Answer:
m∠B = 60°
b = 26 units
c = 30 units
Step-by-step explanation:
In a right triangle ACB,
By applying Sine rule,
[tex]\frac{\text{SinA}}{a}=\frac{\text{SinB}}{b}=\frac{SinC}{c}[/tex]
m∠A = 30°, m∠C = 90°
m∠A + m∠B + m∠C = 180°
30° + m∠B + 90° = 180°
m∠B = 180° - 120°
m∠B = 60°
Therefore, [tex]\frac{\text{Sin30}}{15}=\frac{\text{Sin90}}{c}=\frac{\text{Sin60}}{b}[/tex]
[tex]\frac{1}{30}=\frac{\text{Sin90}}{c}=\frac{\text{Sin60}}{b}[/tex]
[tex]\frac{1}{30} =\frac{1}{c}=\frac{\frac{\sqrt{3}}{2}}{b}[/tex]
[tex]\frac{1}{30}=\frac{1}{c}=\frac{\sqrt{3}}{2b}[/tex]
[tex]\frac{1}{30} =\frac{1}{c}[/tex] ⇒ c = 30 units
[tex]\frac{1}{30}=\frac{\sqrt{3}}{2b}[/tex]
b = 15√3
b = 25.98
b ≈ 26 units
8 7 12 7 11
10 7 12
Find:
a)the median
b) the range
c)the mode
Answer:
a) Median: 9
b) Range: 5
c) Mode: 7
Step-by-step explanation:
The median is the number in the middle.
First, you put the numbers in order: 7, 7, 7, 8, 10, 11, 12, 12
The middle of this is 8 and 10, so you plus them and divide by to 2, then it gives 9, so the median is 9.
To find the range, you minus the highest number and the lowest number, 12-7=5.
Mode is the most occurring and repetitive number, in this case, 7, because it is written 3 times.
Hope this helps!!!
Answer:
[tex]\boxed{\mathrm {Median = 9}}[/tex]
[tex]\boxed{\mathrm{Range = 5}}[/tex]
[tex]\boxed{\mathrm{Mode = 7}}[/tex]
Step-by-step explanation:
The observations are:
8,7,12,7,11,10,7,12
In ascending order:
=> 7,7,7,8,10,11,12,12
A) Median => Middlemost no.
Median = 8,10
=> [tex]\frac{8+10}{2}[/tex]
=> [tex]\frac{18}{2}[/tex]
Median = 9
B) Range = Highest No. = Lowest No.
RANGE = 12-7
Range = 5
C) Mode => frequently occurring number
Mode = 7
26. A positive whole number is called stable if at least one of its digits has the same value
as its position in the number. For example, 78247 is stable because a
the 4th position. How many stable 3-digit numbers are there?
appears in
Answer:
OneStep-by-step explanation:
Given the value 78247 a s a stable number because at least one of its digits has the same value as its position in the number. The 4th number in the value is 4, this makes the number a stable number.
The following are the 3-digits stable numbers that appears in 78247
The first number is 824. This digits are stable numbers because 2 as a number is situated in the same place as the number (2nd position).
Hence, there are only 1 stable 3-digit numbers in the value 78247 since only a value exists as 2 in the value and there is no 1 and 3 in the value.
17. Mary bought 10 quarts of juice at the
grocery. How many gallons of juice did
she buy?
A 1.4 gal
C 3.5 gal
B 2.5 gal
D 4.5 gal
Pls help
Answer:
B 2.5 Gal
Step-by-step explanation:
Answer:
I think the correct answer may be B.
Step-by-step explanation:
n the diagram below, points $A,$ $E,$ and $F$ lie on the same line. If $ABCDE$ is a regular pentagon, and $\angle EFD=90^\circ$, then how many degrees are in the measure of $\angle FDE$?
[asy]
size(5.5cm);
pair cis(real magni, real argu) { return (magni*cos(argu*pi/180),magni*sin(argu*pi/180)); }
pair a=cis(1,144); pair b=cis(1,72); pair c=cis(1,0); pair d=cis(1,288); pair e=cis(1,216);
pair f=e-(0,2*sin(pi/5)*sin(pi/10));
dot(a); dot(b); dot(c); dot(d); dot(e); dot(f);
label("$A$",a,WNW);
label("$B$",b,ENE);
label("$C$",c,E);
label("$D$",d,ESE);
label("$E$",e,W);
label("$F$",f,WSW);
draw(d--f--a--b--c--d--e);
draw(f+(0,0.1)--f+(0.1,0.1)--f+(0.1,0));
[/asy]
Answer:
18
Step-by-step explanation:
Each interior angle of a regular pentagon is 108 degrees. So Angle AED is 108 degrees. Since Angle AEF is a straight line (180 degrees), Angle FED is 72. This is because 180-108 = 72. Now, since a triangle has a total of 180 degrees, we add 72 and 90, because those are the 2 degrees we have calculated. This gives us a total of 162. Now, we subtract 162 from 180 to find out the degree of Angle FDE. This is 18. So our final answer is 18.
Sidenote: I hope this answer helps!
The properties of a pentagon and the given right triangle formed by
segments EF and FD give the measure of ∠FDE.
Response:
∠FDE = 18°Which properties of a pentagon can be used to find ∠FDE?The given parameters are;
A, E, F are points on the same line.
ABCDE is a regular pentagon
∠EFD = 90°
Required:
The measure of ∠FDE
Solution:
The points A and E are adjacent points in the pentagon, ABCDE
Therefore;
line AEF is an extension of line side AE to F
Which gives;
∠DEF is an exterior angle of the regular pentagon = [tex]\frac{360 ^{\circ}}{5}[/tex] = 72°∠EFD = 90°, therefore, ΔEFD is a right triangle, from which we have;
The sum of the acute angles of a right triangle = 90°
Therefore;
∠DEF + ∠FDE = 90°
Which gives;
72° + ∠FDE = 90°
∠FDE = 90° - 72° = 18°
∠FDE = 18°
Learn more about the properties of a pentagon here:
https://brainly.com/question/15392368
What is the value of x
Answer:
4
Step-by-step explanation:
For the first triangle which is triangle <KJL
Hypotenuse= 8✓2
Angle=30°
Opposite = ?
Therefore we will use Sine formula
Sin30° = Y/8✓2
Y=4✓2
For the second triangle which is triangle <JML
Hypotenuse= 4✓2
Opposite=X
Angle=45°
Therefore we will use Sine formula again
Sin45°=X/4✓2
X=4
Answer:
x = 4Step-by-step explanation:
ΔJKL is half of equilateral triangle and ΔJML is half of square.
We can use properties of these triangles (picture):
m∠KJL=90° and m∠JKL = 30° ⇒ JL = 0.5KL = 0.5•8√2 = 4√2
m∠JML=90° and m∠MJL = 45° ⇒ JL = ML√2
4√2 = x√2
x = 4
Look at picture to see question
What is the value of discontinuity of x^2+8x+4/x^2-x-6? Choices:
Answer:
-2
Step-by-step explanation:
Hello,
First of all, let's check the denominator.
[tex]x^2-x-6 \ \ \text{ *** How to factorise it ...? ***}\\\\\text{*** The product of the roots is -6=-2*3 and their sum is 1 ***}\\\\x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x+2)(x-3)[/tex]
Now, let's see the numerator.
[tex]x^2+8x+4 \ \text{ *** -2 is not a zero as ***}\\\\(-2)^2+8*(-2)+4=4-16+8=-4\\\\\text{*** 3 is not a zero as ***}\\\\3^2+8*3+4=9+24+4=37\\[/tex]
So we cannot factorise the numerator with (x+2) or (x-3)
Then, -2 and 3 are the the discontinuities of the expression.
There is only -2 in the list, this is the correct answer.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
How many real solutions In this problem
Answer:
D
Step-by-step explanation:
Given
y = x² + 1
y = x
Equating gives
x² + 1 = x ( subtract x from both sides )
x² - x + 1 = 0
Consider the discriminant Δ = b² - 4ac
with a = 1, b = - 1 and c = 1
b² - 4ac = (- 1)² - (4 × 1 × 1) = 1 - 4 = - 3
Since b² - 4ac < 0 then there are no real solutions
A circle with center A and radius three inches is tangent at C to a circle with center B, as shown. If point B is on the small circle, what is the area of the shaded region? Express your answer in terms of \pi.
Answer:
27π Sq in.
Step-by-step explanation:
Circle A is equal to 9π sq inches. (Radius squared times Pi), Segment BC is a radii of Circle B and the diameter of Circle A. Meaning Circle B's radius is 6 inches. The area of circle B would be 36π sq inches. Now we subtract Circle A's area from Circle B's area(36π sq in. - 9π sq in.), the area of the shaded region is 27π sq in.
My state's lottery has 30 white balls numbered from 1 through 30 and 20 red balls numbered from 1 through 20. In each lottery drawing, 3 of the white balls and 2 of the red balls are drawn. To win, you must match all 3 white balls and both red balls, without regard to the order in which they were drawn. How many possible different combinations may be drawn?
Answer:
I dont give you the answer right away so you will read what i write and fully understand :D
Step-by-step explanation:
We are picking 3 balls from 30 balls, so its C(30,3) because the order of picking the balls doesnt matter. We also need to pick 2 balls from 20 balls, which is C(20,2). So the answer is C(30,3) * C(20,2).
7 3/8 + (-4 1/2) ÷ (-5 2/3) Please Explain
Answer:
7 3/8 + (-4 1/2) ÷ (-5 2/3) = 8 23/136
Step-by-step explanation:
1) First I turned all the mix numbers into improper fractions:
7 3/8 ----> ( 7(8)+3/8) = 59/8, 4 1/2 ----> (4(2)+1/2) = 9/2, 5 2/3 ----> (5(3)+2/3) = 17/3
So now it should look like this: 59/8 + (-9/2)÷(-17/3)
2) Now our goal is to divide both of the improper fractions (-9/2)÷(-17/3),
- We first apply our fraction rule: -a/-b = a/b (when we have two negatives they cancel out each other and make a positive)
Our Case, From this:-9/2 ÷ -17/3 = To This: 9/2 ÷ 17/3
3) Now we can divide the fractions using this rule: a/b ÷ c/d = a times d / b times
Our Case, From This: 9/2 ÷ 17/3 To This: 9(3)/2(17) Which Gives Us: 27/34
(9 x 3 = 27, 2 x 17= 34)
So now it looks like this: 59/8 +27/34
4) Our look goal is to have the same denominator (which is the bottom part of the fraction) which are 8 and 34
To find it we find the LCM or Least Common Multiple of 8 and 34
(The LCM of a, b is the smallest positive number that is divisible by both a and b) which in this case a and b are 8 and 34
LCM is 136
5) We adjust our two fractions based on the LCM,
(Multiply each numerator ( top part of the fraction) by the same amount of needed to multiply its corresponding denominator to turn it to the LCM 136.
From This: 59/8 and 27/34 To This: 1003/136 and 108/36 ( 59(17)/8 (17) = 1003/136, 27(4)/34(4) = 108/306
6) Finally we can add the numerator (1003 and 108) together: 1003+108= 1111 and now we are left with 1111/136
Then we turn our improper fraction back into a mix number: 1111/138= 8 23/136
Answer:
[tex]\frac{1111}{136} = 8 \frac{23}{136}[/tex]
Step-by-step explanation:
We want to simplify:
[tex]7 \frac{3}{8} + \frac{ -4 \frac{1}{2} }{ -5 \frac{2}{3} }[/tex]
First, convert all the fractions to improper fractions:
[tex]\frac{59}{8} + \frac{ - \frac{9}{2} }{ - \frac{17}{3} } \\\\= \frac{59}{8} + \frac{27}{34}[/tex]
Find the LCM of the denominators:
[tex]\frac{(17 * 59) + (4 * 27)}{136} \\\\ = \frac{1003 + 108}{136}\\ \\= \frac{1111}{136} \\\\= 8 \frac{23}{136}[/tex]
What is the slope of the line shown below? (-2,3) (-4,-9)
Answer:
6Step-by-step explanation:
Let the points be A and B
A ( - 2 , 3 ) -------> ( x1 , x2 )
B ( -4 , -9 ) -------> ( x2 , y2 )
Now, finding the slope:
[tex]slope \: (m) = \frac{y2 - y1}{x2 - x1} [/tex]
Plug the values
[tex] = \frac{ - 9 - 3}{ - 4 - ( - 2)} [/tex]
Calculate
[tex] = \frac{ - 12}{ - 4 - ( - 2)} [/tex]
When there is a (-) in front of an expression in parentheses , change the sign of each term in expression
[tex] = \frac{ - 12}{ - 4 + 2} [/tex]
Calculate
[tex] = \frac{ - 12}{ - 2} [/tex]
Reduce the fraction with -2
[tex] = 6[/tex]
Hope this helps..
Best regards!!
If a watch store paid $125 per watch for a shipment of watches, and sold all but 15 watches from the shipment for $150 per watch, then, in terms of the number of watches in the shipment, y, what function describes the watch store’s profit, P, from the sales?
A) P(y) = 125(y – 15) – 150y
B) P(y) = 15(125 – y) – 150y
C) P(y) = 150(y – 15) – 125y
D) P(y) = 15(150 – y) – 125y
Answer: C) P(y) = 150(y – 15) – 125y
Step-by-step explanation:
Hi, to answer this question we have to write an equation:
Profit = revenue - cost
Cost: a watch store paid $125 per watch for a shipment of watches
Cost = 125 y
Where y is the number of watches in the shipment
Revenue: sold all but 15 watches from the shipment for $150 per watch
Revenue = 150(y-15)
Profit(y) = 150(y – 15) – 125y
So, the correct option is:
C) P(y) = 150(y – 15) – 125y
Feel free to ask for more if needed or if you did not understand something.
Natasha and her two dogs were walking on a perfectly straight road when her two dogs ran away from her in opposite directions. Her beagle is now \dfrac{25}{4} 4 25 start fraction, 25, divided by, 4, end fraction meters directly to her right, and her labrador is \dfrac{51}{20} 20 51 start fraction, 51, divided by, 20, end fraction meters directly to her left. Which of the following expressions represents how far apart the two dogs are?
Answer:
[tex]\dfrac{74}{20}=3.7 meters[/tex]
Step-by-step explanation:
Hello!
1) Since no other data has been given. Suppose Natasha is in the center and the beagle is to the right.
[tex]\dfrac{25}{4} \:meters[/tex]
2) The labrador is [tex]\dfrac{51}{20}\: to\: the\: left.[/tex]
[tex]\dfrac{25}{4} -\dfrac{51}{20} =\dfrac{(5*25)-51}{20} \\\dfrac{(125-51}{20} =\dfrac{74}{20}[/tex]
Answer:
The answer is B :D hope this helps
Step-by-step explanation:
Instructions: Find FS if BS=16.
Answer:
48
Step-by-step explanation:
FB:BS=2:1
[tex]\frac{FB}{BS} =\frac{2}{1} \\add~1~to~both~sides\\\frac{FB}{BS} +1=\frac{2}{1} +1=3\\\frac{FB+BS}{BS} =3\\\frac{FS}{BS} =3\\FS=3 \times~BS\\FS=3 \times~16=48[/tex]
Answer:
48
Step-by-step explanation:
. What is the solution set for
|k - 6|+17 = 30
A. (-19, 7}
B. (-7, 19)
C. (-19, 19)
D. {-41, 19)
Answer:
Hope this is correct and helpful
HAVE A GOOD DAY!
Two choises! Pick the right one!
Answer:
The function has a maximum value of 3 that occurs at x = 1.
Step-by-step explanation:
First, note that the leading coefficient is negative. This means that the parabola will curve downwards. Because of this, the function has a maximum. The maximum value will simply be the vertex.
The formula for the x-coordinate of the vertex is -b/2a.
a=-3, b=6, c=0
Plug in the numbers:
x=-(6)/2(-3)
=-6/-6=1
Now, plug 1 back into the original function:
-3x^2+6x
-3(1)^2+6(1)
=-3(1)+6
=-3+6
=3
Drew likes to take the long way to school each morning. He walks 3 blocks west and then 3 blocks north to arrive at the school. Today he is running late and decides go directly to school to save time. (Assume there is nothing obstructing his path.) If one block is 310 feet, how many feet will he travel if he goes directly to school? Round to the nearest tenth of a foot.
Answer:
Distance travel by Drew = 1,315.21 feet (Approx)
Step-by-step explanation:
Given:
Total block in north = 3
Total block in west = 3
1 block = 310 feet
Find:
Distance travel by Drew
Computation:
Total distance in north = 3 × 310 = 930 feet
Total distance in west = 3 × 310 = 930 feet
Distance travel by Drew = √Total distance in north² + Total distance in west²
Distance travel by Drew = √930² + 930²
Distance travel by Drew = √864,900 + 864,900
Distance travel by Drew = √1,729,800
Distance travel by Drew = 1,315.21 feet (Approx)
The biomass B(t) of a fishery is the total mass of the members of the fish population at time t. It is the product of the number of individuals N(t) in the population and the average mass M(t) of a fish at time t. In the case of guppies, breeding occurs continually. Suppose that at time t = 5 weeks the population is 824 guppies and is growing at a rate of 50 guppies per week, while the average mass is 1.3 g and is increasing at a rate of 0.14 g/week. At what rate is the biomass increasing when t = 5? (Round your answer to one decimal place.) B'(5) = g/week
Answer:
The rate at which the biomass is increasing when t = 5 is 180.36 g/week
Step-by-step explanation:
Given that :
t = 5 weeks
Population N(t) = 824 guppies
Growth Rate [tex]\dfrac{dN(t)}{dt}= 50 \ guppies /week[/tex]
average mass M(t) = 1.3 g
increase rate of biomass [tex]\dfrac{dM (t)}{t}[/tex]= 0.14 g/week
Therefore; the rate at which the biomass is increasing when t = 5 is:
[tex]\dfrac{dB(t)}{dt}= M(t) * \dfrac{dN(t)}{dt}+ N(t)* \dfrac{dM (t)}{t}[/tex]
[tex]\dfrac{dB(t)}{dt}=1.3 * 50+ 824* 0.14[/tex]
[tex]\dfrac{dB(t)}{dt}=65+115.36[/tex]
[tex]\mathbf{\dfrac{dB(t)}{dt}=180.36 \ g/week}[/tex]
The rate at which the biomass is increasing when t = 5 is 180.36 g/week
The rate at which the biomass is increasing when t = 5 is 180.36 g/week
Calculation of the rate:Since time = 5 weeks, Population N(t) = 824 guppies, and growth rate = 50 guppies / week, average mass = 1.3g, and the increase rate of biomass is 0.14g/week
So,
[tex]= 1.3\times 50 + 824 \times 0.14[/tex]
= 65 + 115.36
= 180.35 g/weel
Learn more about mass here: https://brainly.com/question/3943429
Write 4x2 + 16x - 9 in vertex form. Write 5x2 - 10x + 4 in vertex form.
Hi king,
Write [tex]4x^{2} + 16x - 9[/tex] in vertex form:
f(x)=[tex]4x^{2} + 16x - 9[/tex]
f(x)=[tex]4(x+2)^{2} -25[/tex]
Write [tex]5x^{2} - 10x + 4[/tex] in vertex form:
g(x)=[tex]5x^{2} - 10x + 4[/tex]
g(x)=[tex]5(x-1)^{2} -1[/tex]
Have a great day.
In a local ice sculpture contest, one group sculpted a block into a rectangular based pyramid. The dimensions of the base were 3 m by 5 m, and the pyramid was 3.6 m high. Calculate the amount of ice needed for this sculpture.
Answer:
18m square
Step-by-step explanation:
Formula for rectangular- based pyramid is L x W x H divided by 3
= 3 x 5 x 3.6 divided by 3 = 18
So you would need 18 m square for the sculpture
The principal feature of the redesigned checks is a series of printed instructions that the company hopes will help merchants confirm a check’s authenticity, which includes reminders to watch the endorsement, compare signatures, and view the watermark while holding the check to the light.
(A) which includes reminders to watch the endorsement, compare signatures, and view
(B) which include reminders for watching the endorsement, to compare signatures and view
(C) by including reminders for watching the endorsement, comparing signatures, and viewing
(D) including reminders to watch the endorsement, comparing signatures and viewing
(E) including reminders to watch the endorsement, compare signatures, and view
Answer:
(E) including reminders to watch the endorsement, compare signatures, and view
Step-by-step explanation:
The principle features that will help the company to confirms checks authenticity. It include endorsements and compare the signatures with the designated signatories. If the signatures are matched correctly with the assigned signatories the check is hold in light to view the watermark on it.
Help me please
I’m having so much trouble
Answer:
Step-by-step explanation:
5 * 45 = 225
225+75=300
300/500=0.6
The tank will be 60% full.
If this helped, make sure to mark it as brainliest :D
Answer:
C.60%
Step-by-step explanation:
45 x 5 = 225 225 + 75 = 300
300 / 500 = 0.6 = 60%
Drag a statement or reason to each box to complete this proof.
If -5(x + 8) = -25, then x =
-3
La trayectoria de cierto satelitese ajusta ala grafica de la funcionf(x) igual6x al cuadradomenos 12donde x representael tiempo en días y f(x9 el recorrido en kilometroscuantos kilómetros habrá recorridoel sateliteal cabo de diez días desde su lanzamiento
Answer:
588 kilómetros
Step-by-step explanation:
La función con la que estamos trabajando según la pregunta es;
F (x) = 6x ^ 2 -12
Ahora, la pregunta que simplemente nos hace es encontrar el valor de F (x) dado que x = 10
Entonces, lo simple que hacemos aquí es hacer una sustitución de x = 10 Eso sería;
F (10) = 6 (10) ^ 2 - 12 = 600-12 = 588
please help :) What is 96,989,200 written in scientific notation? A. 96.9892 × 10 to the 5 power B. 9.69892 × 10 to the 7 power C. 9.69892 × 10 to the 6 power D. 9.69892 × 10 to the 8 power
Answer: B. 9.69892 × 10^7
You'd have to move the imaginary decimal at the end of the number 96,989,200 seven times in order to get only one number that isn't zero before the decimal point.
Suppose you are interested in testing wheter the mean earning of men in the general social survey is representative of the earning of the entire U.S. Male population. If there are 372 men in the general social survey sample and approximately 128 million men in the population, calculate the degrees of freedom for this single-sample t test.
Answer:
371
Step-by-step explanation:
According to the given situation the calculation of degrees of freedom for this single-sample t test is shown below:-
Degrees of freedom is N - 1
Where N represents the number of Men
Now we will put the values into the above formula.
= 372 - 1
= 371
Therefore for calculating the degree of freedom we simply applied the above formula.
2.) Evaluate 6a² if a = 4
Answer:
96
Step-by-step explanation:
We simply need to plug in a = 4 so 6a² = 6 * 4² = 6 * 16 = 96.
Andrew's bicycle has tires with a radius of 7 inches. What is the area of one of the bicycle tires, in terms of π?
Answer:
49π
Step-by-step explanation:
The formula for the area of a circle is,
[tex]\pi r^2[/tex]
If the radius is 7 inches we need to plug that in for r in the formula.
π(7)^2
7*7 = 49
Thus,
the area in terms of pi is 49π.
Hope this helps :)
Answer:
49πStep-by-step explanation:
[tex]r = 7\\A = ?\\A =\pi r^2\\A =\pi7^2\\A = 49\pi[/tex]
Find the center and radius of x^2 – 18x + y^2 -10y = -6. part two write x2 – 18x + y2 -10y = -6 in standard form
Answer:
see explanation
Step-by-step explanation:
I will begin with part two, first.
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius.
Given
x² - 18x + y² - 10y = - 6
Using the method of completing the square
add ( half the coefficient of the x/ y terms )² to both sides
x² + 2(- 9)x + 81 + y² + 2(- 5)y + 25 = - 6 + 81 + 25, that is
(x - 9)² + (y - 5)² = 100 ← in standard form
with centre = (9, 5 ) and r = [tex]\sqrt{100}[/tex] = 10