It is true that Light always travels in a straight line until something gets in its way.
Waves do carry energy. The energy carried by a wave is directly related to both its frequency and amplitude. Higher frequency waves have more energy, and larger amplitude waves also carry more energy.
The frequency of a wave is related to its energy, but the amplitude of a wave is not directly proportional to its energy. The energy of a wave is determined solely by its frequency, not its amplitude.
The amplitude of a wave corresponds to its maximum displacement from the equilibrium position, while the energy of a wave is determined by the number of wave oscillations or cycles per unit time, which is represented by the frequency.
Thus, the answers are true, true and false respectively.
For more details regarding wave, visit:
https://brainly.com/question/25954805
#SPJ1
If potassium has 19 protons and it’s found in group 1, how many electrons are in each energy level?
What on the periodic table will tell you the number of VALENCE electrons and the number of energy levels an atom has? (Hint: there are two answers for this question)
Answer:
please Mark me Brainliest
Explanation:
Potassium has 4 energy levels and 1 valence electron.
The periodic table can tell you the number of valence electrons and the number of energy levels an atom has. The group number tells the number of valence electrons, while the period number tells the number of energy levels.
Weight is best defined as _____. A the amount of space an object takes up B the speed of an object C the force of gravity on an object D the amount of energy in an object
Weight is best defined as the force of gravity on an object (option C).
What is weight?Weight is the force on an object due to the gravitational attraction between it and the Earth (or whatever astronomical object it is primarily influenced by).
Weight is different from mass being that weight is a dependent on the gravitational force of the object's habitation, however, mass is not.
For example, the mass of an object on Earth can be 10kg, however, the weight of the object is 100N because the gravitational force of the Earth is 10m/s².
Learn more about weight at: https://brainly.com/question/16795252
#SPJ1
1. For the reaction: CH3CO₂H(1) → CH4(g) + CO₂(g)
a. Calculate the entropy, enthalpy and free energy change for the reaction under standard conditions.
b. Calculate the minimum temperature (°C) at which the reaction is spontaneous.
c. Calculate the equilibrium constant at standard conditions.
To calculate the entropy (ΔS), enthalpy (ΔH), and free energy change (ΔG) for the reaction under standard conditions, we can use the given values:
ΔH = ΣH(products) - ΣH(reactants)
= (-74.8 kJ/mol + 0 kJ/mol) - (-487.0 kJ/mol)
= 412.2 kJ/mol
ΔS = ΣS(products) - ΣS(reactants)
= (213.6 J/(mol K) + 0 J/(mol K)) - (159.8 J/(mol K))
= 53.8 J/(mol K)
ΔG = ΔH - TΔS
= 412.2 kJ/mol - (298 K) * (53.8 J/(mol K) / (1000 J/kJ))
= 412.2 kJ/mol - 16.0 kJ/mol
= 396.2 kJ/mol
Therefore, under standard conditions, the values for the reaction are:
ΔH = 412.2 kJ/mol
ΔS = 53.8 J/(mol K)
ΔG = 396.2 kJ/mol
For more details regarding the reaction, visit:
https://brainly.com/question/30464598
#SPJ1
A sound wave is traveling through water at 0°C. Which statement best describes how the speed of the wave will change if the water temperature increase to 20°C
O The wave speed will increase because the particles will collide more frequently.
O The wave speed will increase because the particles transfer energy to the wave.
O The wave speed will decrease because the particles will collide with the wave.
O The wave speed will decrease because the particles will be farther apart.
Answer:
As the temperature of water increases, the speed of sound waves traveling through it also increases. Therefore, if the water temperature increases from 0°C to 20°C, the speed of the sound wave traveling through it will increase.
The speed of a sound wave in water will increase if the water's temperature increases from 0°C to 20°C due to increased particle collisions resulting from higher kinetic energy.
Explanation:The best statement that describes how the speed of a wave will change if the water temperature increases from 0°C to 20°C is - The wave speed will increase because the particles will collide more frequently.
This is because an increase in temperature of a fluid (like water) results in an increase in the speed of sound through it. When the temperature increases, the kinetic energy of the particles also increases. As a result, these molecules move around faster, thereby leading to increased collisions which essentially helps the sound wave to propagate faster. So, the speed of the sound wave increases with an increase in temperature.
Learn more about Wave Speed here:https://brainly.com/question/32331816
#SPJ11
At what temperature in °C does 0.750 mol of an ideal gas occupy a volume of 35.9 L at a pressure of 1.13 atm (R = 0.0821atm*L/mol*K)
386°C
Explanation:The ideal gas law allows us to solve for different values of a gas.
Ideal Gas Law
In order to do ideal gas calculations, we make the assumption that gas behaves ideally. This means that gases move in completely straight lines, have perfectly elastic collisions, experience no IMFs (intermolecular forces), and have no volume. When we assume these characteristics, we get the equation:
PV = nRTIn this equation, P is pressure, V is volume, n is moles, R is the gas constant, and T is temperature. It is important to note that temperature is always given in Kelvin for the ideal gas law.
Solving For T
To solve for T, all we need to do is plug in the values we were given. The question states:
P = 1.13 atmV = 35.9 Ln = 0.750 molR = 0.0821atm*L/mol*KNow we just need to solve for T. For clarity, I will leave units out of this calculation.
1.13 * 35.9 = 0.750 * 0.0821 * TT ≈ 658.82 KThis means the temperature is about 658.82 Kelvin. Rounded for sig figs, this is 659K. However, the question asks for Celsius. So, we need to convert. To convert from Kelvin to Celsius, subtract 273.
659K = 386°CThe gas is at 386°C.
Exercise 8 If 46.0g of CH₂ reacts with 32.0g O. According to the following reactio CH₂ + 20₂ - CO₂ + 2H₂O a. Which substance is limiting reactant? b. How many grams of it remain unreacted? c. How many grams of CO₂ would be produced?
Answer:
limiting reagent is 02
mass of CO2 is 11g
Explanation:
the limiting reagent is the reagent which is consumed completely
no of mole of CH2 = m in g / molar mass
= 46.0/(12+2)
= 3.285 moles.
no of mole of O2 = 32/32
= 1 mole
from the reaction
1 mole of CH2 ==> 2 mol of O2
3.285 mol ==> 1/2 mol
3.285 mol ==> 0.5 mol
:. since O2 has the lowest mol , it's the limiting reagent
the limiting reagent mol will be used to find the no of mole of CH2
2 mol of O2==> 1 mol of CO2
0.5 mol ==> 0.5/2
0.25 mole of CO2
mass = 0.25 * ( 12+32)
= 11g
you can support by rating brainly it's very much appreciated ✅
Unit:Stoichiometry Multi-Step Problems -WS #3 answer key
Explanation:
You've not brought out the question
KCIO3 -> KCI + 02
How many moles of KCI are produced if 6743 grams of KCIO3 decomposes?
55.03 moles of KCI are produced when 6743 grams of [tex]KClO_{3}[/tex] decomposes
To determine the number of moles of KCl produced when 6743 grams of [tex]KClO_{3}[/tex] decomposes, we need to use the concept of molar mass and the balanced chemical equation.
First, let's calculate the molar mass of [tex]KClO_{3}[/tex]
The molar mass of potassium (K) is approximately 39.10 g/mol.
The molar mass of chlorine (Cl) is approximately 35.45 g/mol.
The molar mass of oxygen (O) is approximately 16.00 g/mol.
So, the molar mass of [tex]KClO_{3}[/tex] is:
(39.10 g/mol) + (35.45 g/mol) + (3 * 16.00 g/mol) = 122.55 g/mol.
Now, we need to calculate the number of moles of [tex]KClO_{3}[/tex]:
Number of moles = Mass / Molar mass
Number of moles = 6743 g / 122.55 g/mol = 55.03 mol.
According to the balanced chemical equation:
2[tex]KClO_{3}[/tex] -> 2 KCl + 3 O2,
we can see that for every 2 moles of [tex]KClO_{3}[/tex], we obtain 2 moles of KCl.
Therefore, the number of moles of KCl produced will be equal to the number of moles of [tex]KClO_{3}[/tex] since the ratio is 1:1. Thus, 55.03 moles of KCl will be produced.
Know more about molar mass here:
https://brainly.com/question/837939
#SPJ11
How many grams of a 25% (m/m) sodium chloride solution contain 0.250 moles of sodium chloride?
Approximately 1.167 grams of the 25% (m/m) NaCl solution would contain 0.250 moles of sodium chloride.
To determine the mass of a 25% (m/m) sodium chloride (NaCl) solution containing 0.250 moles of sodium chloride, we need to consider the concentration and molar mass of NaCl.
The percentage (m/m) concentration indicates the mass of solute (NaCl) present per 100 grams of the solution. Therefore, a 25% (m/m) NaCl solution contains 25 grams of NaCl per 100 grams of the solution.
First, we calculate the mass of NaCl in the given solution:
Mass of NaCl = (25% / 100%) x Mass of solution
= (25 / 100) x Mass of solution
Next, we can determine the mass of the solution required to have 0.250 moles of NaCl using the molar mass of NaCl, which is approximately 58.44 g/mol.
Mass of NaCl = Moles x Molar mass
Mass of solution x (25 / 100) = 0.250 moles x 58.44 g/mol
Now, we can solve for the mass of the solution:
Mass of solution = (0.250 moles x 58.44 g/mol) / (25 / 100)
= 1.167 g
for more questions on sodium chloride.
https://brainly.com/question/30460299
#SPJ8
Convert 150 grams of NaOH to particles of NaOH
150 grams of NaOH is approximately equal to 2.256 x 10^24 particles of NaOH.
To convert grams of NaOH to particles of NaOH, we need to use the concept of molar mass and Avogadro's number. The molar mass of NaOH is calculated by adding the atomic masses of sodium (Na), oxygen (O), and hydrogen (H) together. It can be determined as follows:
Na: 22.99 g/mol
O: 16.00 g/mol
H: 1.01 g/mol
Molar mass of NaOH = (22.99 g/mol) + (16.00 g/mol) + (1.01 g/mol) = 40.00 g/mol
Now, we can use the molar mass to convert grams of NaOH to moles. Since 1 mole contains Avogadro's number (approximately 6.022 x 10^23) particles, we can determine the number of particles as follows:
150 g NaOH * (1 mol NaOH / 40.00 g NaOH) * (6.022 x 10^23 particles / 1 mol NaOH) ≈ 2.256 x 10^24 particles
It's important to note that this calculation assumes the substance is pure NaOH and that the molar mass and Avogadro's number are accurate.
for more questions on particles
https://brainly.com/question/31213916
#SPJ11
How do the varying characteristics of Earth's atmospheric layers affect the types of wavelengths that are reflected back into space, absorbed or allowed to pass to Earth's surface?
The layers that make up the Earth's atmosphere has unique properties that influence the kinds of wavelengths that are reflected, absorbed, or permitted to pass through to the planet's surface. Three layers are troposphere, stratosphere, and mesosphere.
The troposphere, the first layer closest to the surface of the planet, is where the majority of the planet's weather is found. The temperature in this layer drops with altitude, and it is made up of greenhouse gases like carbon dioxide and water vapor.
The stratosphere, which contains the ozone layer, is the next layer. The sun's dangerous UV light is absorbed by ozone, keeping it from reaching the surface of the Earth.
Learn more about troposphere, here:
https://brainly.com/question/30827755
#SPJ1
A sample of gas has a mass of 38.6 mg
. Its volume is 222 mL
at a temperature of 57 ∘C
and a pressure of 918 torr
. Find the molar mass of the gas.
The molar mass of the gas is 3.58 g/mol.
To find the molar mass of the gasWe can use the ideal gas law equation:
[tex]PV = nRT[/tex]
Where
P is the pressure in torrvolume (in milliliters)The number of moles is nR = 62.36 L torr/mol K, the ideal gas constantT is the temperature (in K)We can rearrange the equation to solve for n:
[tex]n = PV/RT[/tex]
We know the following values:
P = 918 torr
V = 222 mL
R = 62.36 L torr/mol K
T = 57°C + 273 = 330 K
To solve for n, we can enter these numbers into the equation:
n = (918 torr)(222 mL)/(62.36 L torr/mol K)(330 K) = 0.0108 mol
Now, we can use the definition of molar mass to find the molar mass of the gas:
molar mass = mass/number of moles
We know the following values:
mass = 38.6 mg = 0.0386 g
n = 0.0108 mol
We can plug these values into the equation to solve for the molar mass
molar mass = 0.0386 g/0.0108 mol = 3.58 g/mol
Therefore, the molar mass of the gas is 3.58 g/mol.
Learn more about ideal gas law here : brainly.com/question/12873752
#SPJ1
Mention one structural difference between oligosaccharides and polysaccharides.
One structural difference between oligosaccharides and polysaccharides is the number of monosaccharide units they consist of. Oligosaccharides have a relatively small number of monosaccharide units (typically 3 to 10), while polysaccharides have a larger number of monosaccharide units (often hundreds or thousands).
[tex]\huge{\mathcal{\colorbox{black}{\textcolor{lime}{\textsf{I hope this helps !}}}}}[/tex]
♥️ [tex]\large{\textcolor{red}{\underline{\texttt{SUMIT ROY (:}}}}[/tex]
THIS IS SIENCE BUT THEY DIDNT HAVE A SCIENCE OPTION!!!
I need this right now btw .
“ DNA is a nucleic acid. Where is DNA primarily found in an animal cell? “
Answer:DNA, along with RNA and proteins, is one of the three major macromolecules that are essential for life. Most of the DNA is located in the nucleus, although a small amount can be found in mitochondria (mitochondrial DNA). Within the nucleus of eukaryotic cells, DNA is organized into structures called chromosomes.
Explanation: science
Question: What volume of 4.50 M HCI can be
made by mixing 5.65 M HCI with 250.0 mL of
3.55 M HCI?
Approximately 0.157 liters or 157 milliliters of the 4.50 M HCl solution can be made by mixing the given solutions.
To determine the volume of 4.50 M HCl that can be made by mixing the given solutions, we can use the concept of the concentration-volume relationship:
C1V1 = C2V2
Where:
C1 = concentration of the first solution
V1 = volume of the first solution
C2 = concentration of the second solution
V2 = volume of the second solution
Let's assign the variables as follows:
C1 = 5.65 M
V1 = unknown volume (we'll solve for this)
C2 = 3.55 M
V2 = 250.0 mL = 0.250 L (since the volume is given in milliliters)
Now we can plug in the values into the equation and solve for V1:
(5.65 M)(V1) = (3.55 M)(0.250 L)
Dividing both sides of the equation by 5.65 M:
V1 = (3.55 M)(0.250 L) / 5.65 M
V1 ≈ 0.157 L
For more question on solutions click on
https://brainly.com/question/25326161
#SPJ11
After each event listed, indicate how the concentration of each species in the chemical equation will change to reach equilibrium. An up arrow indicates an increase in concentration, a down arrow indicates a decrease in concentration, and leaving it blank means there is no change in the concentration.
You are currently in a labeling module. Turn off browse mode or quick nav, Tab to items, Space or Enter to pick up, Tab to move, Space or Enter to drop.
2CO(g)
+
O2(g)
↽−−⇀
2CO2(g)
increasing the concentration of CO
increasing the concentration of CO2
decreasing the volume of the system
When the volume of the system is decreased, the pressure will increase, causing the reaction to shift in the direction that produces fewer gas molecules. In this case, the reaction shifts towards the formation of CO2, increasing the concentration of all species (CO, O2, and CO2).
After each event listed, the changes in concentration for each species to reach equilibrium can be determined:
Increasing the concentration of CO:
CO will decrease (↓)
O2 will not change (blank)
CO2 will increase (↑)
Increasing the concentration of CO2:
CO will not change (blank)
O2 will not change (blank)
CO2 will increase (↑)
Decreasing the volume of the system:
CO will increase (↑)
O2 will increase (↑)
CO2 will increase (↑)
for more questions on gas molecules
https://brainly.com/question/30360942
#SPJ8
If 1.2 kilograms of rust form on a bridge in five days, what should be the rate of reaction in grams per hour? (Recall that a bar over the number means that zero is significant.) 0 0.05 g/hr 0 0.010 g/hr 0 100 ghr O 10 g/hr
How many particles of silver chloride are produced
The produce 1 mole of AgCl, we would have approximately 6.022 × 10^23 particles of silver chloride.
To determine the number of particles of silver chloride produced, we need to consider the balanced chemical equation and the stoichiometry of the reaction involved.
The balanced chemical equation for the formation of silver chloride (AgCl) is:
2 AgNO3 + NaCl → AgCl + 2 NaNO3
From the equation, we can see that two moles of silver nitrate (AgNO3) react with one mole of sodium chloride (NaCl) to produce one mole of silver chloride (AgCl).
To calculate the number of particles, we need to know the number of moles of silver chloride. Let's assume that we have 'x' moles of AgCl.
According to the balanced equation, the molar ratio between AgCl and AgNO3 is 1:2. So, if 'x' moles of AgCl are produced, then '2x' moles of AgNO3 must react.
Now, if we know the molar mass of AgCl, we can convert the moles of AgCl to particles using Avogadro's number (6.022 × 10^23 particles/mol).
To provide an accurate answer in 125 words, I'll need to make some assumptions. Let's assume we have 1 mole of AgCl. Then, the number of particles of AgCl would be:
1 mole AgCl × (6.022 × 10^23 particles/mol) = 6.022 × 10^23 particles.
For more such questions on AgCl
https://brainly.com/question/31389624
#SPJ11
Complete Question
How many grams of silver chloride are produced from 5.0 g of silver nitrate reacting with an excess of barium chloride in the reaction
2AgNO3 +BaCl2 →2AgCl +Ba(NO3)2?
Urgent help pleasee
Question 8 (1 point)
What is the pressure of a gas that originally occupied 2.7 L at a pressure of 3.4 atm,
if the volume is increased to 10.0 L?
Your Answer:
Answer
units
13 atm
Explanation:Ideal gas laws let us calculate different values for gases.
Boyle's Law
One of the ideal gas laws is Boyle's law. Boyle's law states that pressure and volume are inversely proportional. This means that as pressure increases, volume decreases and vice versa. In equation form, Boyle's law is:
P₁V₁ = P₂V₂This means to find the original pressure, all we have to do is plug in the known values and solve for P₁.
Solving for P
Firstly, let's plug in the known volumes and pressure.
P₁ * 2.7L = 3.4atm * 10.0LThen, divide both sides by 2.7 to find the original pressure.
P₁ ≈ 12.59 atmSince this equation is based on measured values, we should round to significant figures. Rounded to 2 sig figs, the original pressure was 13 atm.
how to synthesize 2-benzyl pentanoic acid from acetoacetic ester?
If you're attempting to synthesize 2 benzyl pentanoic acid from acetoacetic ester, keep in mind that you can do so fairly quickly by following these simplified instructions:
Begin by dissolving your acetoacetic ester into anhydrous diethyl ether and adding benzyl bromide and sodium hydroxide to the mix. Stir it all together at room temperature for around thirty minutes before reacting it with hydrochloric acid so that any remaining solvent evaporates out of your crude mixture; Lastly refine your creation by recrystallizing it from ethanol until you have pure 2 benzyl pentanoic acid.What is acetoacetic ester?From its pungent free scent to its solid state at temperatures ranging from 118 120°C, acetoacetic ester (better known as ethyl acetoacetate) offers significant value for those working within organic synthesis.
As one of many potent ketones utilized by researchers around the globe its unique properties make it ideal for building complex molecules essential for modern medicine and more.
Learn about acetoacetic ester here https://brainly.com/question/31744037
#SPJ1
If 37.4 L of oxygen (O2 ) reacts with hydrogen, how many liters of water vapor (H2O ) will be produced?
A simple calorimeter can be used to measure temperature change in a closed
system during a reaction. An increase in temperature during the reaction MUST
indicate which of the following?
A. The reaction causes a rise in heat capacity.
B. The reaction generates an electrical current.
C. The reaction releases chemical energy.
D. The reaction involves a state change.
Submit
An increase in temperature during the reaction is an indication that the reaction released chemical energy
Increase in temperature during reactionsThe increase in temperature during a reaction in a closed system indicates that the reaction releases chemical energy.
This is because an increase in temperature indicates that energy is being released into the surroundings, and the only way that can happen in a closed system is if it is released by the reaction taking place within the system.
In other words, the correct answer is C. The reaction releases chemical energy.
More on temperature and reactions can be found here: https://brainly.com/question/28606658
#SPJ1
If a chemist starts with 4 moles of H2 and 4 moles of O2, what is the limiting reactant? How do you know?
Explanation:
The balanced equation is
2 H2 + 02 ======> 2 H2 O
so it takes twice as many H2 moles as O2 to complete the reaction
the chemist does not have enough H2 (needs 8 moles) , so H2 is the limiting reactant .
Please help will give brainliest
The temperature of a 75.0 gram sample of water drops from 15°C to 8°C. Calculate how
much heat was transferred, and state whether it was gained or lost based on the sign of your
answer.
Q=
Gained or Lost:
PLEASE HELP!!!!
Q ≈ -2000 J
Explanation:Temperature changes can be used to calculate heat transfer. Please note that since the question is based on measured values I rounded for significant figures.
Heat Transfer
In heat transfer, energy can be gained or lost. When energy is gained, temperature increases. However, when energy is lost, temperature decreases. Since the water decreased in temperature, it must have lost energy. This means that Q will be negative. Q represents the transfer of energy, which is measured in joules.
Calculating Energy
To calculate heat transfer we can use the equation q = m·c·ΔT.
m is the mass of the sample in gramsc is specific heat in joules per gram·celsiusΔT is the change in temperature in celsiusFor this question, we know that the mass is 75.0g. Specific heat is a constant that every substance has. These values can be found in data tables. For liquid water, c = 4.184. Finally, the change in temperature is -7°C.
Q = 75.0g · 4.184 J/g·C · -7°CQ = -2196.6In this scenario, 2196.6 joules of energy were lost. Since -7 has one sig fig, this answer can be rounded to 2000 J.
pls help!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
The artificial transmutation is described as process which leads to the formation of a new element with a different atomic number mass number.
The example can be seen in the artificial transmutation of nitrogen-14 where alpha particles are bombarded to create oxygen-17 .
What is the benefit of artificial transmutation?The artificial transmutation of transuranic elements has is very beneficial as it has helped to manage radioactive waste.
The artificial transmutation of nitrogen-14 where alpha particles are bombarded to create oxygen-17 and a proton is shown in the reaction below:
14N + 4He → 17O + 1H
Learn more about artificial transmutation at:
https://brainly.com/question/545552
#SPJ1
Convert 80 moles of CH4 to particles of CH4
A unit of measurement called a mole is used to determine how much of a material there is. We must utilise Avogadro's number, which equals 6.022 x 1023 particles per mole, to convert moles to particles. The Avogadro constant is another name for this quantity.
We must multiply 80 moles of CH4 by Avogadro's number in order to transform it to particles. The computation looks like this: 80 moles x a particle density of 6.022 x 1023 per mole = 4.8176 x 1025 particles. 80 moles of CH4 are therefore equivalent to 4.8176 x 1025 particles.
Particles refer to the individual units, such as atoms or molecules, inside a material, whereas moles are the basic unit used to estimate the amount of a substance. Approximately 6.022 x 1023 particles per mole, or Avogadro's number, serves as a conversion factor between moles and particles.
Learn more about moles at:
https://brainly.com/question/30885025
#SPJ1
Arrange the different types of radioactive decay in increasing order of their ability to penetrate substances.
Drag each tile to the correct box.
Tiles
gamma raybeta particlealpha particle
The alpha particles have the lowest penetrating power, followed by beta particles, while gamma rays possess the highest ability to penetrate substances.
In increasing order of their ability to penetrate substances, the different types of radioactive decay are:
Alpha particle: Alpha particles consist of two protons and two neutrons and are relatively large and heavy. Due to their size and positive charge, they have limited penetrating power and can be easily stopped by a sheet of paper or a few centimeters of air.
Beta particle: Beta particles are high-energy electrons (beta-minus decay) or positrons (beta-plus decay) emitted during radioactive decay. They have greater penetrating power than alpha particles but are still relatively easily stopped by a few millimeters of aluminum or a few meters of air.
Gamma ray: Gamma rays are electromagnetic waves with high energy and frequency. They have the highest penetrating power among the three types of radioactive decay. Gamma rays require thick layers of dense materials such as lead or concrete to significantly reduce their intensity.
For more such questions on penetrating
https://brainly.com/question/8810300
#SPJ11
Chem hess’s law
Calculate AH for the reaction: C2H4 (9) + H2 (9) -> CaH6 c) from the following
Considering the Hess's Law, the enthalpy change for the reaction is -136.8 kJ.
Definition of Hess's LawHess's Law indicates that the enthalpy change in a chemical reaction will be the same whether it occurs in a single stage or in several stages. That is, the sum of the ∆H of each stage of the reaction will give us a value equal to the ∆H of the reaction when it occurs in a single stage.
∆H of the reaction in this caseIn this case you want to calculate the enthalpy change of:
C₂H₄ + H₂ → C₂H₆
which occurs in three stages, with their corresponding enthalpies:
Equation 1: C₂H₄ + 3 O₂ → 2 CO₂ + 2 H₂O ΔH = –1411 kJ
Equation 2: C₂H₆ + 3 1/2 O₂ → 2 CO₂ + 3 H₂O ΔH = –1560 kJ
Equation 3: H₂ + 1/2 O₂ → H₂O ΔH = - 285.8 kJ
Because of the way formation reactions are defined, any chemical reaction can be written as a combination of formation reactions, some going forward and some going back.
In this case, to obtain the enthalpy of the desired chemical reaction you need one C₂H₆ on product side and it is present in second equation on product side. So, it is necessary to locate the C₂H₆ invert it. When an equation is inverted, the sign of delta H also changes.
Then, you know that three equations with their corresponding enthalpies are:
Equation 1: C₂H₄ + 3 O₂ → 2 CO₂ + 2 H₂O ΔH = –1411 kJ
Equation 2: 2 CO₂ + 3 H₂O → C₂H₆ + 3 1/2 O₂ ΔH = 1560 kJ
Equation 3: H₂ + 1/2 O₂ → H₂O ΔH = - 285.8 kJ
Adding or canceling the reactants and products as appropriate, and adding the enthalpies algebraically, you obtain:
C₂H₄ + H₂ → C₂H₆ ΔH= -136.8 kJ
Finally, the enthalpy change for the reaction is -136.8 kJ.
Learn more about Hess's Law:
brainly.com/question/5976752
#SPJ1
Urgent help pleasee
Question 7 (1 point)
The volume of a sample of gas doubled in a weather balloon. What happened to the
temperature?
It increased.
It remained constant.
It cannot be determined.
It decreased.
Answer:
the temperature increased