Answer:
v = 46.67 km/h
Explanation:
We will use the following formula throughout this numerical:
s = vt
where,
s = distance covered
v = speed
t = time taken
FOR FIRST 30 km:
s = 30 km
v = 30 km/h
t = t₃₀ = ?
Therefore,
30 km = (30 km/h)(t₃₀)
t₃₀ = (30 km)/(30 km/h)
t₃₀ = 1 h
FOR TOTAL 100 km:
s = 100 km
v = 40 km/h (Average Speed)
t = total time = ?
Therefore,
100 km = (40 km/h)(t)
t = (100 km)/(40 km/h)
t = 2.5 h
FOR LAST 70 km:
s = 70 km
t₇₀ = t - t₃₀ = 2.5 h - 1 h = 1.5 h
v = v₇₀ = ?
Therefore,
70 km = v(1.5 h)
v = 70 km/1.5 h
v = 46.67 km/h
Find the mass. 10 points. Will give brainliest.
Answer:
3.94 kgExplanation:
Given,
Force ( f ) = 30 N
Acceleration(a) = 7.6 m/s
Now, Let's find the mass of the ball
Using the Newton's second law of motion:
We get:
[tex]force \: = mass \: \times acceleration[/tex]
plug the value
[tex]30 \: = m \: \times 7.6[/tex]
Use the commutative property to reorder the terms
[tex] 30 = 7.6 \: m[/tex]
Swap the sides of the equation
[tex]7.6m = 30[/tex]
Divide both sides of the equation by 7.6
[tex] \frac{7.6 \: m}{7.6} = \frac{30}{7.6} [/tex]
Calculate
[tex]m = 3.94 \: kg[/tex]
Hope this helps..
Best regards!!
Answer:
[tex]\displaystyle \boxed{\mathrm{3.95 \: kg }}[/tex]
Explanation:
[tex]\mathrm{force \: (N) = mass \: (kg) \times acceleration \: (m/s^2)}[/tex]
[tex]\mathrm{force = 30N}[/tex]
[tex]\mathrm{acceleration = 7.6 \: m/s^2 }[/tex]
[tex]\mathrm{Find \: the \: mass.}[/tex]
[tex]\mathrm{30 = m \times 7.6}[/tex]
[tex]\displaystyle \mathrm{m =\frac{30}{7.6} }[/tex]
[tex]\displaystyle \mathrm{m = 3.947... }[/tex]
Ozone molecules in the stratosphere absorb much of the harmful radiation from the sun. How many ozone molecules are present in 2.00 L of air under the stratospheric ozone conditions of 275 K temperature and 1.89 × 10−3 atm pressure?
Answer:
1.01×10^20 molecules of ozone.
Explanation:
Data obtained from the question include:
Volume (V) = 2 L
Temperature (T) = 275 K
Pressure (P) = 1.89×10¯³ atm
Gas constant (R) = 0.0821 atm.L/Kmol
Number of mole (n) of ozone =.?
Using the ideal gas equation, we can obtain the number of mole of ozone as follow:
PV = nRT
1.89×10¯³ x 2 = n x 0.0821 x 275
Divide both side by 0.0821 x 275
n = (1.89×10¯³ x 2) /(0.0821 x 275)
n = 1.67×10¯⁴ mole.
Therefore the number of mole of ozone in 2 L of air is 1.67×10¯⁴ mole.
Finally, we shall determine the number of molecules present in 1.67×10¯⁴ mole of ozone.
This can be obtained as follow:
From Avogadro's hypothesis, 1 mole of any substance contains 6.02×10²³ molecules. This implies that 1 mole of ozone contains 6.02×10²³ molecules.
If 1 mole of ozone contains 6.02×10²³ molecules,
therefore, 1.67×10¯⁴ mole of ozone will contain = 1.67×10¯⁴ x 6.02×10²³ = 1.01×10^20 molecules.
Therefore, 1.01×10^20 molecules of ozone are present in 2 L of air.
1. Analogies exist between rotational and translational physical quantities. Identify the rotational term analogous to each of the following: acceleration, force, mass, work, translational kinetic energy, linear momentum, impulse.
2. Explain why centripetal acceleration changes the direction of velocity in circular motion but not its magnitude.
Answer:
1) a α, m I, W=F.d W =τ . θ,
2) a = v²/r
Explanation:
1) The amounts of rotational and translational motion are related
acceleration is
a = d²x / dt²
linear displacement is equivalent to angular rotation, therefore angular acceleration is
α = d²θ / dt²
force in linear motion is equivalent to moment in endowment motion
F = m a
τ = I α
the mass is the inertia of the translation, in rotational motion the moment of inertia is the rotational inertia
I = m r²
Work is defined by W = F. d
in rotation it is defined by W = τ . θ
The linear momentum is p = mv
the angular momentum L = I w
momentum the linear motion is I = F dt
in the rotation it is I = τ dt
2) The velocity is a vector therefore it has modulus and direction, linear acceleration changes the modulus of velocity, whereas circular motion changes the direction (the other element of the vector).
[tex]a_{c}[/tex]Ac = v²/r
formula of minimmum pressure
Answer:
pressure=force/area
Which of the following object is in dynamic equilibrium?
Answer:
A car driving in a straight line 20 m/s
Explanation:
ayepecks silly
1. The electric field strength between two parallel plates separated by 6.00 cm is 7.50 × 104 V/m . (a) What is the potential difference between the plates? (b) The plate with the lowest potential is taken to be zero volts. What is the potential 1.00 cm from that plate and 6.00 cm from the other?
Answer:
a)4500V
b)750V
Explanation:
Given:
Distance between the plate=
6.00 cm
We need to convert to m
Then the Distance between the plate=
0.06m
electric field strength between two parallel plates =
7.50 × 104 V/m .
Then E= 7.50 × 104 V/m .
(a) What is the potential difference between the plates?
potential difference between the plates can be calculated using the formula below
Δ Vab=ED
Where E is the given electric field strength
D= The Distance between the plate
ΔVab=7.50 × 10⁴V/m ×
0.06m
= 4500V
(b) The plate with the lowest potential is taken to be zero volts. What is the potential 1.00 cm from that plate and 6.00 cm from the other?
the potential 1cm from the zero volt plate
Then the 1cm must be converted to m
= 0.01m
Let us say plate A as the plate at 0 volts:
The potential increases linearly going from plate A (0 V) to plate B (4500V).
Therefore,if the potential difference between A and B, separated by 6 cm, is 4500 V, then the potential difference between A and a point located at 1 cm from A is can be calculated also
If the plate with Lowest potential is taken to be zero then
=ΔVab=Vab-Vb=Va-0=Va=ED
Va=7.50 × 10⁴V/m × 0.01=750V
Two trains run in the opposite direction with speeds of v1 = 15 m / s and v2 = 20 m / s. A passenger on the first train (the one on v1) notes that train 2 takes 6 s to pass on its side. What is the length of the second train? (The passenger is supposed to be immobile looking through the window)
Answer:
210 m
Explanation:
The speed of train 2 relative to train 1 is 15 m/s + 20 m/s = 35 m/s.
It takes 6 seconds for the train to pass, so the length of the train is:
(35 m/s) (6 s) = 210 m
A plane drops a package for delivery. The plane is flying horizontally at a speed of 120m/s,and the package travels 255 m horizontally during the drop. We can ignore air resistance.What is the package's vertical displacement during the drop?
Answer:
Package's vertical displacement(s) = 22.12 meter
Explanation:
Given:
Speed of plane = 120 m/s
Total distance = 255 m
Find:
Package's vertical displacement(s)
Computation:
Time taken = Distance / Speed
Time taken = Total distance / Speed of plane
Time taken = 255 / 120
Time taken = 2.125 s
Acceleration due to gravity(g) = 9.8 m/s²
Initial velocity (u) = 0
So,
Package's vertical displacement(s) = ut + (1/2)gt²
Package's vertical displacement(s) = (0)(2.125) + (1/2)(9.8)(2.125)²
Package's vertical displacement(s) = 22.12 meter
Answer: -22.1
Explanation:
I just did the Khan Academy and that was the answer, not the one provided by that one person. :)))
A load of 500N is carried by 200N effort in a simple machine having load distance 3m Calculate effort distance.
Answer:
2.5 mExplanation:
Load ( L ) = 500 N
Effort ( E ) = 200 N
Load distance ( LD ) = 3 m
Effort distance ( ED ) = ?
Now, Let's find the Effort distance ( ED )
We know that,
Output work = Input work
i.e L × LD = E × ED
plug the values
[tex]500 \times 3 = 200 \times ED[/tex]
multiply the numbers
[tex]1500 = 200 \times ED[/tex]
Swipe the sides of the equation
[tex]200 \: ED \: = 500[/tex]
Divide both sides of the equation by 200
[tex] \frac{200 \: ED}{200} = \frac{500}{200} [/tex]
Calculate
[tex]ED\: = 2.5 \: m[/tex]
Hope this helps..
best regards!!
To a stationary observer, a bus moves south with a speed of 12 m/s. A man
inside walks toward the back of the bus with a speed of 0.5 m/s relative to
the bus. What is the velocity of the man according to a stationary observer?
A. 11 m/s south
B. 12.5 m/s south
C. 11.5 m/s south
D. 0.5 m/s south
ANSWER
C 11.5 m/s
EXPLANATION
Answer:
11.5m/s south
Explanation:
Online classes
A uniform string of length 10.0 m and weight 0.32 N is attached to the ceiling. A weight of 1.00 kN hangs from its lower end. The lower end of the string is suddenly displaced horizontally. How long does it take the resulting wave pulse to travel to the upper end
Answer: 0.0180701 s
Explanation:
Given the following :
Length of string (L) = 10 m
Weight of string (W) = 0.32 N
Weight attached to lower end = 1kN = 1×10^3
Using the relation:
Time (t) = √ (weight of string * Length) / weight attached to lower end * acceleration due to gravity
g = acceleration due to gravity = 9.8m/s^2
Weight of string = 0.32N
Time(t) = √ (0.32 * 10) / [(1*10^3) * (9.8)]
Time = √3.2 / 9800
= √0.0003265
= 0.0180701s
We have seen that starlight passing through the interstellar medium is dimmed and reddened. Look at the photo of a sunset on Earth. The Sun’s light also appears reddish at sunset. Given your understanding of the reddening of starlight, why do you think sunsets appear red?
Answer:
Explanation:
Reddening of sun's rays at sunset and sunrise is due to scattering of light . The white light consisting of seven colours coming from the sun are scattered in different directions when they fall on the air particles present in atmosphere . Red coloured light scatters least and it travels straight forward to the viewer on the earth . On the other hand other colours scatter most and therefore they go out of area of vision for the viewer on the earth . Since only red colour reaches the eye of the viewer , sun's ray appear red . This happens during sunrise and sunset . It is so because during this period , sun rays travel far greater distance through atmosphere , so scattering is most pronounced .
an attempt to estimate the height of a tree the Shadow of an upright metre rule was found to be 25 cm and the length of the Shadow of the tree was 7 m what is the height of the tree
Answer:
The actual height of the tree is 28 m
Explanation:
The given information are;
The length of the shadow of an upright meter rule = 25 cm
The actual height of the meter rule = 100 cm
The length of the shadow of the tree = 7 m
The actual height of the tree = h
We have
[tex]\dfrac{The \ length \ of \ the \ shadow \ of \ an \ upright \ metre \ rule}{The \ actual \ height \ of \ the \ metre \ rule} = \dfrac{The \ length \ of \ the \ shadow \ of \ the \ tree}{The \ actual \ height \ of \ the \ tree}[/tex]Which gives;
[tex]\dfrac{25 \ cm}{100 \ cm} = \dfrac{7 \ m}{The \ actual \ height \ of \ the \ tree}[/tex]
Therefore;
[tex]The \ actual \ height \ of \ the \ tree = 7 \ m \times \dfrac{100 \ cm}{25\ cm} = 7 \ m \times 4 = 28 \ m[/tex]
That is the actual height of the tree = 28 m.
HELP me pleaseeee somebody
an object is placed 30cm from a mirror of focal length 15 cm the object is 7.5cm tall. where is the image located? how tall is the image??
Explanation:
It is given that,
Object distance from the mirror, u = -30 cm
Focal length of the mirror, f = +15 cm
Size of the object, h = 7.5 cm
We need to find the image distance and the size of the image.
Mirror's formula, [tex]\dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f}[/tex]
v is image distance
[tex]\dfrac{1}{v}=\dfrac{1}{f}-\dfrac{1}{u}\\\\\dfrac{1}{v}=\dfrac{1}{(15)}-\dfrac{1}{(-30)}\\\\v=10\ cm[/tex]
Let h' is the size of the image. So,
[tex]\dfrac{h'}{h}=\dfrac{-v}{u}\\\\h'=\dfrac{-vh}{u}\\\\h'=\dfrac{-10\times 7.5}{-30}\\\\h'=2.5\ cm[/tex]
So, the image is located at a distance of 10 cm and the size of the image is 2.5 cm.
A carpenter measured the lengeth of a small piece of timber as 24.6cm .Calculate the relative error in the measurement if the true length is 24.5cm
ANSWER:
0.4081%
Explanation:
Difference=24.6-24.5=0.1
Relative error = 0.1/24.5*100=0.4081%
Relative error is equal to the = difference between both the values/The true value *100
A 140-Hz sound travels through pure carbon dioxide. The wavelength of the sound is measured to be 1.92 m. What is the speed of sound in carbon dioxide?
Answer:
V = 268.8 m/s
Explanation:
The speed of a wave in general is given by the following formula:
V = fλ
where,
V = Speed of that wave
f = Frequency of the wave
λ = wavelength of the wave
In this case we have a sound wave, travelling across carbon dioxide. The properties of sound wave are as follows:
V = Speed of Sound in Carbon dioxide = ?
f = frequency of sound wave = 140 Hz
λ = wavelength of sound wave = 1.92 m
Therefore,
V = (140 Hz)(1.92 m)
V = 268.8 m/s
This is a form of energy representing the motion of the molecules which make up an object. A. Thermal Energy B. Kinetic Energy C. Gravitational Potential Energy D. Chemical Potential Energy
Answer:
Kinetic energy.
Explanation:
There are many kinds of energy. Some of them are kinetic energy, potential energy, thermal energy etc. The energy that shows the motion of the object is called its kinetic energy.Also, the sum of kinetic energy and the gravitational potential energy is called mechanical energy. Out of the given options, kinetic energy is the form of energy that represents the motion of the molecules which make up an object. Hence, the correct option is (B).On a horizontal frictionless surface a mass M is attached to two light elastic strings both having length l and both made of the same material. The mass is displaced by a small displacement Δy such that equal tensions T exist in the two strings, as shown in the figure. The mass is released and begins to oscillate back and forth. Assume that the displacement is small enough so that the tensions do not change appreciably. (a) Show that the restoring force on the mass can be given by F = -(2T∆y)/l (for small angles) (b) Derive an expression for the frequency of oscillation.
Answer:
(a) By small angle approximation, we have;
F = -2×T×Δy/l
(b) [tex]The \ frequency \ of \ oscillation, \ f = \dfrac{1}{2\cdot \pi }\cdot\sqrt{\dfrac{2 \cdot T}{l \cdot M} }[/tex]
Explanation:
(a) The diagram shows the mass, M, being restored by two equal tension, T acting on the elastic strings l, such the restoring force, F acts along the path of motion of the mass, with distance Δy
Therefore, the component of the tension T that form part of the restoring force is given as follows;
Let the angle between the line representing the extension of the elastic strings T and the initial position of the string = ∅
Then we have;
String force, [tex]F_{string}[/tex] = T×sin∅ + T×cos∅ + T×sin∅ - T×cos∅ = 2×T×sin∅
Whereby the angle is small, we have;
sin∅ ≈ tan∅ = Δy/l
Which gives;
[tex]F_{string}[/tex] = 2×T×sin∅ = 2×T×Δy/l (for small angles)
Restoring force F = [tex]-F_{string}[/tex] = -2×T×Δy/l
F = -2×T×Δy/l
(b) Given that the the tensions do not change appreciably as the mass, M, oscillates from Δy we have;
By Hooke's law, F = -k×x
Whereby Δy corresponds to the maximum displacement of the mass, M from the rest position, which gives;
Which gives;
F = M×a = -k×Δy
a = -k×Δy/M
d²(Δy)/dt² = -k×Δy/M
When we put angular frequency as follows;
ω² = k/M
We get;
d²(Δy)/dt² = -ω²×Δy
Which gives;
Δy(t) = A×cos(ωt + Ф)
The angular frequency is thus, ω = √(k/M)
Period of oscillation = 2·π/ω = 2·π/√(k/M)
The frequency of oscillation, f = 1/T = √(k/M)/(2·π)
Where:
k = 2·T/l, we have;
f = √(k/M)/(2·π) = √(2·T/l)/m)/(2·π)
The frequency of oscillation is given as follows;
[tex]f = \dfrac{1}{2\cdot \pi }\cdot\sqrt{\dfrac{2 \cdot T}{l \cdot M} }[/tex]
Select the correct answer.
According to the Universal Law of Gravitation, every object attracts every other object in the universe. Why can’t you feel the force of attraction between you and Mars?
A.
There is no force of attraction between you and Mars.
B.
Your mass is too low.
C.
Mars is a larger planet than Earth.
D.
Mars is a long distance away.
Answer:
D. Mars is a long distance away
3.) [15 points] A physics teacher is on the west side of a small lake and wants to swim across and up at a point directly across from his starting point. He notices that there is a current in the lake and
that a leaf floating by him travels 4.2m [S] In 5.0s. He is able to swim 1.9 m/s in calm water,
(a) What direction will he have to swim in order to arrive at a point directly across from his position?
Answer:
The teacher should swim in a direction 29.24° North of East
Explanation:
Given that the there is a water current across the lake, and the physics teacher intends to swim directly across the lake, the direction the physics teacher will have to swim is found as follows;
The speed of the water current is given by the speed of the floating leaf traveling with the water current
Distance traveled by the leaf = 4.2 m South
Time of travel of the leaf = 5.0 s
Speed of leaf = 4.2/5 = 0.84 m/s = Speed of the water current
Swimming peed of the teacher, v = 1.9 m/s
To swim directly across the lake, the teacher has to swim slightly in the opposite direction of the water current, the y-component of the teacher's swimming speed should be equal to and opposite that of the speed of the water current.
Y-component of v = v×sin(θ), where θ is the angle of the direction, the teacher should swim
Therefore;
1.9 × sin(θ) = 0.84
sin(θ) = 0.84/1.9 = 0.44
θ = 26.24°
That is the teacher should swim in a direction 29.24° North of East.
To cross the lake the teacher has to swim in a direction 29.24° North of the East
Finding the direction of speed required:
The speed of the water current can be derived from the speed of the floating leaf :
The distance traveled by the leaf L = 4.2 m South
Time taken T = 5s
So, the speed of the leaf is:
u = 4.2/5
u = 0.84 m/s South
So, the speed of the current is 0.84 m/s South
Now, it is given that the speed of the teacher is, v = 1.9 m/s East
To cross the lake the speed of the teacher must be in a Northeast direction so that the North component of the speed of the teacher cancels out the speed of the current which is directed towards the South.
Let, the speed of the teacher makes an angle of θ from the EAST.
So, the North component is given by:
v(north) = vsinθ
it must be equal to the speed of the current:
vsinθ = u
1.9 × sinθ = 0.84
sinθ = 0.84/1.9
sinθ = 0.44
θ = 26.24°
The teacher should swim in a direction 29.24° North of East.
Learn more about vector components:
https://brainly.com/question/1686398?referrer=searchResults
The large-scale distribution of galaxies in the universe reveals Group of answer choices a smooth, continuous, and homogenous arrangement of clusters large voids, with most of the galaxies lying in filaments and sheets a large supercluster at the center of universe a central void with walls of galaxies at the edge of the universe
Question
The large-scale distribution of galaxies in the universe reveals
A) a smooth, continuous, and homogenous arrangement of clusters
B) large voids, with most of the galaxies lying in filaments and sheets a large supercluster at the center of the universe
C) a central void with walls of galaxies at the edge of the universe
Group of answer choices
Answer:
The correct answer is B)
Explanation:
The universe is arranged in a filamentary structure. Filamentary structures are very large. They are the largest kind of structures in the universe and comprise mostly of galaxies that are held together by gravity.
The structures found within Galaxy filaments have thread-like qualities spanning 52 to 78.7 megaparsecs h⁻¹ in lenght.
Other phenomena associated with the nature fo the universe is the existence of void spaces.
Cheers!
What is the magnitude of the gravitational force between the earth and a 1 kg object on its surface? (Mass of the earth is 6 × 10 24 kg and radius of the earth is 6.4 × 10 6 m.)
Answer:
Explanation:
just use the gravational force equation which is G x m of earth x m of object divided by r squared (which is radius of earth)
Allocate birr 5000 among the three workers in the ratio 1/3 :1/6 and 5/12.
Answer:
1666.7 ETB (birr)
833.3 ETB (birr)
2083.3 ETB (birr)
Explanation:
The first worker
5000*1/3=1666.7
The second worker
5000*1/6=833.3
The third worker
5000*5/12=2083.3
Hope this helps :) ❤❤❤
PLEASE HELP ASAP. IT'S URGENT
Answer:
Q1 acceleration = 16m/s²
Q2 Net force = 9N North
Explanation:
Q1 Using the formula F=ma
Q2 R = F1 + F2
A 24 cm radius aluminum ball is immersed in water. Calculate the thrust you suffer and the force. Knowing that the density of aluminum is 2698.4 kg / m3
Answer:
W =1562.53 N
Explanation:
It is given that,
Radius of the aluminium ball, r = 24 cm = 0.24 m
The density of Aluminium, [tex]d=2698.4\ kg/m^3[/tex]
We need to find the thrust and the force. The mass of the liquid displaced is given by :
[tex]m=dV[/tex]
V is volume
Weight of the displaced liquid
W = mg
[tex]W=dVg[/tex]
So,
[tex]W=dg\times \dfrac{4}{3}\pi r^3\\\\W=2698.4\times 10\times \dfrac{4}{3}\times \pi \times (0.24)^3\\\\W=1562.53\ N[/tex]
So, the thrust and the force is 1562.53 N.
Which reverses the flow of current through
an electric motor?
Answer:
a commutator
Explanation:
Two kilograms of nitrogen (N2) at 25°C is contained in a 0.62 m3 rigid tank. This tank is connected by a valve to a 0.16 m3 rigid tank containing 0.8 kg of oxygen (O2) at 127°C. The valve is opened, and the gases are allowed to mix, achieving an equilibrium state at 87°C.
initial pressures of N2 is 5.7293 bar and O2 is 5.2 bar.
the final pressure is 6.44 bar.
the magnitude of the heat transfer for the process is 162.8 kJ, and the direction of energy flow is going in.
What is the entropy change for the mixing process, in kJ/K?
Answer:
Explanation:
For entropy change the formula is
ΔS = ΔQ / T
ΔQ = Δ H
ΔS = Δ H / T
Given
Δ H = + 162.8 kJ
We can take equilibrium temperature as average temperature of the whole process
So, T = 273 + 87 = 360 K
ΔS = Δ H / T
= 162.8 kJ / 360
= + 0.508 kJ / K .
When the magnitude of the heat transfer for the process is 162.8 kJ, Then the entropy change for the mixing process, in kJ/K is = + 0.508 kJ / K
What is Entropy change?
For The entropy change, the formula is
Then ΔS = ΔQ / T
After that ΔQ = Δ H
Then ΔS = Δ H / T
Given as per question are:
Then Δ H = + 162.8 kJ
Now We can take equilibrium temperature as average temperature of the whole process are:
So, T is = 273 + 87 = 360 K
Then ΔS = Δ H / T
After that = 162.8 kJ / 360
Therefore, = + 0.508 kJ / K.
Find more information about Entropy change here:
https://brainly.com/question/17241209
A very thin film of soap, of thickness 170 nm, in between air seems dark. On the other hand, when placed on top of glass some visible light is seen to shine from the film. How can this happen and what is the smallest visible light that creates constructive interference when we place the film on top of glass
Answer:
λ₀ = 2 d n
Explanation:
A soap film is a layer where the lus is reflected on the surface and on the inside of the film, these two reflected rays can interfere with each other either constructively or destructively.
Let's analyze the general conditions of this interference,
* When the ray of light reaches the surface of the film it is reflected, as the index of refraction of the air is less than the index of the film, the reflected ray has a phase change of 180º
* When the ray penetrates the film, its wavelength changes due to the refractive index of the film.
λ = λ₀ / n
where lick is the wavelength in the vacuum or air and n index of refraction of the film, in general this interference is observed perpendicular to the film, so the sine veils 1. the expression for constructive interference taking in what previous remains
2d = (m + ½) λ
the expression for destructive interference remains
2d = m λ
2d = m λ₀ / n
When the film is placed on a glass plate whose index of refraction is greater than the index of refraction of the film, in the reflection in the lower part of the film another phase difference of 180º is created, for which we have a difference of total phase of 180 +180 = 360º, which is equivalent to no phase difference, therefore the two previous equations are interchanged.
Therefore where we had destructive interference now a cosntructive interference happens we can see the reflected light.
Find us the wavelength that this constructive interference creates
2d n = m λ₀
λ₀ = 2 d n / m
To find the minimum wavelength, suppose we observe the first interference pattern m = 1
λ₀ = 2 d n
where d is the thickness of the film and n the index of refraction of the same
The total mass of eight identical
building blocks is 31.52 kg. Find the
mass of 1 block.
Answer:
3.94
Explanation:
divide total mass by the number of blocks since they are identical
Answer:
3.94
Explanation:
You want to find the mass of one block. Since we know there is 8 blocks with the same mass, you can divide the total mass by 8 since the mass is equally distributed within the 8 blocks
A wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.15 m2 and whose thickness is 7 mm. Treat the wall as a slab of the insulating material Styrofoam whose area and thickness are 17 m2 and 0.20 m, respectively. Heat is lost via conduction through the wall and the window. The temperature difference between the inside and outside is the same for the wall and the window. Of the total heat lost by the wall and the window, what is the percentage lost by the window
Answer:
88 %
Explanation:
The rate of heat loss by a conducting material of thermal conductivity K, cross-sectional area,A and thickness d with a temperature gradient ΔT is given by
P = KAΔT/d
The total heat lost by the styrofoam wall is P₁ = K₁A₁ΔT₁/d₁ where K₁ =thermal conductivity of styrofoam wall 0.033 W/m-K, A₁ = area of styrofoam wall = 17 m², ΔT₁ = temperature gradient between inside and outside of the wall and d₁ = thickness of styrofoam wall = 0.20 m
The total heat lost by the glass window is P₂ = K₂A₂ΔT₂/d₂ where K₂ =thermal conductivity of glass window pane wall 0.96 W/m-K, A₂ = area of glass window pane = 0.15 m², ΔT₂ = temperature gradient between inside and outside of the window and d₂ = thickness of glass window pane = 7 mm = 0.007 m
The total heat lost is P = P₁ + P₂ = K₁A₁ΔT₁/d₁ + K₂A₂ΔT₂/d₂
Now, since the temperatures of both inside and outside of both window and wall are the same, ΔT₁ = ΔT₂ = ΔT
So, P = K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂
Since P₂ = K₂A₂ΔT₂/d₂ = K₂A₂ΔT/d₂is the heat lost by the window, the fraction of the heat lost by the window from the total heat lost is
P₂/P = K₂A₂ΔT/d₂ ÷ (K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂)
= 1/(K₁A₁ΔT/d₁÷K₂A₂ΔT/d₂ + 1)
= 1/(K₁A₁d₂÷K₂A₂d₁ + 1)
= 1/[(0.033 W/m-K × 17 m² × 0.007 m ÷ 0.96 W/m-K × 0.15 m² × 0.20 m) + 1]
= 1/(0.003927/0.0288 + 1)
= 1/(0.1364 + 1)
= 1/1.1364
= 0.88.
The percentage is thus P₂/P × 100 % = 0.88 × 100 % = 88 %
The percentage of heat lost by window of the total heat is 88 %