temperature (ΔT) =..?
Q = MCΔT
55000 = 50 x 0.128 x ΔT
Divide both side by 50 x 0.128
ΔT = 55000/ (50 x 0.128)
ΔT = 8593.8 °C
Therefore the temperature change is 8593.8 °C.
For 100 g of iron:
Mass (M) = 100 g
Specific heat capacity (C) = 0.449 J/g°C
Heat absorbed (Q) = 55 KJ = 55000 J
Change in temperature (ΔT) =..?
Q = MCΔT
55000 = 100 x 0.449 x ΔT
Divide both side by 100 x 0.449
ΔT = 55000/ (100 x 0.449)
ΔT = 1224.9 °C
Therefore the temperature change is 1224.9 °C.
The table below gives the summary of the temperature change of each substance:
Mass >>> Substance >> Temp. Change
100 g >>> Water >>>>>> 131.6 °C
50 g >>>> Water >>>>>> 263.2 °C
50 g >>>> Lead >>>>>>> 8593.8 °C
100 g >>> Iron >>>>>>>> 1224.9 °C
From the table given above we can see that 100 g of water has the smallest temperature change.
This pluton occurs deep in Earth and does not cause any changes to the surface of Earth . True or False
Answer:
The given statement is false.
Explanation:
However, if the pluton exists beneath the ground, this could be conveniently shown in the illustration something from the peak such pluton appears convex in form resembling a lopolith and perhaps diapir, which would be a particular form of statistically significant pluton recognized as the sill.Mostly from the figure it could also be shown that subsurface sheets are lined or curved, throughout the pluton mold. And therefore it is inferred that such a pluton creates adjustment to something like the ground atmosphere by altering the form of the levels above it.So that the given is incorrect.
A molecule of aluminum fluoride has one aluminum atom. How many fluorine atoms are present?
Answer:
3 fluorine atoms will be present
Answer:
3
Explanation:
The chemical formula of aluminum fluoride is AlF3. As you can see, there is a 1:3 ratio of aluminum atoms to fluorine atoms. Therefore, if a molecule of AlF3 has one aluminum atom, you know there must be 3 fluorine atoms present.
If you want further tutoring help in chemistry or other subjects for FREE, check out growthinyouth.org.
6. Potassium hydrogen phthalate (KHP, KHC8H4O4) is also a good primary standard. 20 mL of NaOH was titrated with 0.600 M KHC8H4O4 solution. The data was graphed and the equivalence point was found when 15.5 mL of the standard 0.600 M KHP solution was added. The reaction equation is: a. What is the molar ratio of NaOH:KHC8H4O4? b. What is the molarity of the NaOH solution?
Answer:
a. 1
b. 0.465M NaOH
Explanation:
KHP reacts with NaOH as follows:
KHP + NaOH → KP⁻ + Na⁺ + H₂O
a. Molar ratio represents how many moles of NaOH reacts per mole of KHP. As you can see in the reaction, 1 mole of NaOH reacts with 1 mole of KHP. Molar ratio is:
1/1 = 1
b. With volume and molar concentration of the KHP solution you can find how many moles of KHP were added until equivalence point, thus:
15.5mL = 0.0155L ₓ (0.600 moles KHP / L) = 0.0093 moles of KHP
In equivalence point, moles of NaOH = Moles KHP. That means moles of NaOH titrated are 0.0093 moles NaOH.
The volume of the NaOH solution was 20mL = 0.020L. Molarity of the solution is:
0.0093 moles NaOH / 0.020L =
0.465M NaOHa. The balanced equation shows a 1:1 molar ratio between NaOH and KHC₈H₄O₄. This means that for every 1 mole of NaOH, we require 1 mole of KHC₈H₄O₄. Therefore, the molar ratio of NaOH:KHC₈H₄O₄ is 1:1.
The balanced equation for the reaction:
NaOH + KHC₈H₄O₄ → NaKC₈H₄O₄ + H₂O
b. Molarity of KHP solution × volume of KHP solution = Molarity of NaOH solution × volume of NaOH solution at the equivalence point
Molarity of KHP solution = 0.600 M
Volume of KHP solution = 15.5 mL = 0.0155 L
Volume of NaOH solution at the equivalence point = 20 mL = 0.0200 L
Molarity of NaOH solution = (Molarity of KHP solution × volume of KHP solution) / volume of NaOH solution at the equivalence point
Molarity of NaOH solution = (0.600 M × 0.0155 L) / 0.0200 L
Molarity of NaOH solution ≈ 0.465 M
To learn more about the balanced equation, follow the link:
https://brainly.com/question/12192253?referrer=searchResults
#SPJ6
Write electron configurations for the following ion: Cd2 Cd2 . Express your answer in order of increasing orbital energy. For example, the electron configuration of LiLi would be entered in complete form as 1s^22s^1 or in condensed form as [He]2s^1.
Answer:
Cd2+ : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 or [Kr] 4d¹⁰
Explanation:
Before proceeding to write out the electron configuration of Cd2+, we have to obtain the electron configuration of Cadmium (Cd),
Cadmium has an atomic number of 48, this means that a neutral cadmium atom will have a total of 48 electrons surrounding its nucleus.
The electronic configuration of Cadmium is;
Cd: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10
The shorthand notation is given as;
Cd: [Kr] 4d¹⁰5s²
Cd2+ means that it has two less electrons, hence it's electron configuration is given as;
Cd2+ : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 or [Kr] 4d¹⁰
Phosphorus pentafluoride, PF5, acts as a __________ during the formation of the anion PF−6. Select the correct answer below: A. Lewis acid B. Lewis base C. catalyst D. drying agent
Answer:
Lewis acid
Explanation:
In chemistry, a Lewis acid is any chemical specie that accepts a lone pair of electrons while a Lewis base is any chemical specie that donates a lone pair of electrons.
If we look at the formation of PF6^-, the process is as follows;
PF5 + F^- -----> PF6^-
We can see that PF5 accepted a lone pair of electrons from F^- making PF5 a lewis acid according to our definition above.
Hence in the formation of PF6^-, PF5 acts a Lewis acid.
The amount of space an object takes up is called _____. gravity weight mass volume
What element is primarily used in appliances to make electronic chips
A. Silicon (Si)
B. Nickel (Ni)
C. Copper (Cu)
D. Selenium (Se)
Answer:
Option A
Explanation:
Silicon (Obtained from Sand (SiO2)) is the element that is primarily used in appliances to make electronic chips.
Answer:
A. Silicon (Si)
Explanation:
Silicon (Si) is primarily used as a semiconductor material to make electronic chips.
1. In the addition of HBr to conjugated dienes, is the product which results from 1,2-addition or that which results from 1,4-addition the product of kinetic control?
A. From 1,2-addition
B. From 1,4-addition
2. Which of the following is the strongest acid?
A. CH3CH20H
B. CHзOCH3
C. CH3CH
D. CH3COCH3
E. CH3COH
Answer:
The answer to this question can be defined as follows:
In question 1, the answer is "Option A".
In question 2, the answer is "[tex]\bold{CH_3COOH}[/tex]".
Explanation:
In the second question, there is mistype error in the choices so the correct answer to this question can be defined as follows:
The product From 1,2-addition as its consequence of 1,4-addition is the result of kinetic regulation by HBr in conjugated dienes.The chemical name of the [tex]CH_3COOH[/tex] is the acetic acid, it is one of the carboxylic acids quite basic. It is a major chemical production factor for use as disposable soft drinks, movies or wood glue, polyethylene terephthalate, and many plastics, fibers, and fabrics. It is also used in the storage of the water and soft drinks in the bottles.Solid sodium oxide and gaseous water are formed by the decomposition of solid sodium hydroxide (NaOH) .
Write a balanced chemical equation for this reaction.
Answer:
2NaOH(s) → Na₂O(s) + H₂O(g)
Hope that helps.
1. Methanol is a high-octane fuel used in high performance racing engines. 2 CH3OH(l) + 3O2(g) → 2CO2(g) + 4 H20(g) a) Calculate ∆H० and ∆S० using thermodynamic data, and then ∆G
Answer:
The reaction given in the question is:
2CH₃OH (l) + 3O₂ (g) ⇒ 2CO₂ (g) + 4H₂O (g)
The values of ΔH°formation and ΔS° of the reactants and products given in the reaction based on the thermodynamics data is:
ΔH°formation values of CH3OH (l) is -238.4 kJ/mol, CO2(g) is -393.52 kJ/mol, H2O (g) is -241.83 kJ/mol and O2 (g) is 0.
The S° values of CH3OH (l) is 127.19 J/molK, CO2(g) is 213.79 J/molK, H2O (g) is 188.84 J/moleK, and O2 (g) is 205.15 J/molK.
Now the values of ΔH° and ΔS° are,
ΔH°rxn = 2 * ΔH°formation CO2 (g) + 4 * ΔH°formation H2O (g) - 2*ΔH°formation CH3OH (l)
ΔH°rxn = 2 * (-393.52) + 4 (-241.83) -2 * (-238.4)
ΔH°rxn = -1277.56 kJ/mole
ΔS°rxn = 2 * S° CO2 (g) + 4 * S° H2O (g) - 2*S° CH3OH (l) - 3 * S° O2 (g)
ΔS°rxn = 2 * 213.79 + 4 * 188.84 - 2 * 127.19 - 3*205.15
ΔS°rxn = 313.11 J/mole/K
Now the formula for calculating ΔG°rxn is,
ΔG°rxn = ΔH°rxn - TΔS°rxn
ΔG°rxn = -1277.56 * 1000 J/mole - 298 * 313.11 J/mole
ΔG°rxn = -1370.86 kJ/mol
Determine the volume occupied by 10 mol of helium at 27 ° C and 82 atm
please.
Answer:
3.00 L
Explanation:
Convert the pressure to Pascals.
P = 82 atm × (101325 Pa/atm)
P = 8,308,650 Pa
Convert temperature to Kelvins.
T = 27°C + 273
T = 300 K
Use ideal gas law:
PV = nRT
(8,308,650 Pa) V = (10 mol) (8.314 J/mol/K) (300 K)
V = 0.00300 m³
If desired, convert to liters.
V = (0.00300 m³) (1000 L/m³)
V = 3.00 L
Answer:
[tex]\large \boxed{\text{3.0 L}}[/tex]
Explanation:
[tex]\begin{array}{rcl}pV &=& nRT\\\text{82 atm} \times V & = & \text{10 mol} \times \text{0.082 06 L}\cdot\text{atm}\cdot\text{K}^{-1}\text{mol}^{-1} \times \text{300.15 K}\\82V & = & \text{246 L}\\V & = & \textbf{3.0 L} \\\end{array}\\\text{The volume of the balloon is $\large \boxed{\textbf{3.0 L}}$}[/tex]
The cell potential for an electrochemical cell with a Zn, Zn2 half-cell and an Al, Al3 half-cell is _____ V. Enter your answer to the hundredths place and do not leave out a leading zero, if it is needed.
Answer:
0.900 V
Explanation:
Oxidation half cell;
2Al(s) -----> 2Al^3+(aq) + 6e
Reduction half equation;
3Zn^2+(aq) + 6e ----> 3Zn(s)
E°anode = -1.66V
E°cathode= -0.76 V
E°cell= E°cathode - E°anode
E°cell= -0.76-(-1.66)
E°cell= 0.900 V
The NMR spectrum of your final compound will contain extra peaks that were not present in your starting material. For what hydrogen nuclei do those peaks occur?
Answer:
The peaks are registered from tetramethyl silane (TMS)
Explanation:
Tetramethyl silane (TMS) is used as internal reference in proton nmr (H NMR) spectrometry.
Its peak is usually registered at about a 2.0 chemical shift means that the hydrogen atoms which caused that peak need a magnetic field two millionths less than the field needed by TMS to produce resonance. This is not affected by the chemical shift of the sample analysed.
I hope this helped.
For dinner you make a salad with lettuce, tomatoes, cheese, carrots, and
croutons. Your salad would be classified as a(n)
O A. compound
OB. element
OC. homogeneous mixture
D. heterogeneous mixture
A heterogeneous mixture
Which of the following elements is in the same family as fluorine?
a. silicon
b. antimony
O c. iodine
O d. arsenic
e. None of these.
Answer:
c iodine
Explanation:
fluorine is a halogen group element like Bromine, Iodine,Astatine,Chloride
If a radioactive isotope of thorium (atomic number 90, mass number 232) emits 6 alpha particles and 4 beta particles during the course of radioactive decay, what is the mass number of the stable daughter product?
Answer:
The mass number of the stable daughter product is 208
Explanation:
First thing's first, we have to write out the equation of the reaction. This is given as;
²³²₉₀Th → 6 ⁴₂α + 4 ⁰₋₁ β + X
In order to obtain the identity of X, we have to obtain it's mass numbers and atomic number.
There is conservation of matter so we expect the mass number to remain the same in both the reactant and products.
Mass Number
Reactant = 232
Product = (6* 4 = 24) + (4 * 0 = 0) + x = 24 + x
since reactant = product
232 = 24 + x
x = 232 - 24 = 208
Atomic Number
Reactant = 90
Product = (6* 2 = 12) + (4 * -1 = -4) + x = 8 + x
since reactant = product
90 = 8 + x
x = 90 - 8 = 82
Consider Zn + 2HCl → ZnCl2 + H2 (g). If 0.30 mol Zn is added to HCl, how many mol H2 are produced?
Answer:
0.3 mol
Explanation:
Assuming HCl is in excess and Zn is the limiting reagent,
from the balanced equation, we can see the mole ratio of Zn:H2 = 1:1,
which means, each mole of zinc reacted gives 1 mole of H2.
So, if 0.30 mol Zn is added, the no. of moles of H2 produced will also be 0.3 mol, since the ratio is 1:1.
Draw the structure of 1,4-hexanediamine.
Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced TemplateTowbars. The single bond is active by default. Include all hydrogen atoms.
View Available Hint(s)
Answer:
1,4-hexanediamine contains two [tex]-NH_{2}[/tex] functional groups.
Explanation:
1,4-hexanediamine is an organic molecule which contains two [tex]-NH_{2}[/tex] functional groups at C-1 and C-4 position.
The longest carbon chain in 1,4-hexanediamine contains six carbon atoms.
Molecular formula of 1,4-hexanediamine is [tex]C_{6}H_{16}N_{2}[/tex].
1,4-hexanediamine used as a bidentate ligand in organometallic chemistry.
The structure of 1,4-hexanediamine is shown below.
The displacement of a bromine atom by an amine is a substituion reaction. Write out the mechanism of this reaction (2-->3) Why might you expect that the reaction you have performed, using t-BuNH2, to be much slower than the same reaction using methylamine
Answer:
An alkyl halide can undergo SN2 reaction with an amine
Explanation:
The displacement of a bromine atom by an an amine (step 2---> 3) in the reaction sequence is an example of an SN2 reaction in which the amine is the nucleophile.
The nitrogen atom of the amine which bears a lone pair of electrons functions as the nucleophile and attacks the electrophilic carbon atom of the alkyl halide displacing the bromide and creating a new Carbon-Nitrogen bond. An ammonium intermediate is immediately formed and the reaction is completed by the abstraction of a hydrogen by a base (such as excess amine present in the system).
This reaction is slower with t-BuNH2 because of steric hindrance and steric crowding in the transition state. SN2 reactions are faster with methylamine where the alkyl carbon is easily accessible.
The detailed mechanism of this reaction has been attached to this answer.
18. Sucralose contains which two functional groups: (2 points)
A) benzene
B) halogen
C) carboxyl
D) hydroxy!
Answer:
The correct answer is option B and D, that is, halogen (chlorine) and hydroxyl.
Explanation:
An artificial sweetener and sugar substitute is sucralose. It is noncaloric as the majority of the sucralose ingested does not get dissociated within the body. The generation of sucralose takes place by the chlorination of sucrose. It is about 300 to 1000 times sweeter in comparison to sucrose.
The consumption of sucralose is safe for both nondiabetics and diabetics, it is used in various food and beverage components due to non-caloric sweetener characteristics. It does not affect the levels of insulin and does not affect dental health. As it is produced by chlorination of sucrose, thus, the functional groups present in it are a halogen (chlorine) and a hydroxyl.
Which best describes the total mass of a sample of water when it condenses
from a liquid to a gas?
A. The mass is less because the water molecules get closer together
and take up more space.
B. The mass is the same because the decrease in energy equals the
increase in the number of molecules.
C. The mass is the same because water molecules are not created or
destroyed during a phase change.
D. The mass is greater after water condenses because the mass of
the molecules increases.
Answer:
Its C I hopefully help you
A solution of malonic acid, H2C3H2O4, was standardized by titration with 0.0990 M NaOH solution. If 20.52 mL mL of the NaOH solution is required to neutralize completely 11.13 mL of the malonic acid solution, what is the molarity of the malonic acid solution
Answer:
0.0913 M
Explanation:
We'll begin by writing the balanced equation for the reaction.
This is given below:
H2C3H2O4 + 2NaOH —> C3H2Na2O4 + 2H2O
From the balanced equation above, we obtained the following:
The mole ratio of the acid (nA) = 1
The mole ratio of the base (nB) = 2
Data obtained from the question include:
Molarity of base, NaOH (Mb) = 0.0990 M
Volume of base, NaOH (Vb) = 20.52 mL
Volume of acid, H2C3H2O4 (Va) = 11.13 mL
Molarity of acid, H2C3H2O4 (Ma) =..?
The molarity of the acid, H2C3H2O4 can be obtained as follow:
MaVa/MbVb = nA/nB
Ma x 11.13 / 0.0990 x 20.52 = 1/2
Cross multiply
Ma x 11.13 x 2 = 0.0990 x 20.52 x 1
Divide both side by 11.13 x 2
Ma = (0.0990 x 20.52)/ (11.13 x 2)
Ma = 0.0913 M
Therefore, the molarity of malonic acid, H2C3H2O4 solution is 0.0913 M
What is titration? Question 1 options: The process of quickly adding one solution to another until a solid is formed. The process of slowly adding one solution to another until the reaction between the two is complete. The process of mixing equal volumes of two solutions to observe the reaction between the two. The process of combining two solids until the reaction between the two is complete.
Answer:
The process of slowly adding one solution to another until the reaction between the two is complete.
Explanation:
When you perform a titration, you are slowly adding one solution of a known concentration called a titrant to a known volume of another solution of an unknown concentration until the reaction reaches neutralization, in which the reaction is no longer taking place. This is often indicated by a color change.
Hope that helps.
It takes 242. kJ/mol to break a chlorine-chlorine single bond. Calculate the maximum wavelength of light for which a chlorine-chlorine single bond could be broken by absorbing a single photon. Round your answer to 3 significant digits. single by absorbing a significant digit.
Answer:
495nm
Explanation:
The energy of a photon could be obtained by using:
E = hc / λ
Where E is energy of a photon, h is Planck's constant (6.626x10⁻³⁴Js), c is speed of the light (3x10⁸ms⁻¹) and λ is wavelength.
The energy to break 1 mole of Cl-Cl bonds is 242kJ = 242000J. The energy yo break a single bond is:
242000J/mol ₓ (1mol / 6.022x10²³bonds) = 4.0186x10⁻¹⁹J/bond.
Replacing in the equation:
E = hc / λ
4.0186x10⁻¹⁹J = 3x10⁸ms⁻¹ₓ6.626x10⁻³⁴Js / λ
λ = 4.946x10⁻⁷m
Is maximum wavelength of light that could break a Cl-Cl bond.
Usually, wavelength is given in nm (1x10⁻⁹m / 1nm). The wavelength in nm is:
4.946x10⁻⁷m ₓ (1nm / 1x10⁻⁹m) =
495nmA four carbon chain; the second carbon is also single bonded to CH3. Spell out the full name of the compound
Answer:
This description shows a methyl group.
Explanation:
1)The average lethal dose of Valium is 1.52 mg/kg of body weight. Estimate how many grams of Valium would be lethal for a 200.-lb woman. Show all your calculations. (1lb = 453.6 g)
2) A patient in hospital is receiving the antibiotic amoxcillin IV at the rate of 50. mL/h. The IV contains 1.5 g of the antibiotic in 1000. mL. (IV stands for intravenous). Calculate the mg/min of the drip. Show all your calculations
Answer:
1. 0.138g of valium would be lethel in the woman
2. 125mg/min is the drip of the patient
Explanation:
1. In a body, an amount of Valium > 1.52mg / kg of body weight would be lethal.
A person that weighs 200lb requires:
200lb × (453.6g / 1lb) × (1kg / 1000g) = 90.72kg (Weight of the woman in kg)
90.72kg × (1.52mg / kg) =
137.9mg ≡
0.138g of valium would be lethel in the woman2. The IV contains 1.5g = 1500mg/mL.
If the patient is receiving 5.0mL/h, its rate in mg/h is:
5.0mL/h × (1500mg/mL) = 7500mg/h
Now as 1h = 60min:
7500mg/h × (1h / 60min) =
125mg/min is the drip of the patient