Answer:
D.
Step-by-step explanation:
A) ∠V and ∠Y is not the alternate interior angles.
B)∠W and ∠Z is not the alternate interior angles.
C) Not this one because the reflexive property of congruence means that an angle, line segment, or shape is always congruent to itself.
D)∠VXW ≅∠ZXY because they are vertical. ∠W≅∠Y because they are right angles. So, triangles are similar by AA.
someone help please, already tried 168 says its wrong??
Answer:
245 might be the answer
Step-by-step explanation:
(7*7*10)/2
Find the variance of the given data rounded to the nearest hundredth 5.6 5.2 4.6 4.9 5.7 6.4
Answer:
0.41
Step-by-step explanation:
Given;
5.6, 5.2, 4.6, 4.9, 5.7, 6.4
To calculate the variance of a given set of ungrouped data, follow the following steps;
(i). First calculate the mean (average) of the data as follows;
[tex]\frac{5.6 +5.2 +4.6+ 4.9 +5.7 +6.4}{6}[/tex] = [tex]\frac{32.4}{6}[/tex] = 5.4
(ii) Secondly, find the deviation of each point data from the mean as follows;
5.6 - 5.4 = 0.2
5.2 - 5.4 = -0.2
4.6 - 5.4 = -0.8
4.9 - 5.4 = -0.5
5.7 - 5.4 = 0.3
6.4 - 5.4 = 1.0
(iii) Thirdly, find the square of each of the results in step ii.
(0.2)² = 0.04
(-0.2)² = 0.04
(-0.8)² = 0.64
(-0.5)² = 0.25
(0.3)² = 0.09
(1.0)² = 1.0
(iv) Fourthly, find the sum of the results in step iii.
0.04 + 0.04 + 0.64 + 0.25 + 0.09 + 1.0 = 2.06
(v) The variance, v, is now the quotient of the result in step (iv) and n-1. i.e
v = [tex]\frac{2.06}{n-1}[/tex]
Where;
n = number of data in the set
n = 6 in this case
Therefore,
v = [tex]\frac{2.06}{6-1}[/tex]
v = [tex]\frac{2.06}{5}[/tex]
v = 0.412
Therefore, the variance is 0.41 to the nearest hundredth
Answer:
.34
Step-by-step explanation:
god this is so boring
Ms. Walker's science class is doing an egg drop experiment from the balcony of their school. Each egg is protected by a contraption that the students collectively designed. The height of the egg, in feet, after x seconds is given by the expression below. What do the zeros of the expression represent? A. the maximum height of the egg B. the time at which the egg reaches its maximum height C. the horizontal distance traveled by the egg D. the time at which the egg reaches the ground
Answer:
An object balances itself when a perpendicular line drawn through its Centre of Gravity (CG), passes through its base.
See the picture of a popular toy given below. The horse, the rider and the ball are all joined together as one single unit. This entire unit is balanced on the thin black rod shown. At which of the indicated positions, could the Centre of Gravity (CG) of the horse, rider and ball unit be?
July 10 book Science up55 down8
AA BB
CC DD
Step-by-step explanation:
6th grade math help me please :)
Answer:
a. ans=1
b. ans=2/5
c. ans=4
hope u understood...
The Nutty Professor sells cashes for $6.00 per pound and Brazil nuts for $5.30 per pound. How much of
each type should be used to make a 35 pound mixture that sells for $5.64 per pound?
Answer:
17 pound of cashew and 18 pound of Brazil nutsStep-by-step explanation:
Let X be the amount of cashews that the nutty professor will mix.
Since, the total weight of the nuts should be 35 lbs
The amount of Brazil nuts = 35 - X
Now,
[tex]6x + 5.30(35 - x) = 5.64(35)[/tex]
[tex]600x + 530(35 - x) = 564 \times 35[/tex]
[tex]600x + 18550 - 530x = 19740[/tex]
[tex]70x = 19740 - 18550[/tex]
[tex]70x = 1190[/tex]
[tex]x = \frac{1190}{70} [/tex]
[tex]x = 17[/tex]
Again,
[tex] 35 - x[/tex]
[tex]35 - 17[/tex]
[tex]18[/tex]
17 pounds of cashew and 18 pounds of Brazil nuts.
Hope this helps...
Good luck on your assignment...
7
Which statement best describes the relationship
between storage space and number of music files?
As the number of files remains constant, the storage
space used decreases.
As the number of files remains constant, the storage
space used increases.
As the number of files increases, the storage space
used decreases.
Wh
As the number of files increases, the storage space
used increases.
Answer:
The answer is "As the number of files increases, the storage space used decreases."
Step-by-step explanation:
When the music files are put into storage they take up space, this causes the storage space to decrease.
Answer:
As the number of files increases, the storage space used increases.
A confidence interval for the population mean length of hit songs was found to be 4.1 to 5.3 minutes. Find the point estimate (that is, find the midpoint of this confidence interval.)
Answer:
4.7
Step-by-step explanation:
Given :
initial mean length =4.1 minutes.
Final mean length =5.3 minutes
The mid point of the given interval can be determined by the
[tex]Midpoint \ = \frac{Initial\ Mean\ length\ +Final\ Mean\ length }{2} \\Midpoint \ = \frac{4.1\ +\ 5.3\ }{2} \\Midpoint \ = \frac{9.4 }{2} \\Midpoint \ =4.7\\[/tex]
Therefore 4.7 is the midpoint
Rewrite the following statements less formally, without using variables. Determine, as best as you can, whether the statements are true or false.
a. There are real numbers u and v with the property that u+v
b. There is a real number x such that x2
c. For all positive integers n,n2≥n.
d. For all real numbers a and b,|a+b|≤|a|+|b|
Answer:
The answer is given below
Step-by-step explanation:
a) Let u and v be real numbers. The sum of u and v = u + v and the difference between u and v = u - v.
u + v < u - v means the sum of two real numbers is less than the difference between the two numbers.
There exist two real numbers such that their sum is less than the difference between them
This is true when atleast one of the numbers is negative, for example u = 2 and v = -2
u + v = 2 + (-2) = 0 , u - v = 2 - (-2) = 4
u + v < u - v.
b) Let x be a real number and x² be the square of the real number
x² < x means that the square of a real number is less than the real number
We can rewrite the statement as: There exist a real number such that its square is smaller than itself.
The statement is true for x is between 0 and ±1
E.g. for x = 1/2, x² = (1/2)² = 1/4
1/4 < 1/2
c) Let n represent all positive integers. n² is the square of n.
n²≥n means that the square of n is greater or equal to n.
We can rewrite the statement as: For all positive integer numbers, the square of the number is greater than or equal to the number itself
The statement is true.
1² ≥ 1, 2² ≥ 2 e.t.c
d) Let a and b be real numbers. The sum of a and b = a + b. |a| is the absolute value of a and |b| is the absolute value of b
|a+b|≤|a|+|b| means the absolute value of the sum of two real numbers is less than or equal to the sum of their individual absolute value.
We can rewrite the statement as: For two real numbers, the absolute value of their sum is less than or equal to their individual absolute value sum.
This statement is true for all real numbers.
Evaluating the expressions given using appropriate illustrations, all the statements are True.
Statement 1 :
Real numbers ar both rational and irrational values and hence can be tweaked using arithmetic operators such as addition. Hence, the Statement is True
[tex]1 + \frac{1}{2} [/tex] = [tex]1 \frac{1}{2} [/tex]Statement 2 :
Real numbers can be expressed or raised to the power of another number such as being squared.
2² = 4 ; [tex](\frac{1}{3})^{2} = \frac{1}{9} [/tex]Statement 3 :
The squared Value of all positive integers is always greater than or equal the value.
n = 2 ; n² = 2² = 4 4 > 2Statement 4 :
The absolute value of a sum is always less than or equal to the sum of the absolute values two numbers
a = 3 ; b = - 4
|a + b | = |3-4| ≤ |-3|+|4|
|-1| ≤ 3 + 4
-1 ≤ 7
Therefore, all the statements are true.
Learn more : https://brainly.com/question/8165716
A rectangular park is 8 miles long and 6 miles wide. How long is a pedestrian route that runs diagonally across the park?
Hey there! :)
Answer:
10 miles.
Step-by-step explanation:
To solve for the diagonal side, we can simply visualize the sides of the rectangle as sides of a right triangle with the diagonal being the hypotenuse.
We can use the Pythagorean Theorem (a² + b² = c²), where:
a = length of short leg
b = length of long leg
c = length of the diagonal
Solve:
c² = a² + b²
c² = 6² + 8²
c² = 36 + 64
c² = 100
c = 10 miles. This is the length of the pedestrian route.
Answer:
10 milesSolution,
Hypotenuse (h) = R
Perpendicular (p) = 8 miles
Base (b) = 6 miles
Now,
Using Pythagoras theorem:
[tex] {h}^{2} = {p}^{2} + {b}^{2} [/tex]
Plugging the values:
[tex] {r}^{2} = {(8)}^{2} + {(6)}^{2} [/tex]
Calculate:
[tex] {r}^{2} = 64 + 36[/tex]
[tex] {r}^{2} = 100[/tex]
[tex]r = \sqrt{100} [/tex]
[tex]r = 10 \: miles[/tex]
Length of route = 10 miles
Hope this helps...
Good luck on your assignment...
Write an expression that is divisible by 7. Use it to find two three-digit numbers numbers divisible by 7.
Answer:
7x+7 is obviously divisible by 7.
put in any value high enough and you can find the two three digit numbers.
Step-by-step explanation:
Two three-digit numbers divisible by 7 are 98 and 105.
Two three-digit numbers divisible by 7 are 98 and 105.To create an expression that is divisible by 7, we can use the property that the difference between two numbers is divisible by 7 if the numbers themselves are divisible by 7.
Let's represent a three-digit number divisible by 7 as "7k" where k is an integer. To find two three-digit numbers divisible by 7, we can use the following expression:
7k - 7
For example, if we substitute k = 15, we get:
7(15) - 7 = 105 - 7 = 98
So, the first three-digit number divisible by 7 is 98.
Similarly, for the second three-digit number, let's substitute k = 16:
7(16) - 7 = 112 - 7 = 105
Therefore, the two three-digit numbers divisible by 7 are 98 and 105.
To know more about divisible, refer here:
https://brainly.com/question/5372121
#SPJ2
Find the value of s(t(-3)):
s(x) = - 3x-2
t(x) = 5x - 4
Please helppp!
Answer:
(-3x-2/x) multiply by (-15x+12/x) so It's (A)
Hope this helped you!!
Step-by-step explanation:
IS this table linear?? Can someone please explain???? What would the weight be if the number of weeks in the fitness program was 0???
Answer:
not linearsomewhere between 184 and 186 (maybe)Step-by-step explanation:
As you show, the weight differences are different for the same week differences, so the table is not linear. A graph (attached) can also show you the table is not linear.
__
The highest rate of weight loss shown in the table is 7 lbs in 3 weeks, or 4 2/3 pounds in 2 weeks. The lowest rate of weight loss shown in the table is 5 lbs in 3 weeks, or 3 1/3 pounds in 2 weeks. Based on the rates shown in the table, we might expect the starting weight to be between 3 1/3 and 4 2/3 pounds more than the first table value:
Week 0 weight: between 184 1/3 and 185 2/3 lbs, estimated.
_____
A "line of best fit" for the data has a y-intercept of about 185 pounds, which is the midpoint between our two estimates above.
The figure shows eight congruent triangles made by dividing a square that has an area of 64 cm2. What is the area of ABH? A. 20 cm2 B. 16 cm2 C. 8 cm2 D. 6 cm2 E. 4 cm2
Answer:
the answer is C.
Step-by-step explanation:
64 ÷ 8 = 8
Answer:
c- 8cm squared
Step-by-step explanation:
plato
For the following normal distribution, give the x-values of the inflection points of the curve (the points where the curve's concavity changes).
x ~ N(0, 52)
Answer:
The x-values of the inflection points of the curve are x = -52 and x = 52.
Step-by-step explanation:
Suppose we have a normal curve with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex]
The x-values of the inflection points of the curve are [tex]x = \mu - \sigma[/tex] and [tex]x = \mu + \sigma[/tex]
x ~ N(0, 52)
This means that [tex]\mu = 0, \sigma = 52[/tex]
So
[tex]x = 0 - 52 = -52[/tex]
[tex]x = 0 + 52 = 52[/tex]
The x-values of the inflection points of the curve are x = -52 and x = 52.
One condition for performing a hypothesis test is that the observations are independent. Marta is going to take a sample from a population of 600 students. How many students will Marta have to sample without replacement to treat the observations as independent?
Answer:
The correct answer to the following question will be "60 students".
Step-by-step explanation:
Marta will be taking a sampling frame from some kind of 600 student group.
Mean,
N = 60
Although the sampling method could perhaps consist of the following components 10% of the population,
⇒ [tex]600\times 10 \ percent[/tex]
⇒ [tex]60[/tex]
In order to view these findings as autonomous, 60 students would then have to analyze Marta lacking replacements.
Marta have to sample 60 students without replacement to treat the observations as independent.
Given,
Marta is going to take a sample from a population of 600 students.
We have to find the no. of students Marta have to sample without replacement.
The 10% condition states that sample sizes should be no more than 10% of the population. Normally, Bernoulli trials are independent, but it's okay to violate that rule as long as the sample size is less than 10% of the population.
So,
[tex]N=10\% \ of \ 600[/tex]
[tex]N=\frac{10}{100} \times600[/tex]
[tex]N=60[/tex]
Hence, Marta have to sample 60 students without replacement to treat the observations as independent.
For more details follow the link:
https://brainly.com/question/25260121
If x = 2, then 2x = 4
Answer:
4 = 4
Step-by-step explanation:
=> 2x = 4
Putting x = 2
=> 2(2) = 4
=> 4 = 4
Answer:
TrueSolution,
X= 2
Now,
2x=4
plugging the value of X,
2*2= 4
4 = 4 ( hence it is true)
A market research company conducted a survey to find the level of affluence in a city. They defined the category "affluence" for people earning $100,000 or more annually. Out of 267 persons who replied to their survey, 32 are considered affluent. What is the 95% confidence interval for this population proportion? Answer choices are rounded to the hundredths place
Answer:
A 95% confidence interval for this population proportion is [0.081, 0.159].
Step-by-step explanation:
We are given that a market research company conducted a survey to find the level of affluence in a city.
Out of 267 persons who replied to their survey, 32 are considered affluent.
Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of people who are considered affluent = [tex]\frac{32}{267}[/tex] = 0.12
n = sample of persons = 267
p = population proportion
Here for constructing a 95% confidence interval we have used One-sample z-test for proportions.
So, 95% confidence interval for the population proportion, p is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95
P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95
95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]
= [ [tex]0.12-1.96 \times {\sqrt{\frac{0.12(1-0.12)}{267} } }[/tex] , [tex]0.12+1.96 \times {\sqrt{\frac{0.12(1-0.12)}{267} } }[/tex] ]
= [0.081, 0.159]
Therefore, a 95% confidence interval for this population proportion is [0.081, 0.159].
Answer:
0.08 to 0.16
Step-by-step explanation:
Rachel measured the lengths of a random sample of 100 screws. The mean length was 2.9 inches, and the population standard deviation is 0.1 inch. To see if the batch of screws has a significantly different mean length from 3 inches, what would the value of the z-test statistic be?
Answer:
z = 10
Step-by-step explanation:
The value of the z-statistic is given by:
[tex]z = \frac{X - \mu}{s}[/tex]
In which:
X is the measured value.
[tex]\mu[/tex] is the expected value.
[tex]s = \frac{\sigma}{\sqrt{n}}[/tex] is the standard deviation of the sample. [tex]\sigma[/tex] is the standard deviation of the population.
In this question:
The mean length was 2.9 inches, and the population standard deviation is 0.1 inch.
This means that [tex]\mu = 2.9, \sigma = 0.1[/tex]
Random sample of 100 screws.
This means that n = 100.
To see if the batch of screws has a significantly different mean length from 3 inches, what would the value of the z-test statistic be?
3 inches, so [tex]X = 3[/tex]
[tex]s = \frac{0.1}{\sqrt{100}} = 0.01[/tex]
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{3 - 2.9}{0.01}[/tex]
[tex]z = 10[/tex]
Answer:
-10
Step-by-step explanation:
If we first note the denominator of fraction numerator sigma over denominator square root of n end fraction equals fraction numerator 0.1 over denominator square root of 100 end fraction equals fraction numerator begin display style 0.1 end style over denominator 10 end fraction equals 0.01
Then, getting the z-score we can note it is z equals fraction numerator x with bar on top minus mu over denominator begin display style 0.01 end style end fraction equals fraction numerator 2.9 minus 3 over denominator 0.01 end fraction equals negative 10
This tells us that 2.9 is 10 standard deviations below the value of 3, which is extremely far away.
Find all solutions of the given system of equations and check your answer graphically. HINT [See Examples 2–5.] (If there is no solution, enter NO SOLUTION. If the system is dependent, express your answer in terms of x, where y = y(x).) 3x + 2y = 20 2x + 3y = 20 (x, y) = (No Response)
Answer:
( x, y ) = ( -20, 20 )
Step-by-step explanation:
Given data
Y = y(x)
3x + 2y = 20 ---------- equation 1
2x + 3y = 20 ---------- equation 2
find (x, y )
solving equation 1 and equation 2
3x + 2y = 20 * 2 = 6x + 2y = 40 --------- EQUATION 3
2x + 3y = 20 * 3 = 6x + 3y = 60 --------- EQUATION 4
cancelling out ( x )
Add both equation 3 and equation 4
5y = 100. hence y = 100/5 = 20
back to equation equation 2
2x + 3(20) = 20
2x = - 40
x = -20
attached is the graph to check the answer
Find the equation of a line passing through the point (-4,1) and perpendicular to the
line 3y = 12x - 9.
Answer:
A. y=-1/4x
Step-by-step explanation:
We have the information 3y=12x-9, the lines are perpendicular, and the new line passes through (-4,1). First, you want to put the original equation into slope intercept form by isolating the y, to do this we need to divide everything by 3 to get y=4x-3. The slopes of perpendicular lines are negative reciprocals so you need to find the negative reciprocal of 4, so flip it to 1/4 and multiply by -1, we get the slope of the new line as -1/4. So far we have the equation y=-1/4x+b. We are given a point on the line, (-4,1), we can plug these into the equation as x and y to solve for the y-intercept, b. You set it up as 1=-1/4(-4)+b. First you multiply to get 1=1+b, then you subtract 1 from both sides to isolate the variable and you get b=0. Then you can use b to complete your equation with y=-1/4x, or letter A.
Can someone plz help me solved this problem I need the other line which is X! I already have line y but I need X plz someone help i need help!
Answer: see below
Step-by-step explanation:
Inverse is when you swap the x's and y's.
The Slope-Intercept form is [tex]y=\dfrac{1}{5}x-\dfrac{3}{5}[/tex] which isn't convenient to graph.
So take the points from the original equation (-1, -2) & (0, 3) and switch the x's and y's to get the points (-2, -1) & (3, 0).
Draw a line through points (-2, -1) and (3, 0) to sketch the graph of the inverse.
The product of an irrational number and a rational number is irrational. Sometimes True Always True Never True
Answer:
Always true
Step-by-step explanation:
If you can't express the number as a ratio of integers, multiplying or dividing it by integers will not make it so you can.
If π is irrational, 2π is also irrational.
It is always true that the product of a rational and an irrational number is irrational.
Answer:
all ways true
Step-by-step explanation:
While starting salaries have fallen for college graduates in many of the top hiring fields, there is some good news for business undergraduates with concentrations in accounting and finance (Bloomberg Businessweek, July 1, 2010). According to the National Association of Colleges and Employers’ Summer 2010 Salary Survey, accounting graduates commanded the second highest salary at $50,402, followed by finance graduates at $49,703. Let the standard deviation for accounting and finance graduates be $6,000 and $10,000, respectively.
a. What is the probability that 100 randomly selected accounting graduates will average more than $52,000 in salary?
b. What is the probability that 100 randomly selected finance graduates will average more than $52,000 in salary?
c. Comment on the above probabilities.
Answer:
Step-by-step explanation:
According to the central limit theorem, if independent random samples of size n are repeatedly taken from any population and n is large, the distribution of the sample means will approach a normal distribution. The size of n should be greater than or equal to 30. Given n = 100 for both scenarios, we would apply the formula,
z = (x - µ)/(σ/√n)
a) x is a random variable representing the salaries of accounting graduates. We want to determine P( x > 52000)
From the information given
µ = 50402
σ = 6000
z = (52000 - 50402)/(6000/√100) = 2.66
Looking at the normal distribution table, the probability corresponding to the z score is 0.9961
b) x is a random variable representing the salaries of finance graduates. We want to determine P(x > 52000)
From the information given
µ = 49703
σ = 10000
z = (52000 - 49703)/(10000/√100) = 2.3
Looking at the normal distribution table, the probability corresponding to the z score is 0.9893
c) The probabilities of either jobs paying that amount is high and very close.
Assume that the year has 366 days and all birthdays are equally likely. Find the probability that two people chosen at random were born on the same day of the week.
Answer:
[tex]\dfrac{1}{7}[/tex]
Step-by-step explanation:
There are 7 days in a week.
For the first person, we select one day out of the 7 days. The first person has 7 options out of the 7 days.
Let Event A be the event that the first person was born on a day of the week.
Therefore:
[tex]P(A)=\dfrac{7}{7}=1[/tex]
The second person has to be born on the same day as the first person. Therefore, the second person has 1 out of 7 days to choose from.
Let Event B be the event that the second person was born.
Therefore, the probability that the second person was born on the same day as the first person:
[tex]P(B|A)=\dfrac{1}{7}[/tex]
By the definition of Conditional Probability
[tex]P(B|A)=\dfrac{P(B \cap A)}{P(A)} \\$Therefore:\\P(B \cap A)=P(B|A)P(A)[/tex]
The probability that both were born on the same day is:
[tex]P(B \cap A)=P(B|A)P(A) = \dfrac{1}{7} X 1 \\\\= \dfrac{1}{7}[/tex]
g a) What are some of the distinguishing properties of a normal Distribution? Discuss b) The sampling distribution of the sample means is the curve that describes how the sample means are distributed. True or False Explain c) The mean of sample means is the same as the population for a given sample of size n. True False Explain
Answer:
a) Check Explanation.
b) True. Check Explanation.
c) True. Check Explanation.
Step-by-step explanation:
a) A normal distribution is one which is characterized by four major properties.
- A normal distribution is symmetrical about the center of the distribution. That is, the variables spread out from the center in both directions in the same manner; the right side of the distribution is a mirror image of the left side of the distribution.
The center of a normal distribution is located at its peak, and 50% of the data lies above the mean, while 50% lies below.
- The mean, median and the mode are coincidental. The mean, median and mode of a normal distribution are all the same value.
- A normal distribution is unimodal, that is, has only one mode.
- The ends of the probability curve of a normal distribution never touch the x-axis, hence, it is said too be asymptotic.
b) The sampling distribution of sample means arises when random samples are drawn from the population distribution and their respective means are computed and put together to form a distribution. Hence, the curve of this sampling distribition of sample means will show how the sample means are distributed. Hence, this statement is true.
c) The Central Limit Theorem gives that if the samples are drawn randomly from a normal distribution and each sample size is considerable enough, the mean of the sampling distribution of sample means is approximately equal to the population mean. So, if the conditions stated are satisfied, then thos statement too, is true.
Hope this Helps!!!
Good Morning can I get some help please?
Answer:
5x + 10 = 25
Subtract 10 on each side to make x alone
5x = 15
divide by 5 on each side
x=3 so x=3
3x + 12 = 48
48-12=36
3x=36
divide by 3
x=12
4x + 8 = 16
4x = 8
x=2
2x + 15=25
2x=10
x=5
5x + 20 = 50
5x=30
x=6
hope this helps
1. 3
2.12
3.2
4.5
5.6
Step-by-step explanation:
Answer:
x = 3x = 12x = 2x = 5x = 6Step by step explanation
First:
Move the constant to the Right Hand Side and change its signCalculate the differenceDivideCalculateSolution,
1. 5x + 10 = 25
Move constant to the R.H.S and change its sign:
5x = 25 - 10
Calculate the difference
5x = 15
Divide both sides by 5
5x/5 = 15/5
calculate
X = 3
2. 3x + 12 = 48
or, 3x = 48 - 12
or, 3x = 36
or, 3x/x = 36/3
x = 12
3. 4x + 8 = 16
or, 4x = 16 - 8
or, 4x = 8
or, 4x/x = 8/4
x = 2
4. 2x + 15 = 25
or, 2x = 25 - 15
or, 2x = 10
or, 2x/x= 10/2
x = 5
5. 5x + 20 = 50
or, 5x = 50-20
or, 5x = 30
or, 5x/x = 30/5
x = 6
Hope this helps...
Good luck on your assignment...
Solve the equation, x − 5 1 = 8 1 , for the given variable. Write your final answer as a reduced fraction.
Answer: 132
Step-by-step explanation: To solve this equation we know that x is greater than 81 unless the equation would not make sense. 81 + 51 = 132
Answer: x=132
Step-by-step explanation: Add 51 to 81, as positive 51 is the inverse of -51. You need to get the x alone. Therefore, 51+81=132 and x=132.
A cinema can hold 270 people at one performance 5/9 of the seats were occupied of the occupied seats 40% we occupied by concessionary ticket holders
Question:
A cinema can hold 270 people at one performance 5/9 of the seats were occupied of the occupied seats 40% we occupied by concessionary ticket holders.
What is the number of seats occupied by concessionary ticket holders?.
Answer:
60 seats
Step-by-step explanation:
Given
Number of seats = 270
Occupied Seats = 5/9
Concessionary ticket holders = 40% of occupied Seats
Required
The number of seats occupied by concessionary ticket holders
First the number of occupied seat has to be calculated.
[tex]Occupied\ Seats = \frac{5}{9} * 270[/tex]
[tex]Occupied\ Seats = \frac{1350}{9}[/tex]
[tex]Occupied\ Seats = 150[/tex]
Next is to determine the number of seats occupied by concessionary ticket holders.
[tex]Number = 40\%\ of\ occupied\ seats[/tex]
[tex]Number = 40\%\ of\ 150[/tex]
Convert percentage to decimal
[tex]Number = 0.4 * 150[/tex]
[tex]Number = 60[/tex]
Hence, 60 seats were occupied by concessionary ticket holders.
Need help plz someone help me solved this problem! I will mark you as brainiest !
Answer:
see explanation
Step-by-step explanation:
Given
f(x) = 60 × [tex]16^{x}[/tex]
x = 1 → f(1) = 60 × 16 = 960 ← bacteria present after 1 day
x = 2 → f(2) = 60 × 16² = 15360 ← bacteria present after 2 days
x = 3 → f(3) = 60 × 16³ = 245760 ← bacteria present after 3 days
The function f(x) = x^2+4 is defined over the interval (-2,2). If the interval is dived into n equal parts what is the height of the right endpoint of the kth rectangle?
Answer:
Option (A).
Step-by-step explanation:
The function f(x) = x² + 4 is defined over the interval (-2, 2)
Total number of equal parts between this interval = 5
If the interval is divided into n equal parts, height of the right endpoint of each rectangle = [tex]\frac{5}{n}[/tex]
Height of the endpoint of the k rectangles = [tex]k.\frac{5}{n}[/tex]
Therefore, height of the endpoint of the kth rectangle = Height of first rectangle + height of k rectangles
= -2 + [tex]k.\frac{5}{n}[/tex]
Option (A). will be the answer.
The height of the right endpoint of the kth rectangle h = -2 + k (5/n)
What is the height?The height is a vertical distance between two points. In the case of the triangle, the height will be the distance between the base and the top vertex of the triangle.
The function f(x) = x² + 4 is defined over the interval) (-2, 2 )
Total number of equal parts between this interval = 5
If the interval is divided into n equal parts, the height of the right endpoint of each rectangle = (5/n)
Height of the endpoint of the k rectangles = k (5/n)
The height of the endpoint of the kth rectangle:-
= Height of first rectangle + height of k rectangles
= -2 + k ( 5/n )
Therefore the height of the right endpoint of the kth rectangle h = -2 + k (5/n)
To know more about height follow
https://brainly.com/question/1739912
#SPJ5